JPS59189131A - Plasma treatment apparatus - Google Patents

Plasma treatment apparatus

Info

Publication number
JPS59189131A
JPS59189131A JP6373583A JP6373583A JPS59189131A JP S59189131 A JPS59189131 A JP S59189131A JP 6373583 A JP6373583 A JP 6373583A JP 6373583 A JP6373583 A JP 6373583A JP S59189131 A JPS59189131 A JP S59189131A
Authority
JP
Japan
Prior art keywords
plasma
processing
shower
pipe
stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6373583A
Other languages
Japanese (ja)
Inventor
Takaoki Kaneko
金子 隆興
Kenji Fukuda
賢治 福田
Yoshinobu Takahashi
芳信 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6373583A priority Critical patent/JPS59189131A/en
Priority to AU24671/84A priority patent/AU549376B2/en
Priority to EP91115536A priority patent/EP0461683B1/en
Priority to EP84101926A priority patent/EP0120307B1/en
Priority to DE3486317T priority patent/DE3486317T2/en
Priority to DE3486470T priority patent/DE3486470T2/en
Publication of JPS59189131A publication Critical patent/JPS59189131A/en
Priority to US06/825,941 priority patent/US4678644A/en
Priority to AU82238/87A priority patent/AU8223887A/en
Priority to AU82237/87A priority patent/AU8223787A/en
Priority to AU82239/87A priority patent/AU8223987A/en
Priority to AU82240/87A priority patent/AU603397B2/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1942Details relating to the geometry of the reactor round circular or disk-shaped spherical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/18Vacuum control means
    • H01J2237/182Obtaining or maintaining desired pressure
    • H01J2237/1825Evacuating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/336Changing physical properties of treated surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To prevent the production line from being interrupted by structural failure, by fabricating a plasma transmission pipe and a plasma shower pipe of stainless steel. CONSTITUTION:Microwaves generated in an oscillator 2 is led to a plasma generating furnace 6 through an isolator 3, a power monitor 4, a three-stub tuner 5, and a waveguide 8. Separately, a plasma-forming gas in a cylinder is fed through a pipe 9 to a plasma generating tube 7. The plasma generated in the furnace 6 and the tube 7 is led to a cross-shaped fluoroconnector 18 through a straight fluoroconnector 23 and a stainless plasma transmission pipe 25 and branched into directions A, B, and C. Then branched plasmas are fed to plasma inlets mounted on the vessel 1 through stainless plasma transmission pipes 26- A-C, and injected into a treatment chamber 12 from stainless shower pipes 10-1-3.

Description

【発明の詳細な説明】 本発明は、プラズマ処理技術に関し、さらに詳しく述べ
ると、例えばポリプロピレン、ポリエチレン等の合成樹
脂材料からなる製品の表面を改質するためにその表面金
マイクロ波放電プラズマでプラズマ処理する装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plasma treatment technique, and more specifically, in order to modify the surface of a product made of a synthetic resin material such as polypropylene or polyethylene, the surface of the product is treated with gold microwave discharge plasma. It relates to a processing device.

自動車製造工業において、近年、自動車部品の材料が軽
量でかつ意匠性に優れた合成樹脂材料に移行しつつある
ことは周知の過多である。ところで、比較的安価で容易
に入手可能なポリプロピレン、ポリエチレン等の樹脂材
料に、それらを例えば車両外板に使用した場合、材料表
面とその上に施される塗膜との苫着性が悪いので、この
技術分野において不所望な層間剥術全発生することが屡
屡である。一般には、かかる調間剥隆會防止するため、
樹脂材料の表面全改質して塗膜の留着性全良好ならしめ
る技術、例えば、銅脂材料の表面をグロー放電、コロナ
放電、ラジオ彼放電、マイクロ波放t′@に曝してその
辰面全ば化(極性基の導入)するかもしくはエツチング
(いわゆるアンカー効果の向上)する技術が多相されて
いる。このような技術はプラズマ処理技術と呼ばれてい
る。
2. Description of the Related Art In the automobile manufacturing industry, it is well known that in recent years, materials for automobile parts have been shifting to synthetic resin materials that are lightweight and have excellent designs. By the way, when relatively cheap and easily available resin materials such as polypropylene and polyethylene are used, for example, in the outer panels of vehicles, the surface of the material and the coating film applied thereon have poor adhesion. However, undesirable delaminations often occur in this technical field. Generally, in order to prevent such spalling,
Techniques for completely modifying the surface of a resin material to improve the adhesion of the coating film, for example, by exposing the surface of a copper resin material to glow discharge, corona discharge, radio discharge, or microwave radiation. There are many techniques for making the surface full (introducing polar groups) or etching (improving the so-called anchor effect). Such technology is called plasma processing technology.

プラズマ処理を行なう場合、その処理効J!/、′ff
:向上させるために反応室全減圧してX窒状態にするこ
とが必要でろり、この状態を#侍するために、現在バッ
チ処理が玉流になっている。−刀、この処理技術を大物
でかつ核雑形状の但J脂材料部品を同時に多数個表面処
理しなければlr:)ない工程、例えば自動車部品の製
造とい′)音量工程に導入する場合、短時間で真壁状態
にしかつ1回の処理でよシ多数個の被処理物をプラズマ
処理することが必要である。この2賛性全考慮して、最
近、プラズマ発生部分と反応室(すなわち、処理容器)
が分離したマイクロ波放電によるプラズマ処理装置が多
く用いられている。
When performing plasma treatment, its treatment efficiency J! /,'ff
: In order to improve the performance, it is necessary to completely reduce the pressure in the reaction chamber to bring it into an X-nitrogen state, and in order to maintain this state, batch processing is currently being used. - When introducing this processing technology to a process that requires simultaneous surface treatment of large numbers of plastic material parts with various shapes, such as the production of automobile parts, it is possible to It is necessary to plasma-process a large number of objects to be treated with plasma in a single treatment. Considering these two pros and cons, recently, the plasma generation part and the reaction chamber (i.e., the processing vessel)
Plasma processing equipment using separate microwave discharges is often used.

上記したよI)ナマイクロ波方式によるプラズマ処理で
はX処理容器外のプラズマ発生部分から処理容器内へプ
ラズマを輸送し、容器内に装備したシャワー管でプラズ
マを照射拡散する必要がある。
As mentioned above, in the plasma processing using the microwave method (I), it is necessary to transport plasma from the plasma generation part outside the X processing container into the processing container, and to irradiate and diffuse the plasma using a shower tube installed inside the container.

通常、プラズマの輸送に用いるプラズマ輸送管やプラズ
マシャワー管は、プラズマの失活と真壁シールを配慮し
て、例えば石英ガラス、パイレックスガラス等のガラス
材料から作られている。ところが、このようなガラスか
ら作られたプラズマ輸送管やシャワー管を例えば先に述
べたような自動車部品処理用大型プラズマ処理装置に適
用した場合、いろいろな不都合が発生する。第1に、輸
送管部分とそれに続くシャワー管部分の長さが人となp
1施工時又は急激な減圧、長時間真空シール時等におい
てこれらの管が破損し易く、非常に不経済である。プラ
ズマ輸送管が破損すると、当然のことながら真空が保て
なくなp1プラズマ処理が不可能となる。このため、破
損した管とその周辺部分を解体して取替える必要が生じ
、製造ラインを長時間にわたって停止させねばならない
Usually, plasma transport tubes and plasma shower tubes used to transport plasma are made of glass materials such as quartz glass and Pyrex glass, taking into consideration plasma deactivation and wall sealing. However, when plasma transport tubes and shower tubes made of such glass are applied to, for example, large-scale plasma processing equipment for processing automobile parts as described above, various problems occur. First, the length of the transport pipe section and the shower pipe section that follows it is
These pipes are easily damaged during construction, rapid depressurization, long-term vacuum sealing, etc., and are very uneconomical. If the plasma transport tube is damaged, it goes without saying that vacuum cannot be maintained and p1 plasma processing becomes impossible. Therefore, it becomes necessary to dismantle and replace the damaged pipe and its surrounding parts, and the production line must be stopped for a long time.

本発明の目的は、上記したよりな従来技術の欠点にかん
がみて、装置施工時あるいは真空適用下において該構造
に亀裂、損壊等音生ぜしめず、また、特に取扱いに留意
する必要がなく、そして輸送及び照射拡散過程でプラズ
マを失活させないよりな安価な輸送管及びシャワー青金
もったプラズマ処理袋fを提供し、究極的にり構造破損
に原因する製造ラインの停止を防止することにある。
In view of the above-mentioned drawbacks of the prior art, it is an object of the present invention to provide a structure that does not cause cracks, damage, or other noises in the structure during construction of the device or under vacuum application, and does not require special care in handling. The purpose of the present invention is to provide a cheaper transport pipe and a plasma processing bag with shower metal that do not deactivate plasma during transport and irradiation and diffusion processes, and ultimately prevent production line stoppages caused by structural damage. .

不発明者らぼ、マイクロ波数゛亀によるプラズマ処理装
置のプラズマ輸送管及びシャワー管を改良すべく研究を
進めた結果、それらの管をステンレス鋼から製造するの
が上記目的の達成に最も有効であること金見い出した。
As a result of our research to improve the plasma transport tubes and shower tubes of plasma processing equipment using microwaves, we have discovered that manufacturing these tubes from stainless steel is the most effective way to achieve the above objectives. I found money in something.

すなわち、本発明によるプラズマ処理装置に、処理容器
外でマイクロ仮放電プラズマ全発生させた後に生成プラ
ズマを処理容器内へ輸送して被処理物を処理する方式の
プラズマ処理装置であって、マイクロ波と直交するプラ
ズマ発生管(例えば石英ガラス裂)で生成したプラズマ
をステンレス製輸送管で処理容器内へ輸送し、そして被
処理物方向へ開口している任意数のステンレス製シャワ
ー管によシプラズマを照射拡散するよりに構成したこと
全特徴とする。
That is, the plasma processing apparatus according to the present invention is a plasma processing apparatus of a type in which a micro preliminary discharge plasma is entirely generated outside the processing container, and then the generated plasma is transported into the processing container to process the object to be processed, and the plasma processing apparatus uses microwaves. The plasma generated in a plasma generation tube (for example, a quartz glass crack) perpendicular to the quartz glass tube is transported into the processing container using a stainless steel transport tube, and then the plasma is transferred to an arbitrary number of stainless steel shower tubes that open toward the object to be processed. All features include a structure that diffuses the irradiation.

本発明のプラズマ処理装置では、発生管とプラズマ輸送
管の接続部や屈曲部、分岐部等を例えばストレート、エ
ルボ又は十字構造のテフロン(フルオロカーボン樹脂)
!l!#コネクタによ多構成することが推奨される。な
お、このようなコネクタのことを、以下、フロロコネク
タと記載する。
In the plasma processing apparatus of the present invention, the connecting portions, bending portions, branching portions, etc. of the generation tube and the plasma transport tube are made of Teflon (fluorocarbon resin) with a straight, elbow or cross structure.
! l! # It is recommended to configure multiple connectors. Note that such a connector is hereinafter referred to as a fluoro connector.

次に、添付の図面を参照しながらさらに詳しく本発明を
説明する。
The invention will now be described in more detail with reference to the accompanying drawings.

本発明のマイクロ波放電プラズマ処理装置の典型例を第
1図及び第2図に見ることができる。処理容器1の内部
、すなわち、“処理室12は円筒形であって、室の上部
にプラズマ噴射用ガラス管10.13及び14が、そし
て室の下部に排気口11.15及び16がそれぞれ取り
付けられている。処理室12へのプラズマの導入は、図
示される通シ、次のようにして行なわれる:発振器2で
発生したマイクロ波は、アイソレータ3、/くワーモニ
タ4、スリースタブチューナ5金経てプラズマ発生炉6
に、導e、菅8で導かれる〇一方、ノクルブを装備した
ボンベ(図示せず)内のプラズマ用ガスは、配管9でプ
ラズマ発生管7に供給される。
A typical example of the microwave discharge plasma processing apparatus of the present invention can be seen in FIGS. 1 and 2. The inside of the processing container 1, that is, the processing chamber 12 is cylindrical, and glass tubes 10.13 and 14 for plasma injection are attached to the upper part of the chamber, and exhaust ports 11.15 and 16 are attached to the lower part of the chamber, respectively. Plasma is introduced into the processing chamber 12 in the following manner as shown in the figure: Microwaves generated by the oscillator 2 are transmitted to the isolator 3, the wafer monitor 4, and the three-stub tuner 5. After that, plasma generation furnace 6
On the other hand, plasma gas in a cylinder (not shown) equipped with a noklub is supplied to the plasma generation tube 7 through a pipe 9.

プラズマ発生炉6とプラズマ発生管7で発生したプラズ
マは、分岐用70ロコネクタ18.19及び20で、3
方向に分岐される。分岐されたプラズマは、次いで、処
理容器1に設置された7リズマ導入口20.21及び2
2に導入され、それに接続するプラズマ照射用ステンレ
ス製シャワー管10.13及び14で、処理容器1内の
処理室12に噴射される。シャワー管10.13及び1
4は、図示の通シ、処理室12内の被処理6w−1、W
−2、W−3及びW−4の方向に開口している。処理g
jZt:l:、プラズマ処理中でも真空に保つため、処
理室排気用ポンプ((8)示せず)に接続する排気口1
1.15及び16から連続的に排気する。なお、図示の
プラズマ処理装置でに、例えば一群のシャワー管につい
て10−1.10−2及び1O−3の表示、一群の併気
口について11−1.11−2及び11−3の表示、一
群のプラズマ導入口について20−1.20−2及び2
0−3の表示、全採用しているけれども、これらの表示
(・よいずれもHaの構成手段の組み合わせ全明確にす
ること全意図している。
The plasma generated in the plasma generation furnace 6 and the plasma generation tube 7 is transferred to the branch 70 connectors 18, 19 and 20.
branched in directions. The branched plasma then passes through seven rhythm inlet ports 20, 21 and 2 installed in the processing container 1.
2 and is injected into the processing chamber 12 in the processing container 1 through stainless steel shower pipes 10.13 and 14 for plasma irradiation connected thereto. Shower pipe 10.13 and 1
4 denotes the illustrated through hole, the processing target 6w-1 in the processing chamber 12, W
-2, W-3 and W-4 directions. Processing
jZt:l:, Exhaust port 1 connected to the processing chamber exhaust pump ((8) not shown) to maintain vacuum even during plasma processing
1. Evacuate continuously from 15 and 16. In addition, in the illustrated plasma processing apparatus, for example, a group of shower pipes is indicated as 10-1, 10-2 and 1O-3, a group of combined air ports is indicated as 11-1, 11-2 and 11-3, 20-1.20-2 and 2 for a group of plasma inlets
Although all of the indications 0-3 have been adopted, these indications are intended to fully clarify the combination of constituent means of Ha.

第1図に示したプラズマの3方向分岐の詳細を第3図で
説明することとする。プラズマ発生炉6と発生管7で発
生したプラズマは、ストレートフロロコネクタ23、ス
テンレス製プラズマ輸送官25′!il−経て、十字型
フロロコネクタ18に達する。
Details of the three-way branching of the plasma shown in FIG. 1 will be explained with reference to FIG. The plasma generated in the plasma generation furnace 6 and generation tube 7 is transferred to a straight fluoro connector 23 and a stainless steel plasma transporter 25'! il- to reach the cross-shaped fluoro connector 18.

7 o o コネクタ18 VC>9したプラズマは、
ここで矢印A、B及びCで示される3方向に分岐され、
それぞれステンレス製プラズマ輸送管26−A 。
7 o o Connector 18 VC>9 plasma is
Here, it branches into three directions shown by arrows A, B and C,
Each stainless steel plasma transport tube 26-A.

26−B及び26−〇にて輸送される。入方向に分岐さ
れたプラズマは、直角70ロコネクタ24Asステンレ
スjA輸送青27−A%そしてストレート70ロコネク
タ28−Ai++て、プラズマ導入口20−1に達する
。B方向に分岐されたプラズマは、輸送g26−Hに接
続したストレート70口コネクタ28−BkMて、プラ
ズマ導入口20−2に達する。さらに、C方向&U分岐
さ′nたプラズマハ、1ハ角フロロコネクタ24−C,
ステy +/ 、X Nφ6ilN%27−C1そして
ストレート70ロコネクタ28−Ct経て、プラズマ導
入口20−3に達する。プラズマ4人口20−1.20
−2及び20−3に達したプラズマは、そ汎ぞれ、それ
に接続する対応するシャワー管(これもステンレス製で
ある) 10−1 、10−2及び10−3を介して、
処理容器1の処理室12に1質躬される。
26-B and 26-0. The plasma branched in the incoming direction reaches the plasma introduction port 20-1 through a right-angled 70° connector 24As stainless steel transport blue 27-A% and a straight 70° connector 28-Ai++. The plasma branched in the B direction reaches the plasma introduction port 20-2 through the straight 70-port connector 28-BkM connected to the transport g26-H. Furthermore, C direction & U branched plasma, 1 square fluoro connector 24-C,
Stay +/, X Nφ6ilN%27-C1 and the straight 70 connector 28-Ct to reach the plasma introduction port 20-3. plasma 4 population 20-1.20
-2 and 20-3, respectively, through corresponding shower pipes (also made of stainless steel) 10-1, 10-2, and 10-3 connected thereto.
The processing chamber 12 of the processing container 1 is contaminated with one product.

プラズマ発生管7とプラズマ輸i1 ?J 25との接
続を明りようにするために該接続部全拡大して第4図に
示した。ストレート70ロコネクタ23、そしてテフロ
ンスリーブ27のwJキがこの図から理解でれるであろ
う。
Plasma generation tube 7 and plasma transfer i1? In order to make the connection with J25 clearer, the connection part is shown fully enlarged in FIG. 4. The straight 70 mm connector 23 and the wJ radius of the Teflon sleeve 27 can be understood from this figure.

実施例 第1図に示した不発明のマイクロ肢放屯プラズマ処f3
!装置首を使用して4枚の被処理物(ポリプロピレン製
自動車用バンバ)をプラズマ処理した。
Embodiment The uninvented micro limb plasma treatment f3 shown in FIG.
! Four objects to be treated (polypropylene automobile bumpers) were subjected to plasma treatment using the apparatus neck.

適用した処理条件の生なもの全列挙すると、次の通pで
ある: 処理室の大きさ:φ2000X2000”nmX窒圧:
 0.5 Torr マイクロ鼓周肢数: 2450 MH2出カニsoow 処理ガス:0□(5t/分で) 処理後、達成された処理効果の程度を被処理物バンパ衣
面の接触角(水ヌレ性)全基準にして計画した。すなわ
ち、プラズマ処理後のバンバ辰面に脱イオン水5μを全
滴下し、その時の接触角を協和科学■製CA−A型接触
角測定器で2o0c及び50〜60%RH(相対湿度)
で測定した。
The complete list of the applied processing conditions is as follows: Processing chamber size: φ2000 x 2000"nm x Nitrogen pressure:
0.5 Torr Micro tympanic limb number: 2450 MH2 output crab soow Processing gas: 0□ (at 5t/min) After the treatment, the degree of the treatment effect achieved is determined by the contact angle of the bumper coating surface of the object to be treated (water wettability) ) Planned based on all standards. That is, a total of 5 μ of deionized water was dropped onto the Bambar's shin surface after plasma treatment, and the contact angle at that time was measured using a CA-A type contact angle measuring device manufactured by Kyowa Kagaku ■ at 2o0C and 50 to 60% RH (relative humidity).
It was measured with

比較のため、プラズマ輸送管及びシャワー管の材質をス
テンレス袈に代えて石英ガラスとした違い金線いて第1
図の装置に同じ従来のマイクロ仮放電プラズマ処理装置
全便用して夷M全繰シ返した。
For comparison, the material of the plasma transport pipe and shower pipe was quartz glass instead of stainless steel.
The same conventional micro-discharge plasma processing apparatus was used in the apparatus shown in the figure, and repeated cycles were carried out.

得られた測定結果金弟5図に示す。図中の二型光のグラ
フ1が本発明を、−型光のり゛ラフ2が従来技術全表わ
す。これらの結果から明らかであるように、不発明の如
くステンレス製のプラズマ輸送管及びシャワー管を使用
しても従来技術と退色ない処理効果全連成することがで
き、なた、補送過程でのプラズマの失活はなかった。さ
らに不発明のプラズマ処理装置の場合、プラズマ輸送骨
やシャワー管の破損が全く発生せず、よって、従来不可
避であった製造停止のトラブルを解消することができた
The measurement results obtained are shown in Figure 5. In the figure, graph 1 of type 2 light represents the present invention, and graph 2 of type 2 light represents the entire prior art. As is clear from these results, even if stainless steel plasma transport pipes and shower pipes are used, it is possible to fully combine the treatment effect with the conventional technology without fading, and there is no fading during the machete and replenishment process. There was no plasma deactivation. Furthermore, in the case of the uninvented plasma processing apparatus, no damage occurred to the plasma transport bone or the shower pipe, and therefore, the trouble of production stoppage, which was unavoidable in the past, could be solved.

以上に運べた事実から理解されるように、不発明によれ
ば、製造ラインの停止奮忍起することのないようなプラ
ズマ処坤装磨全安1曲に、しかも処理効米の低下を伴な
わないで、提供することができる。
As can be understood from the above-mentioned facts, according to the invention, it is possible to achieve completely safe plasma processing polishing without having to stop the production line, and at the same time, it is accompanied by a decrease in processing efficiency. You can offer it without having to jump.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるマイクロ彼放直プラズマ処理装置
の一例を示した長手力1り萌面図)第2図に第1図に示
した装置の中央部のえし[1υ↑WJ図、 第3図は第1図に示した装置の特に輸送管部の詳a全示
した説明図、 第4図は第1図に示した装置の特にプラズマ発生管と輸
送管の接続部を拡大して示した貌明丙、そして 第5囚は本発明の処理効呆を示した図衣である(横軸:
被処理物位置;縦軸:接触角)。 図中、1は反応容器、12は処理室、W−1゜W−2,
W−3及びW−4は被処理物、25゜26−A、26−
B及び26−Cならびに27−A及び27−Cはステン
レス製プラズマ輸送費、そして10−1.10−2及び
10−3はステンレス製プラズマシャワー管である。 特許出願人 トヨタ自動車株式会社 特許出願代理人 弁理士 官本 朗 弁理士  西 舘 オロ 之 弁理士  内 1)幸 男 弁理+   、山  口  1H二と
Fig. 1 is a longitudinal view showing an example of a micro-direct plasma processing apparatus according to the present invention; Fig. 3 is an explanatory diagram showing all the details of the apparatus shown in Fig. 1, especially the transport pipe section, and Fig. 4 is an enlarged view of the apparatus shown in Fig. 1, especially the connection part between the plasma generation tube and the transport pipe. Myung-hyeong and the fifth prisoner are illustrations that demonstrate the processing effectiveness of the present invention (horizontal axis:
Processing object position; vertical axis: contact angle). In the figure, 1 is a reaction vessel, 12 is a processing chamber, W-1°W-2,
W-3 and W-4 are objects to be treated, 25°26-A, 26-
B and 26-C and 27-A and 27-C are stainless steel plasma transport tubes, and 10-1, 10-2 and 10-3 are stainless steel plasma shower tubes. Patent Applicant Toyota Motor Corporation Patent Application Agent Patent Attorney Akira Kanmoto Patent Attorney Oro Nishidate Patent Attorneys 1) Yukio Yukio+, Yamaguchi 1H2

Claims (1)

【特許請求の範囲】[Claims] 1、被処理物をマイクロ波放電プラズマで処理する装置
であって、プラズマ輸送管及びプラズマシャワー管がス
テンレス鋼からできていることを特徴とするプラズマ処
理装置。
1. A plasma processing apparatus for treating an object to be processed with microwave discharge plasma, characterized in that a plasma transport tube and a plasma shower tube are made of stainless steel.
JP6373583A 1983-02-25 1983-04-13 Plasma treatment apparatus Pending JPS59189131A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP6373583A JPS59189131A (en) 1983-04-13 1983-04-13 Plasma treatment apparatus
AU24671/84A AU549376B2 (en) 1983-02-25 1984-02-16 Plasma treatment
DE3486470T DE3486470T2 (en) 1983-02-25 1984-02-23 Process for plasma treatment of plastic resin
EP84101926A EP0120307B1 (en) 1983-02-25 1984-02-23 Apparatus and method for plasma treatment of resin material
DE3486317T DE3486317T2 (en) 1983-02-25 1984-02-23 Device and method for plasma treatment of synthetic resin.
EP91115536A EP0461683B1 (en) 1983-02-25 1984-02-23 Method for plasma treatment of resin material
US06/825,941 US4678644A (en) 1983-02-25 1986-01-30 Apparatus and method for plasma treatment of resin material
AU82238/87A AU8223887A (en) 1983-02-25 1987-12-08 Apparatus and method for plasma treatment of resin material
AU82237/87A AU8223787A (en) 1983-02-25 1987-12-08 Apparatus and method for plasma treatment of resin material
AU82239/87A AU8223987A (en) 1983-02-25 1987-12-08 Apparatus and method for plasma treatment of resin material
AU82240/87A AU603397B2 (en) 1983-02-25 1987-12-08 Apparatus and method for plasma treatment of resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6373583A JPS59189131A (en) 1983-04-13 1983-04-13 Plasma treatment apparatus

Publications (1)

Publication Number Publication Date
JPS59189131A true JPS59189131A (en) 1984-10-26

Family

ID=13237956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6373583A Pending JPS59189131A (en) 1983-02-25 1983-04-13 Plasma treatment apparatus

Country Status (1)

Country Link
JP (1) JPS59189131A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206649U (en) * 1985-06-13 1986-12-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206649U (en) * 1985-06-13 1986-12-27

Similar Documents

Publication Publication Date Title
KR100790649B1 (en) Equipment of plasma process
EP1509332B2 (en) Application of a coating forming material onto at least one substrate
CN101316946A (en) Plasma treatment device
US20120212136A1 (en) Penetrating plasma generating apparatus for high vacuum chambers
US4678644A (en) Apparatus and method for plasma treatment of resin material
US4776923A (en) Plasma product treatment apparatus and methods and gas transport systems for use therein
JPS59189131A (en) Plasma treatment apparatus
JP2010061860A (en) Plasma generation device
TW201421531A (en) Plasma apparatus
JPS59189130A (en) Plasma treatment
KR102427424B1 (en) Corrosion-resistant gas transport component and plasma processing apparatus thereof
US4690097A (en) Apparatus and method for plasma treatment of resin material
JPS6076328A (en) Plasma treatment device
JPH033700B2 (en)
JP3267306B2 (en) Method for manufacturing semiconductor device
EP0152511A1 (en) Apparatus and method for plasma treatment of resin material
KR101829318B1 (en) A apparatus for processing a matter with plasma
FR2616088A1 (en) METHOD AND INSTALLATION FOR TREATING THE SURFACE OF OBJECTS
JPS59155440A (en) Apparatus for plasma treatment
JPS5920332A (en) Method and apparatus for carrying out plasma treatment
JP2932942B2 (en) Plasma processing equipment
JPH11505570A (en) Method and apparatus for performing plasma deposition on a double-sided substrate
JPS6446916A (en) Vacuum thin-film formation device
JPS6217455Y2 (en)
JPS59189129A (en) Branched plasma treatment