JPS59189425A - Data processing device - Google Patents

Data processing device

Info

Publication number
JPS59189425A
JPS59189425A JP58064001A JP6400183A JPS59189425A JP S59189425 A JPS59189425 A JP S59189425A JP 58064001 A JP58064001 A JP 58064001A JP 6400183 A JP6400183 A JP 6400183A JP S59189425 A JPS59189425 A JP S59189425A
Authority
JP
Japan
Prior art keywords
clock
phase
observation point
delay
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58064001A
Other languages
Japanese (ja)
Inventor
Hitoshi Yamazaki
均 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58064001A priority Critical patent/JPS59189425A/en
Publication of JPS59189425A publication Critical patent/JPS59189425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Techniques For Improving Reliability Of Storages (AREA)

Abstract

PURPOSE:To make the adjustment for every product unnecessary by detecting a phase error between observation points by a storage element, varying a delayed quantity of a variable delay element so that the error is corrected to an allowable value or below, and executing a clock phase adjustment. CONSTITUTION:A waveform observation point TP1 is connected to storage elements F0-F3 through a delay element DL3, and an observation point TP2 is connected to the storage elements F0-F3 through delay elements DL4-7. The delay elements DL3-7 have a delay quantity of 3alpha, 0, 2alpha, 4alpha, and 6alpha, respectively. A reference timing clock is generated from a clock of the observation point TP2, a clock of the observation point TP1 is sampled, and from the contents of the storage elements F0-F3, a phase correction controlling circuit 9 decides a phase error, outputs correcting signals 10, 11, changes a delayed value of variable delay elements DL1-2, corrects a phase, and sets the phase error to an allowable value or below. In this way, the phase adjustment is executed automatically, and the test adjusting time is reduced.

Description

【発明の詳細な説明】 −〔発明の技術分野〕 この発明はデータ処理装置、符にその各記憶素子のクロ
ック入力端子に要求仕様通シ1、やクロックを与えるた
めのクロック位相調整に関するものである。
[Detailed Description of the Invention] - [Technical Field of the Invention] The present invention relates to a data processing device, and relates to a clock phase adjustment for providing required specifications and a clock to the clock input terminal of each storage element of the data processing device. be.

〔従来技術〕[Prior art]

一般にデータ処理装置においては、そのクロック発生源
から記憶素子のクロック入力端子までのクロック供給経
路には、経路ごとに異る遅延値の遅延要素が存在し、し
かもこの遅延値には製造によるはらつきがある。このた
め、各記憶素子のクロック入力端子に要求仕様通シのク
ロックを与えるためには、製品ごとに調整することが必
要である。
In general, in data processing devices, the clock supply path from the clock generation source to the clock input terminal of the storage element has delay elements with different delay values depending on the path, and furthermore, this delay value has variations due to manufacturing. There is. Therefore, in order to provide a clock consistent with the required specifications to the clock input terminal of each storage element, it is necessary to make adjustments for each product.

従来、クロック位相調整方法として、クロック供給経路
ごとに、可変遅延素子を設け、各供給経路を通して記憶
素子に与えられるクロックの波形をオシロスコープで観
測しながら、可変遅延素子を調整することにより位相誤
差が許容値以下になるようにする方法があった。
Conventionally, as a clock phase adjustment method, a variable delay element is provided for each clock supply path, and the phase error is eliminated by adjusting the variable delay element while observing the clock waveform given to the storage element through each supply path with an oscilloscope. There was a way to keep it below the allowable value.

第1図は従来の方法を実現するだめの一例で、2つの記
憶素子に別々の経路を通して同一のクロックを与える場
合を示す。
FIG. 1 shows an example of how to implement the conventional method, in which the same clock is applied to two storage elements through separate paths.

図において、(1−1)はクロック供給回路、(2)は
クロック発生器、(3)、(4)はそれぞれ第1および
第2の記憶素子、 (5) 、 (6)はそれぞれ第1
および第2の記憶素子へのクロック供給経路、 (7)
 、 (8)はそれぞれクロック供給経路(5)、(6
)に存在する遅延喪素、  (TPI)、 (TP2ン
は、それぞれ第1.第2の記憶素子(3)、(4)に入
力するクロックの波形観測点である。盈た、(DI、1
)、(DBP)はそれぞれクロック供給経路(5) 、
 (6)へ出力するクロックの位相調整のだめの可変遅
延素子で、(CT1)、(CT2)はそれぞれクロック
供給回路(1)からの出力端子を示す。
In the figure, (1-1) is a clock supply circuit, (2) is a clock generator, (3) and (4) are the first and second storage elements, respectively, and (5) and (6) are the first and second storage elements, respectively.
and a clock supply path to the second storage element, (7)
, (8) are the clock supply paths (5) and (6), respectively.
), (TPI) and (TP2) are the waveform observation points of the clock input to the first and second storage elements (3) and (4), respectively. 1
), (DBP) are the clock supply path (5), respectively.
(6) is a variable delay element for adjusting the phase of the clock output to the clock supply circuit (6), and (CT1) and (CT2) respectively indicate output terminals from the clock supply circuit (1).

この回路において供給経路の遅延要素(7) 、 (8
)が異なる遅延値を持つ場合、波形観測点(TPl)、
 (TP2)におけるクロック波形をオシロスコープで
観測し、可変遅延素子(DLl)、 (DBP)を調節
することによりクロック位相誤差を許容値以下にしてい
た。
In this circuit, the delay elements (7) and (8
) have different delay values, the waveform observation point (TPl),
The clock waveform at (TP2) was observed with an oscilloscope, and the clock phase error was kept below the allowable value by adjusting the variable delay elements (DLl) and (DBP).

従来のデータ処理装置におけるクロック位相調整は以上
のようにして行なわれるので、各製品ごとに調整を必要
とした。また観d1す点数及び調整点数(は・・−ドウ
エア規模が大きく、高性能を要求される程多くなり、調
整時間がかかる等欠点があった。
Since clock phase adjustment in conventional data processing devices is performed as described above, adjustment is required for each product. In addition, the number of points to be evaluated and the number of adjustment points (...) are large, and the number increases as high performance is required, and there are drawbacks such as a long adjustment time.

〔発明の概要〕[Summary of the invention]

この発明はかかる欠点を改善する目的でなされたもので
、各観測点間の位相誤差を検出しこの結果から誤差を許
容値以下に補正することにより自動的にクロック位相調
整が行なえ各製品毎に調整を要しないデータ処理装置を
提供するものである。
This invention was made with the aim of improving this drawback, and it is possible to automatically adjust the clock phase by detecting the phase error between each observation point and correcting the error to below the allowable value based on the result. The present invention provides a data processing device that does not require adjustment.

〔発明の実施例〕[Embodiments of the invention]

以下、第2図に示すこの発明の一実施例について説明す
る。図において、(2−1)は自動位相補正機能を持つ
クロック供給回路、(2)はクロック発生器で、可変遅
延素子(DLl)、(DBP)によ逆位相調節されたク
ロックは出力端子(CT 1 ) 、 (CT2)から
クロック供給経路へ出力される。′また、(DLR)(
DL4)、 (DL5)、 (DL6)、 (DL7)
は観測点(TP 1 )。
An embodiment of the present invention shown in FIG. 2 will be described below. In the figure, (2-1) is a clock supply circuit with an automatic phase correction function, (2) is a clock generator, and the clock whose antiphase is adjusted by variable delay elements (DLl) and (DBP) is output from the output terminal ( CT1) and (CT2) are output to the clock supply path. ' Also, (DLR) (
DL4), (DL5), (DL6), (DL7)
is the observation point (TP 1).

(TP2>の位相誤差の犬きでを検出するたののタイミ
ング生成用遅延素子でそれぞれ6α、0,2α、4α。
(6α, 0, 2α, and 4α for the timing generation delay elements for detecting the magnitude of the phase error of TP2>, respectively.

6αの遅延値を持つ FO,Fl、 F2. F3は遅
延素子DL3の出力データ入力とし、それぞれ遅延素子
DL4. DL5. DL6. DL7の出力をクロッ
ク入力とする記憶素子、(9)は記憶素子FO,Fl、
 F2. F3 の出力から、位相誤差を判断し、位相
補正信号を出力する補正制御回路、αq、α℃はそれぞ
れ可変遅延素子DL1.DL2の遅延値を変えて位相を
補正するだめの位相補正信号である。
FO, Fl, F2. with a delay value of 6α. F3 is the output data input of delay element DL3, and delay element DL4. DL5. DL6. A memory element whose clock input is the output of DL7, (9) is a memory element FO, Fl,
F2. A correction control circuit that determines a phase error from the output of F3 and outputs a phase correction signal, αq and α°C are variable delay elements DL1. This is a phase correction signal for correcting the phase by changing the delay value of DL2.

第6図は、観測点TP2および遅延素子DT、4゜DL
5.DL6.DL7の出力波形のタイミノダチャートで
ある。
Figure 6 shows observation point TP2, delay element DT, and 4°DL.
5. DL6. It is a timing chart of the output waveform of DL7.

ま/こ第4図は観測点TPIのクロック位相が観測点T
P2での位相よシ+6α遅扛ている場合のタイミノダテ
ヤートで、記憶素子の内容は(FO。
Figure 4 shows that the clock phase of observation point TPI is the same as observation point T.
When the phase at P2 is delayed by +6α, the content of the memory element is (FO.

Fl、F2.Fろ) = (0,’0.0.’ 1 )
となる。
Fl, F2. Fro) = (0,'0.0.' 1)
becomes.

第5図は本例におけるクロック位相誤差検出および補正
の原理を示し、観測点TP2におけるクロック位相を基
準値(0)として観測点TP1におけるクロック位相を
Gで表わす時、記憶素子FO,Fl。
FIG. 5 shows the principle of clock phase error detection and correction in this example. When the clock phase at observation point TP2 is a reference value (0) and the clock phase at observation point TP1 is represented by G, storage elements FO, Fl.

F2.Fろの内容のすべての場合について、Gの太ささ
とその時の位相補正信号−,αηの作用を表わす。
F2. For all cases of the contents of F, the thickness of G and the effect of the phase correction signal -, αη at that time are shown.

次に動作について説明する。2つのクロック位相の観測
点TP1.TP2から等距離にあるクロック供給回路に
おいて、観測点TP2のクロックから基準タイミング・
タロツクを作成し、観測点TPIのクロックをサンプル
とすることにより、記憶素子FO,F1.F2.’Fろ
の内容から補正制御回路(9)は位相誤差を判断し、位
相補正信号を出力する。可変遅延素子DL1.DL2は
位相補正信号に応じて遅延値を変え、クロック位相誤差
が許容値以下になるよう補正される。
Next, the operation will be explained. Two clock phase observation points TP1. In the clock supply circuit located at the same distance from TP2, the reference timing is calculated from the clock at observation point TP2.
By creating a taro clock and using the clock of observation point TPI as a sample, storage elements FO, F1. F2. The correction control circuit (9) determines the phase error from the contents of 'F' and outputs a phase correction signal. Variable delay element DL1. DL2 changes the delay value according to the phase correction signal, and corrects the clock phase error so that it is less than the allowable value.

具体例として第4図のタイミング・チャートに示す場合
は、第5図の場合(2)に相当し、補正制御回路(9)
からは、可変遅延素子DL1の遅延値を2α減するため
の位相補正信号−が出力され、この結果位相誤差は許容
値である±α以下となる。
As a specific example, the case shown in the timing chart of FIG. 4 corresponds to case (2) in FIG. 5, and the correction control circuit (9)
A phase correction signal - for reducing the delay value of variable delay element DL1 by 2α is outputted from DL1, and as a result, the phase error becomes less than the allowable value ±α.

なお、第5図の場合1について説明すると記憶素子FO
,Fl、F2.F3の内容から誤差値Gが6αよシ大き
いと判断され可変遅延素子DL1の遅延値を6α大きく
するように位相補正信号αめが作用する。この補正結果
が再び場合1となると上記動作が繰返されて、いずれは
場合2.場合6′、場合4のいずれかとなる。ここで場
合2あるいは場合4であればさらに補正が行々われ場合
6となった時点で補正は完了する。
In addition, to explain case 1 in FIG. 5, the memory element FO
, Fl, F2. It is determined from the contents of F3 that the error value G is larger than 6α, and the phase correction signal α acts to increase the delay value of the variable delay element DL1 by 6α. When this correction result becomes case 1 again, the above operation is repeated, and eventually case 2. Either case 6' or case 4 will be the case. Here, in case 2 or case 4, further correction is performed, and when case 6 is reached, the correction is completed.

なお、上記実施例では観測点が2つの場合を示し観測点
におけるクロック位相のうちの1つを基準位相として誤
差検出を行ったが、観測点数はいくつでも良く、また誤
差検出の基準クロック位相としては観測点以外のものを
用いても良い。さらに観測点数が多く力ると誤差検出用
および補正制御用のハードウェアが大きくなるので、観
測点を選択する回路を設けて順番に補正していく方式に
しても良い。また本笑施例における遅延値等の数式は補
正精度等によシ変えても良い。
In addition, in the above example, the case where there are two observation points and error detection is performed using one of the clock phases at the observation points as the reference phase, but the number of observation points may be any number, and the reference clock phase for error detection may be used as the reference phase. may be used other than observation points. Furthermore, as the number of observation points increases, the hardware for error detection and correction control becomes large, so a system may be used in which a circuit for selecting observation points is provided and correction is performed in order. Further, the mathematical expressions for the delay values and the like in this embodiment may be changed depending on the correction accuracy and the like.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によればクロックの位相調整が
自動的に行なわれるので、装置の試験yH整時間が削減
でき、しかもIIv変の高いものが得られる等効果がめ
る。
As described above, according to the present invention, since the clock phase is automatically adjusted, the test yH adjustment time of the device can be reduced, and a high IIv variation can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はデータ処理装置における従来のクロック位相調
整の一例を示す構成図、第2図はこの発明の一実施例を
示す構成図、第6図は第2図における基準クロックのタ
イミング・チャート、第4図は実施例において観測され
る波形の例を示すタイミング・チャート、第5図は実施
例における動作原理を示す説明図である。 図において、(2−1)はクロック供給回路。 FD、Fl、F2.F3は記憶素子、(9)は補正制御
回線、、DL1.DL2は可変遅延素子、DL3〜DL
7は遅W、素子である。々お図中同一符号は同−壕だ(
は相当部分を示す。 代理人 大岩増雄 第3図 第 4 図 第5図 U  θ 手続補正書(自発) 昭和 5% 5,17 8 2、発明の名称 データ処理装置 3、補正をする者 事件との関係  特許出願人 住 所    東京都千代田区丸の内二丁目2番3号名
 称  (601)三菱電機株式会社代表者片山仁八部 4、代理人 明細書の「発明の詳細な説明」の柩。 66  補正の内容 以上 127
FIG. 1 is a block diagram showing an example of conventional clock phase adjustment in a data processing device, FIG. 2 is a block diagram showing an embodiment of the present invention, and FIG. 6 is a timing chart of the reference clock in FIG. FIG. 4 is a timing chart showing examples of waveforms observed in the embodiment, and FIG. 5 is an explanatory diagram showing the operating principle in the embodiment. In the figure, (2-1) is a clock supply circuit. FD, Fl, F2. F3 is a storage element, (9) is a correction control line, DL1. DL2 is a variable delay element, DL3 to DL
7 is a slow W element. The same symbols in the figures are the same (
indicates a considerable portion. Agent Masuo Oiwa Figure 3 Figure 4 Figure 5 U θ Procedural amendment (voluntary) Showa 5% 5,17 8 2. Name of the invention Data processing device 3. Person making the amendment Relationship to the case Patent applicant residence Address: 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (601) Mitsubishi Electric Co., Ltd. Representative Hitoshi Katayama 4, coffin of "Detailed Description of the Invention" in the agent's specification. 66 Contents of amendment 127

Claims (1)

【特許請求の範囲】[Claims] 記憶素子の出力信号が供給され、その出力信号からクロ
ックの位相誤差を検出し、位相補正信号を発生する補正
制御回路と、上記位相補正信号に応じて可変遅延素子の
遅延値を変化させクロック発生器の出力クロックの位相
を調節し、上記クロックの位相誤差を所定値に制御する
ようにしたことを特徴とするデータ処理装置。
A correction control circuit which is supplied with the output signal of the storage element, detects the phase error of the clock from the output signal and generates a phase correction signal, and generates a clock by changing the delay value of the variable delay element according to the phase correction signal. 1. A data processing device, characterized in that the phase of an output clock of the device is adjusted to control the phase error of the clock to a predetermined value.
JP58064001A 1983-04-12 1983-04-12 Data processing device Pending JPS59189425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58064001A JPS59189425A (en) 1983-04-12 1983-04-12 Data processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58064001A JPS59189425A (en) 1983-04-12 1983-04-12 Data processing device

Publications (1)

Publication Number Publication Date
JPS59189425A true JPS59189425A (en) 1984-10-27

Family

ID=13245529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58064001A Pending JPS59189425A (en) 1983-04-12 1983-04-12 Data processing device

Country Status (1)

Country Link
JP (1) JPS59189425A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184027A (en) * 1987-03-20 1993-02-02 Hitachi, Ltd. Clock signal supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184027A (en) * 1987-03-20 1993-02-02 Hitachi, Ltd. Clock signal supply system

Similar Documents

Publication Publication Date Title
US6525581B1 (en) Duty correction circuit and a method of correcting a duty
US6859081B2 (en) Duty cycle correction circuit and delay locked loop having the same
US7227395B1 (en) High-performance memory interface circuit architecture
US8730072B2 (en) Interleaved ADC calibration
KR100668853B1 (en) Duty Cycle Correction Device
JP2006262197A (en) Phase control circuit
JPS59189425A (en) Data processing device
US10158353B2 (en) Duty cycle correction method
TWI739417B (en) Memory controller and memory data receiving method
US4255700A (en) Control circuit of reactive power compensation apparatus
US5473388A (en) PAL chroma signal demodulating apparatus
JPH05183406A (en) Automatic phase correction circuit
JPH08179009A (en) Test circuit
JPS6357809B2 (en)
JP2664958B2 (en) Clock duty adjustment circuit
JPH0323707Y2 (en)
JPH09285134A (en) Inverter device
US20060062340A1 (en) Phase adjuster
JPH06201742A (en) Correction method for frequency discrimination circuit of receiving signal
JPH04262626A (en) Clock changeover system
JP2003110422A (en) Skew adjustment circuit, signal generator and skew adjustment method
JPH11242530A (en) Signal processor
JPH1127110A (en) Frequency multiplier circuit
JPH055771A (en) Variable circuit of rise time of driver
JPS6055763A (en) Phase control method