JPS59189041A - Continuous casting mold for ultrasonic oscillation - Google Patents

Continuous casting mold for ultrasonic oscillation

Info

Publication number
JPS59189041A
JPS59189041A JP6394583A JP6394583A JPS59189041A JP S59189041 A JPS59189041 A JP S59189041A JP 6394583 A JP6394583 A JP 6394583A JP 6394583 A JP6394583 A JP 6394583A JP S59189041 A JPS59189041 A JP S59189041A
Authority
JP
Japan
Prior art keywords
groove
oscillation
length
mold
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6394583A
Other languages
Japanese (ja)
Inventor
Tetsuo Kawamura
河村 哲郎
Masayuki Tate
館 正幸
Mitsuo Murata
光男 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6394583A priority Critical patent/JPS59189041A/en
Publication of JPS59189041A publication Critical patent/JPS59189041A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/053Means for oscillating the moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To decrease the attenuation in oscillation in a groove part by providing a thin walled part in the part corresponding to meniscus, forming the thin walled part into the groove shape extending in the horizontal direction of a casting mold, and controlling the width and length of the groove to the specific multiple value of the wavelength of the oscillation in the groove part. CONSTITUTION:A groove part 2 of a thickness (t), width (b) and length L is formed in the part corresponding to meniscus and an ultrasonic oscillator 3 is adhered therein, in long and short side molds 1-1, -, 1-2' which solidify a billet from a molten steel. The frequency is controlled in such a way that the two- times integrated value of the acceleration outputted from a displacement meter 4 is maximized within the frequency range of an oscillating circuit 5 for an exciter. Decision is made in a decision circuit 7 so that the drawing resistance value of the billet by a load cell 6 attains the satd. min. amplitude value. The output from the exciter is controlled in the circuit 5. The exciting frequency here is set at 15+ or -1kHz, and the width (b) or length L of the groove at the integer times value of 1/2 the wavelength of the oscillation. Then the groove part is oscillated near the resonance frequency in the length and width directions and the attenuation in the oscillation is decreased.

Description

【発明の詳細な説明】 連続鋳造、特に鋼の連続鋳造に関しては既に確立された
技術があり、それなりの成果を挙げている。溶鋼が鋳片
へ上載置してゆく過程は、主としてモールド(鋳型)と
呼ばれる熱の良導体製の筒の中で行なわれ、その際未だ
内部の大部分が未凝固状態の鋳片とモー・ルドとの剥削
をよくするため、鋳造方向と並行にオシレーションと通
称される揺動をモールド全体に与えるのが普通である。
DETAILED DESCRIPTION OF THE INVENTION Continuous casting, particularly continuous casting of steel, has already been established and has achieved some success. The process in which molten steel is placed on top of the slab is mainly carried out in a cylinder made of a good thermal conductor called a mold, and at this time, the slab, which is still mostly unsolidified inside, and the mold In order to improve the abrasion of the mold, it is common practice to apply a rocking motion, commonly called oscillation, to the entire mold in parallel to the casting direction.

その場合の問題としてオシレーション・マークと称する
波状の表面性状が鋳片に生じ、その波面を起点とする表
面欠陥が発生しやすい。これを防ぐためにはlQKHz
オーダーの高い周波数でモールド表面を微振動させ,、
前述のオシレーションに代えることが有効であり、特開
昭56−11165号公報などの方法がこの手段を採用
している。これによると、機械的オシレーションにくら
べ表面性状が平滑、パウダー消費および鋳片引抜抵抗が
小さく゛なるという効果がある。
The problem in this case is that wavy surface textures called oscillation marks occur on the slab, and surface defects are likely to occur starting from the wavy surfaces. To prevent this, lQKHz
The mold surface is slightly vibrated at an order of magnitude higher frequency.
It is effective to replace the above-mentioned oscillation, and methods such as Japanese Patent Application Laid-open No. 11165/1983 employ this means. According to this method, compared to mechanical oscillation, the surface quality is smoother, powder consumption and slab pulling resistance are reduced.

この踵のモールドでは、]個または数回の振動子をモー
ルドの外部に設置し、ポーンと呼ばれる振動伝播機構を
用いて、振動させたい薄肉i:9iへ導いてし・だが、
薄肉部以外へ振動成分が漏洩し、吸収され、加振点がも
離れる如つれて振I11が小さくなっていた。
In this heel mold, one or several vibrators are installed outside the mold, and a vibration propagation mechanism called a pawn is used to guide them to the thin wall i:9i that is to be vibrated.
Vibration components leaked to areas other than the thin-walled portions and were absorbed, and the vibration I11 became smaller as the vibration point was further away.

これを解決するため、従来、振動させたいモールド薄肉
部に密着させ、かつ冷却水溝を構成するように配置した
水浸型振動子によって、振動させたい部分を強制的に加
振させる゛方法もとられた。しかし、この方法によって
も、冷却ンヤケソト内冷却水やバンクプレート等への振
動成分の吸収、漏洩などのため、鋳片引抜抵抗値をある
値以下に押えるに必要なモールド薄肉部の振幅を得るこ
とができなかった。
To solve this problem, conventional methods have been used in which the part to be vibrated is forcibly vibrated using a water immersion type vibrator, which is placed in close contact with the thin wall part of the mold to be vibrated and arranged to form a cooling water groove. It was taken. However, even with this method, it is difficult to obtain the amplitude of the thin-walled part of the mold necessary to suppress the slab pull-out resistance value below a certain value due to the absorption and leakage of vibration components to the cooling water in the cooling tank and the bank plate, etc. I couldn't do it.

本発明は、モールドのメニスカス部の厚みを、813分
的に薄くした溝部分のみに振動を閉じこめることを考え
、モールド溝部の溝rJ−r b、溝長L、海原tを選
定することばより、上記の問題を解決(7ようとするも
のである。
In the present invention, the thickness of the meniscus part of the mold is reduced by 813 minutes to confine vibrations only to the groove part, and the grooves rJ-rb, groove length L, and ocean t of the mold groove part are selected. This is an attempt to solve the above problem (7).

即ち本発明の要旨は、メニスカス相当部に薄肉部を設け
て超音波振動を加える鋳型において、前記薄肉部を鋳型
の水平方向に延びる溝型に形成し、溝巾又は必要により
溝長な溝部4辰動の波長の%の整数倍にした鋳型にある
That is, the gist of the present invention is that, in a mold in which a thin wall portion is provided in a portion corresponding to the meniscus and subjected to ultrasonic vibration, the thin wall portion is formed into a groove shape extending in the horizontal direction of the mold, and the groove portion 4 has a groove width or a groove length as necessary. It is in the mold that is an integral multiple of the % of the wavelength of the kinetic motion.

以下本発明を図面について詳述する。The present invention will be explained in detail below with reference to the drawings.

第1図は本発明の連続鋳造鋳型の模式図である。図にお
いて、]−]1.I−1は長辺用モールド銅板、1−2
は短辺用モールド銅板を示す。2はメニスカス部の厚み
を部分的に薄くした溝部分であり、tなる厚さ、bなる
溝巾、Lなる溝長のサイズを有し、その一端面の振動さ
せたい部分に振動子3が接着され、それ以外の面にはク
ッション制などを貼り、振動が漏洩しにくいように処置
する。溝肉溝部に設けた変位計4の出力加速度計の2回
積分値が、加振器発振回路50周波数可変範囲内で最大
となるように周波数を制御する。
FIG. 1 is a schematic diagram of a continuous casting mold of the present invention. In the figure,]-]1. I-1 is a molded copper plate for long sides, 1-2
indicates a molded copper plate for the short side. Reference numeral 2 denotes a groove part where the thickness of the meniscus part is partially reduced, and has the dimensions of thickness t, groove width b, and groove length L, and the vibrator 3 is placed at the part of one end surface where vibration is desired. The other surfaces are covered with cushioning to prevent vibrations from leaking. The frequency is controlled so that the twice-integrated value of the output accelerometer of the displacement meter 4 provided in the groove becomes the maximum within the frequency variable range of the exciter oscillation circuit 50.

鋳片引抜抵抗値をモールドに設けたロードセル6にて検
出し、第4図のように、その値が飽和する最小振幅とな
るように、7の引抜抵抗飽和判定回路に・より判定し、
発振回路5により加(辰器出力を制御lする。
The slab drawing resistance value is detected by a load cell 6 provided in the mold, and as shown in FIG.
The oscillation circuit 5 controls the output of the oscillator.

本発明にお(・ては溝巾す又は溝長りは溝部振動の波長
の%の整数倍の値に制御されるが、これは以下の説明に
より理解される。
In the present invention, the groove width or groove length is controlled to a value that is an integral multiple of % of the wavelength of the groove vibration, and this will be understood from the following explanation.

最初に長方形板の振動について第2図(al〜fdlに
より述べる。第2図(alにおいて、短辺b、長辺しに
平行な節線(図中の点線)の数をそれぞれm・ nとす
ると、この図は長方形板が共振するときのm+1次の振
動モードを表わすものである。
First, we will discuss the vibration of a rectangular plate using Figure 2 (al to fdl). Then, this figure represents the m+1-order vibration mode when the rectangular plate resonates.

つまり、第2図(alの2−3次共振モートを例にとる
七、第2図(blの0点(ここを振動の腹という)の振
動が最大となり、0点(ここを振動の節と℃・う)の振
動が最小となることを示す。
In other words, the vibration at the 0 point (this is called the antinode of vibration) of Figure 2 (7 taking the 2nd-3rd order resonance moat of al as an example) and Figure 2 (bl) is the maximum, and the 0 point (this is the node of vibration) This shows that the vibrations of ℃ and ℃ are at a minimum.

ここで注意すべきことは次の2点である。即ち発生ずる
共振モードの節と節の間の長さ、いわゆる定在波の半波
長は、■縦方向(b方向)、横方向(L方向)で異なり
、■また、第2図(alの共振モード毎にも異なる。従
って、との共振モードの膜振動を利用するか(でよって
上記波長は変わり、また溝部形状(b、t、L)を決定
後、七〇′結果として決まるものである。
The following two points should be noted here. In other words, the length between the nodes of the generated resonance mode, the so-called half wavelength of the standing wave, differs in the vertical direction (b direction) and the horizontal direction (L direction). It also differs depending on the resonance mode.Therefore, the above wavelength will change, and after determining the groove shape (b, t, L), it will be determined as 70' result. be.

どの共振モードの時に、第2図(blの■点相当点の振
幅が、16 KHz > f > 14 KHzの条件
を満足しつつ、極太となるかは、溝部形状(b。
The groove shape (b) determines in which resonance mode the amplitude at the point corresponding to the point ■ in Figure 2 (bl) becomes extremely thick while satisfying the conditions of 16 KHz > f > 14 KHz.

L、 t )や縦横比L’/bおよび厚内部と薄肉部の
厚さ比T/lにより決まる。
L, t), the aspect ratio L'/b, and the thickness ratio T/l of the thick inner part and the thinner part.

次に、これらの共振モードが発生ずる共振モード周波数
fは、周辺固定長方形板では、次のようになる。
Next, the resonance mode frequency f at which these resonance modes occur is as follows for a peripherally fixed rectangular plate.

ここに、b−溝巾 り−海原 E−ヤング率(溝部材) シーポアノン比(溝部材、鋼で0.28〜03) r−比重量(溝部材) JO5Cm/S) αm’n −仮載横比L/b、モート毎に決まる無次元
数 ここで、αm、nは、L/bおよび共振モートにより異
なる無次元数であり、周辺支持条件別に第2図(Clの
ように定まり、例えば周辺固定長方形板の1−1次モー
トでは、L/b毎に次のようになる。
Here, b - groove width - Kaibara E - Young's modulus (groove member) Seapoanon ratio (groove member, 0.28 to 03 for steel) r - specific weight (groove member) JO5Cm/S) αm'n - temporary mounting Lateral ratio L/b, dimensionless number determined for each moat Here, αm, n are dimensionless numbers that vary depending on L/b and resonance moat, and are determined as shown in Figure 2 (Cl) depending on peripheral support conditions, for example. In the 1-1st order moat of a peripherally fixed rectangular plate, each L/b is as follows.

α l−]  ニー 7.8]3      (L/b
  =]、5)α+、+=7.100   (L/b=
2.0)α+、+”6.703   (L/b=3.0
)α+、+””6.467   (L/b:菌)となる
。図においてa:4辺固定、b:L辺支持、L辺固定、
c:L辺固定、L辺支持、d:4辺支持のグラフを示す
α l-] Knee 7.8] 3 (L/b
=], 5) α+, +=7.100 (L/b=
2.0) α+, +”6.703 (L/b=3.0
)α+,+””6.467 (L/b: bacteria). In the figure, a: 4 sides fixed, b: L side supported, L side fixed,
c: L-side fixed, L-side supported, d: 4-side supported.

次に、このモード周波数fは、第2図(dlの実績例に
示すように、モールド薄溝部の温度上昇により低下し、
図の実例では、100℃上昇で約100Hzさがる。図
は入力500 W 、降温1侍水冷有、b :807f
1m、L :2Q34ZIXの例を示す。
Next, this mode frequency f decreases due to the temperature rise in the mold thin groove part, as shown in the actual example of Fig. 2 (dl).
In the example shown in the figure, a rise of 100°C causes a drop of about 100Hz. The figure shows an input of 500 W, a temperature drop of 1 samurai and water cooling, b: 807 f.
1m, L: An example of 2Q34ZIX is shown.

また、薄溝部と厚板部との厚さ比T/lについては、第
2図(b)の0部の振動振幅減衰を渚L・とすると、経
験的に4以上にとる必要があり、3,3前後では減衰が
太さい。
Also, regarding the thickness ratio T/l of the thin groove part and the thick plate part, if the vibration amplitude attenuation in the 0 part of FIG. At around 3.3, the attenuation is thick.

次にモールド薄肉溝部形状の決め方について述べる。ま
ず、励振周波数の設定可能レンジは、超音波振動な励振
源として利用する場合、その利用可能レンジは、自ずと
制限をうける。つまり、下限については、14.KHz
以下になると騒音が激しくなるため、環境衛生上使用不
可能となり、また上限についても16 KHz以上にな
ると、第2図(blの■部相当の腹部の振幅値が小さく
なってしまい、利用できな(・。従って、板の励振周波
数fは、15 KHz±1.KHzに、通常設定すると
七が好ましい。
Next, we will discuss how to determine the shape of the thin mold groove. First, when using an ultrasonic vibration as an excitation source, the usable range of the excitation frequency is naturally limited. In other words, regarding the lower limit, 14. KHz
If it goes below 16 kHz, the noise becomes so intense that it becomes impossible to use it, and if the upper limit goes above 16 kHz, the abdominal amplitude value corresponding to the part ■ in BL becomes small, making it unusable. (. Therefore, the excitation frequency f of the plate is preferably set to 15 KHz±1.KHz, which is normally set to 7.

次に溝部形状(b、 t+ L )についてのべると、
溝長りは、モールド長辺長より大きくとり、厚肉部厚さ
をTとすると、T/l)z+とする。又、渦中l)、?
1;η厚tの組合せ(b、 t)に対して、その時得ら
れ、かつ16 KHz > f > ]、 4 KHz
を満足する溝部共振の振幅値が、その他のいかなるす、
tの組合せに対して得らオする1、 6 KHz)f 
> ]71KHzレンジの共振振幅値よりも大きくなり
、しかも強度上の上限) b ) 4 s mm (超
音1゛ 波ホルン取付上)と厚さ北上の上限−)t)i5mm 
(強度上)とを満足するように、溝巾す、海原tを選定
する。
Next, regarding the groove shape (b, t+L),
The groove length is set to be larger than the length of the long side of the mold, and where T is the thickness of the thick part, T/l)z+. Also, in a whirlpool?
1; η For the combination (b, t) of thickness t, then obtained, and 16 KHz > f > ], 4 KHz
The amplitude value of the groove resonance that satisfies
1, 6 KHz) f obtained for the combination of t
> ] larger than the resonance amplitude value of the 71KHz range, and the upper limit in terms of strength) b) 4 s mm (on the ultrasonic 1゛ wave horn installed) and the upper limit of the thickness north -) t) i5 mm
(Strength) The groove width and sea t are selected so as to satisfy (in terms of strength).

本発明によると、薄肉溝部は、長さ方向、巾方向ともに
共振周波数付近で振動するので、第3図のように両方向
とも減衰が小さい。又前述した鋳片引抜抵抗値をある値
以下に押えること以外に、溶鋼性状、鋳造速度、冷却水
圧((よる最適周波数の変化(で対応することも可能で
あり、また第4図のように引抜抵抗値が飽和する最小振
幅値に制御できることから、振幅の2乗に比例するエネ
ルギーを、過剰に消費しない省エネルギー効果もある。
According to the present invention, the thin groove vibrates near the resonant frequency in both the length direction and the width direction, so the attenuation is small in both directions as shown in FIG. In addition to suppressing the above-mentioned slab withdrawal resistance value below a certain value, it is also possible to respond by changing the optimum frequency depending on the properties of molten steel, casting speed, and cooling water pressure (as shown in Figure 4). Since it can be controlled to the minimum amplitude value at which the pull-out resistance value is saturated, there is also an energy saving effect in that energy proportional to the square of the amplitude is not consumed excessively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の斜視図、第2図(al 、 (1))
は共振モードの模式図、第2図fc]は共振モードの図
表、第2図1.d)は温度と周波数の図表、第3図は振
巾比の図表、第4図は引抜抵抗比の図表である。 ]−1,1−1’・・長辺用モールド銅板2・・・薄肉
溝部 1−2 短辺用モールド銅板  3・振動子第1図 第2図 (α) 1−1    +−27−31−δ m=1. n=2   m=2. n=2   m=3
. n=2(b) 范2図 (C) L/b (J) −208− 氾3図 第4図 ん
Fig. 1 is a perspective view of the present invention, Fig. 2 (al, (1))
is a schematic diagram of the resonance mode, FIG. 2 fc] is a diagram of the resonance mode, and FIG. d) is a chart of temperature and frequency, FIG. 3 is a chart of amplitude ratio, and FIG. 4 is a chart of drawing resistance ratio. ]-1, 1-1'... Molded copper plate for long side 2... Thin groove 1-2 Molded copper plate for short side 3. Vibrator Figure 1 Figure 2 (α) 1-1 +-27-31 −δ m=1. n=2 m=2. n=2 m=3
.. n=2 (b) Fan 2 figure (C) L/b (J) -208- Flood 3 figure 4

Claims (1)

【特許請求の範囲】 1 メニスカス相当部に薄肉部を設けて超音波イ)4動
を加える鋳型において、前記薄肉gBを鋳型の水平方向
に延びる溝型に形成し、溝巾を溝部振動の波長の%の整
数倍にしたことを特徴りする超音波振動用連続鋳造鋳型
′。 2、 メニスカス相当部に薄肉部を設けて超音波振動を
力Uえる鋳型において、前記薄肉部を鋳型の水平方向に
延びる溝型に形成し、溝長を溝部振動の波長の%の整数
倍にしたことを特徴上する超音波振動用連続鋳造鋳型。 6 溝rl+を渦部振動の波長の%の整数倍にした特許
r’j:’j求の範囲第2項記載の超音波振動用達fc
i鋳造鋳型。
[Scope of Claims] 1. In a mold that applies ultrasonic motion (a) by providing a thin wall portion in a portion corresponding to the meniscus, the thin wall gB is formed into a groove shape extending in the horizontal direction of the mold, and the groove width is set to the wavelength of the groove vibration. A continuous casting mold for ultrasonic vibration characterized by an integral multiple of %. 2. In a mold that applies ultrasonic vibration by providing a thin wall portion in the area corresponding to the meniscus, the thin wall portion is formed into a groove shape extending in the horizontal direction of the mold, and the groove length is set to an integral multiple of % of the wavelength of the groove vibration. Continuous casting mold for ultrasonic vibration. 6 Patent r'j:'j range of search for ultrasonic vibration fc described in item 2 where the groove rl+ is an integral multiple of % of the wavelength of the vortex vibration
i-casting mold.
JP6394583A 1983-04-12 1983-04-12 Continuous casting mold for ultrasonic oscillation Pending JPS59189041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6394583A JPS59189041A (en) 1983-04-12 1983-04-12 Continuous casting mold for ultrasonic oscillation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6394583A JPS59189041A (en) 1983-04-12 1983-04-12 Continuous casting mold for ultrasonic oscillation

Publications (1)

Publication Number Publication Date
JPS59189041A true JPS59189041A (en) 1984-10-26

Family

ID=13243988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6394583A Pending JPS59189041A (en) 1983-04-12 1983-04-12 Continuous casting mold for ultrasonic oscillation

Country Status (1)

Country Link
JP (1) JPS59189041A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4867226A (en) * 1987-08-29 1989-09-19 Nippon Steel Corporation Method of oscillating continuous casting mold at high frequencies and mold oscillated by such method
FR2783731A1 (en) * 1998-09-24 2000-03-31 Ascometal Sa Tubular mould for the continuous casting of metal with a cooled metal part incorporating sonic or ultrasonic transmitters and a refractory riser with improved operating life

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4867226A (en) * 1987-08-29 1989-09-19 Nippon Steel Corporation Method of oscillating continuous casting mold at high frequencies and mold oscillated by such method
AU603251B2 (en) * 1987-08-29 1990-11-08 Nippon Steel Corporation Method of oscillating continuous casting mold at high frequencies and mold oscillated by such method
FR2783731A1 (en) * 1998-09-24 2000-03-31 Ascometal Sa Tubular mould for the continuous casting of metal with a cooled metal part incorporating sonic or ultrasonic transmitters and a refractory riser with improved operating life
EP0993890A1 (en) * 1998-09-24 2000-04-19 Ascometal Tubular continuous casting mould for metals

Similar Documents

Publication Publication Date Title
JPS59189041A (en) Continuous casting mold for ultrasonic oscillation
EP0042007B1 (en) Continuous casting mold
JPS63140744A (en) Continuous casting method
JP2007147192A (en) Thermoacoustic refrigerating machine
KR100539994B1 (en) Improved Unit of Equipments for the High-speed Continuous Casting of Good Quality Thin Steel Slabs
JPS6143139B2 (en)
JP5641761B2 (en) Continuous casting equipment
JPS59166345A (en) Pack casting method
JPH0360849A (en) Apparatus for continuously casting strip
US5947186A (en) Method to obtain vibrations in the walls of the crystallizer of an ingot mould by means of actuators and the relative device
JPS61276749A (en) Ultrasonically oscillating method for continuous casting mold
JPS6143143B2 (en)
JPS59199149A (en) Assembling method of mold for continuous casting
JPS6135331Y2 (en)
JPS6057414B2 (en) Mold for continuous metal casting
JPS6087955A (en) Oscillating method of vertical type mold for continuous casting
JP2526827Y2 (en) Rear weir of continuous sheet casting machine
JPS59199147A (en) Oscillating mold for continuous casting
RU97116041A (en) THE METHOD FOR CREATING VIBRATIONS IN THE WALLS OF THE CRYSTALIZER OF THE ESSENTIAL CRYSTALIZER USING ACTUATORS AND THE RELATED DEVICE
JPS59191546A (en) Continuous casting method by ultrasonic oscillation
JPS59189040A (en) Ulttasonic oscillating method of continuous casting mold
JPS62230458A (en) Single-side solidification type continuous casting apparatus
JPS63212044A (en) Ultrasonic mold continuous casting method
JPS6257742A (en) Excitation method for high-frequency oscillation casting mold
JPS6143142B2 (en)