JPS59189040A - Ulttasonic oscillating method of continuous casting mold - Google Patents

Ulttasonic oscillating method of continuous casting mold

Info

Publication number
JPS59189040A
JPS59189040A JP6394483A JP6394483A JPS59189040A JP S59189040 A JPS59189040 A JP S59189040A JP 6394483 A JP6394483 A JP 6394483A JP 6394483 A JP6394483 A JP 6394483A JP S59189040 A JPS59189040 A JP S59189040A
Authority
JP
Japan
Prior art keywords
mold
amplitude
casting mold
continuous casting
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6394483A
Other languages
Japanese (ja)
Inventor
Tetsuo Kawamura
河村 哲郎
Sanae Hirata
平田 早苗
Kaname Wada
要 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6394483A priority Critical patent/JPS59189040A/en
Publication of JPS59189040A publication Critical patent/JPS59189040A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/053Means for oscillating the moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent seizure between a material to be cast and a continuous casting mold by applying an ultrasonic oscillation of an adequate amplitude thereon in the direction perpendicular to the contact surface between the material to be cast and the casting mold. CONSTITUTION:An oscillator 7 is disposed in a thin walled part 1' formed to a continuous casting mold 1, and the point C opposite to the center of said oscillator is positioned slightly below the solidification limit at which the solidified shell 2' of a molten metal 4 is formed. The ultrasnoic oscillation forming a continuous amplitude distribution is applied on the metal 4 and the mold 1 in the direction perpendicular to the contact boundary surface between said metal and mold by said oscillator 7 in a way as to oscillate the same at the amplitude A satisfying the following inequality, A>(gh)<1/2>/2<1/2>pif+B, where g: the acceleration of gravity, h; the depth of the solidification limit, f; frequency, B; the bias constant to be empirically determined. The molten metal 4 is thus oscillated at the speed higher than the speed toward the surface of the mold 1 at the solidification limit, by which seizure is prevented.

Description

【発明の詳細な説明】 する0 溶融状態にある金属などを連続鋳造する場合の病型と溶
融物の焼付を防止する方法上しては、古来第1図におけ
る鋳型1を鋳片2の引抜(鋳造)方向3と平行に、数m
m程度] (1 0 − 2 0 (lサイクル/分程
度の周波数て振動させるいわゆるメカニカルオ/レーシ
ョン法が知られている。
DETAILED DESCRIPTION OF THE INVENTION 0 A method for preventing disease and seizure of the molten material when continuously casting metal in a molten state has been known since ancient times. (Casting) Several meters parallel to direction 3
A so-called mechanical operation method is known in which vibration is caused at a frequency of about 10-20 (l cycles/minute).

一方、最近特開昭54−86432号、特開昭56−1
1149号などのように鋳型の一部を高周波で微振動さ
せ、大がかりなオシレーションのための機械機構を必要
としない方式が発明されそれなりの効果をあげている。
On the other hand, recently, JP-A-54-86432 and JP-A-56-1
Methods such as No. 1149, in which a part of the mold is slightly vibrated at high frequency, and do not require a large-scale mechanical mechanism for oscillation, have been invented and have achieved certain effects.

しかし、微振動させる場合のプロセス状態につし・では
、充分な解析がなされなし・ま5、試行錯誤的に振動状
態を定めており、振巾分布、振巾値とも必ずしも最適と
はいいがたかった。
However, sufficient analysis has not been conducted regarding the process conditions when causing slight vibrations, and the vibration conditions are determined by trial and error, and the amplitude distribution and amplitude value are not necessarily optimal. I wanted to.

本発明は、被鋳造物と鋳型との接触界面での挙動解析結
果から、接触界面と垂直方向に鋳型の一部を微振動さセ
る場合の最適状態を実現し、試行錯誤による装置化上の
諸問題を一挙に解決するものである。
The present invention realizes an optimal state when a part of the mold is slightly vibrated in a direction perpendicular to the contact interface, based on the behavior analysis results at the contact interface between the cast object and the mold, and has been developed through trial and error. This solution solves all the problems in one fell swoop.

最初に金属の連続鋳造プロヤスを第1図によって簡単に
説明する。溶融金属4は浸漬ノズル5を通じて、冷却さ
れている鋳型1に圧入された後、vj型1に熱をうばわ
れて凝固シェル2′を形成し、更に図(では示さない冷
却スプレ水により直接水冷されて鋳片2となる。鋳片2
は図には示さないロールガングにより矢印3の方向へ引
抜かれて(・る。
First, the continuous metal casting process will be briefly explained with reference to FIG. After the molten metal 4 is press-fitted into the cooling mold 1 through the immersion nozzle 5, it is heated by the VJ mold 1 to form a solidified shell 2', and is further directly cooled by cooling spray water (not shown). and becomes slab 2. Slab 2
is pulled out in the direction of arrow 3 by a roll gang (not shown).

また溶融金属の液面上には金属と鋳型との間の潤4tお
よび熱伝達接触媒質として、溶融パウダー6を連続的に
投入し、これが鋳型と金属との接する周辺部から下方に
向って連続的に膜状となって流入し、鋳片の周囲を覆う
ようにしながら鋳造が行なわれる。この場合溶融パウダ
ー6は、鋳型1および金属との間の粘性により、従来法
では機械的なオンレーンヨンに同期して下方に引込まれ
る。
In addition, molten powder 6 is continuously introduced onto the liquid surface of the molten metal as a moisture 4t between the metal and the mold and as a heat transfer couplant, and this powder is continuously poured downward from the periphery where the mold and metal contact. Casting is carried out while flowing in the form of a film and covering the periphery of the slab. In this case, the molten powder 6 is drawn downward in synchronization with the mechanical on-line movement in the conventional method due to the viscosity between the mold 1 and the metal.

従って従来法における金属上鋳型との焼付防止のメカニ
ズムは、この溶融パウダーによる潤滑と機械的な鋳造方
向への金属・鋳型間の相対速度によって、仮に微小な焼
付が発生したとしてもそれが引きちぎられるこ七による
ものである。
Therefore, the mechanism for preventing seizure between the metal mold and the mold in the conventional method is that even if a minute seizure occurs, it is torn off due to the lubrication by this molten powder and the relative speed between the metal and the mold in the mechanical casting direction. This is due to Koshichi.

一方、本発明における金属上鋳型の焼料防止メカニズム
は次のように解析されてオリ、 42図、第3図に従っ
て以下に説明する。
On the other hand, the firing prevention mechanism of the metal mold according to the present invention is analyzed as follows, and will be explained below with reference to Figures 42 and 3.

第2図(a)は、第1図のプロセスに本発明を適用した
場合の溶融金属の液面、凝固開始点付近を模式的に拡大
したものである。jは鋳型であり、振動させる部分]′
は振動させやすくするため部分的に薄肉とし、そこに振
動子7を配設している。
FIG. 2(a) is a schematic enlarged view of the liquid level of the molten metal and the vicinity of the solidification start point when the present invention is applied to the process of FIG. 1. j is the mold and the part that vibrates]'
In order to make it easier to vibrate, the wall is partially made thin, and the vibrator 7 is disposed there.

第3図は、第2図における溶融金属と鋳型との接触面の
挙動を説明するため、第2図(alを更に抽象化したも
のである。
FIG. 3 is a further abstraction of FIG. 2 (al) in order to explain the behavior of the contact surface between the molten metal and the mold in FIG. 2.

第2図の振動する薄肉部分の微小面積ΔSを第3図のよ
うに考えると、ΔSKか5る溶融金属の圧力は、近似的
に一様な圧力Pと考えて取扱うことができる。微小面積
ΔSは、平面Xを中心(位置0)として面と垂直にA−
A’間を平行移動的な単振動をしているものとする。こ
の振動の周波数をfとすると、ΔSの運動は振巾Aとし
た場合(1)式で表わされる4、y ’= A sin
 2πf t        ・−−(1)ここにyは
時刻りにおける平面XとΔSとの距i1iである。ここ
で周波数fが充分太きいと、溶融金属はΔSの動きに充
分追従することかできす、瞬IHj的にΔSと溶融金属
との間には空間ができる。これはいわゆるキャビテーシ
ョンと呼ばれる現象である。
If the minute area ΔS of the vibrating thin-walled portion in FIG. 2 is considered as shown in FIG. 3, the pressure of the molten metal at ΔSK can be treated as an approximately uniform pressure P. The small area ΔS is A- perpendicular to the plane with the plane X as the center (position 0).
Assume that there is a parallel simple harmonic motion between A'. When the frequency of this vibration is f, the motion of ΔS is expressed by equation (1) when the amplitude is A, 4, y'= A sin
2πft (1) where y is the distance i1i between the plane X and ΔS at the time. Here, if the frequency f is sufficiently large, the molten metal can sufficiently follow the movement of ΔS, and a space is created between ΔS and the molten metal in terms of instantaneous IHj. This is a phenomenon called cavitation.

溶融金属がΔSに追従する場合の速度は、よ< 知うh
 テL・るベルヌーイの定理により、第:3図(+))
のような流管を考えることによって次のようKなる。
When the molten metal follows ΔS, the speed is
According to L. Bernoulli's theorem, Figure 3 (+))
By considering a flow tube like this, we get K as follows.

即ち圧力P、密度ρの溶融金属が真空中で突然開放され
た時の初速度■とすると ]  2 P=二二〜ρ■・・・・・(2) ここで溶融金属液面からΔSまでの鉛直深さをh、重力
の加速度をgとすると P;ρgh           ・・・・(4)式(
4)を式(3)に代入すること(/CよりV=JQg下
          ・・・(5)従って溶融金属は(
5)弐以上の速度であれば、ΔSの振動に追従すること
ができず、鋳型との間に焼付は発生しないか、発生して
も直ちに振り離される。
In other words, when the molten metal with pressure P and density ρ is suddenly released in a vacuum, the initial velocity is 2 P = 22 ~ ρ■... (2) Here, from the molten metal liquid level to ΔS Let h be the vertical depth of
Substituting 4) into equation (3) (V=JQg lower than /C...(5) Therefore, the molten metal is (
5) If the speed is above 2, it will not be possible to follow the vibration of ΔS, and seizure will not occur between the mold and the mold, or even if it occurs, it will be immediately shaken off.

(1)式を微分してΔSの運動速度V′を求めるとy′
二A−2πfcO52πft    、、−(6)(6
)の最大値V′+11aXはCO32πft = 1の
時■′maX=A・2πf        −・・(7
)前述の通り溶融金属の追従速度がΔSの移動速度より
小さい峙鋳型との焼付は発生しない。
Differentiating equation (1) to find the velocity of motion V' of ΔS, y'
2A-2πfcO52πft , -(6)(6
) maximum value V'+11aX is when CO32πft = 1 ■'maX=A・2πf −...(7
) As mentioned above, seizure will not occur with the opposing mold where the following speed of the molten metal is smaller than the moving speed of ΔS.

即ち v(v’maX            、、、・・・
(8)(5)式と(7)式を(8)式に代入することに
よりπ2 h (2−A2f2          ・(9)振巾
Aを左辺に移項して整理すると次の式をうる。
That is, v(v'maX, ,...
(8) By substituting equations (5) and (7) into equation (8), π2 h (2-A2f2 ・(9) By moving the amplitude A to the left side and rearranging, the following equation is obtained.

A > v”ii丁/1/Tπf+B     ・・(
10)この(jω弐を満足することが鋳型き溶融金属と
の焼f寸きが発生りなし・条件である。ここで第2図(
2+1の振動装置の場合にはfは一定であるから、深さ
hK応じて振巾Aを変化させるのが実用的である。この
考え方にもとづいて、液面M(h−・0)からΔSの位
置(h=s )までにっυ・て振rlフ分布を計qする
よ、(9)式から第2図fb)のような放物線8となる
。たiし放物線8は斤ヤビテー/ヨン限界より振巾かや
5大きく゛なるようにするのが良いので・、多少のバイ
アスB(+の場合と−の場合とがある)を実7験によっ
て求め放物線8に加えるのがよい。第2図(1〕)の凝
固開始点は鋳片上の位置、第2図(C1の凝固開始位置
限界は鋳型上の深さhとする。Cは加振点である。
A > v”ii d/1/Tπf+B...(
10) Satisfying this (jω2) is the condition that the sintering f size with the molten metal in the mold will not occur.Here, as shown in Fig. 2 (
In the case of a 2+1 vibration device, f is constant, so it is practical to vary the amplitude A according to the depth hK. Based on this idea, we calculate the distribution of υ and swing rl from the liquid level M (h - 0) to the position of ΔS (h = s ) (Fig. 2fb) from equation (9). It becomes a parabola 8 like this. However, it is better to make the parabola 8 have an amplitude slightly larger than the limit by 5 degrees, so a slight bias B (sometimes positive and sometimes negative) can be set by experiment. It is best to add it to the parabola 8. The solidification start point in Fig. 2 (1) is the position on the slab, and the solidification start position limit in Fig. 2 (C1) is the depth h above the mold. C is the vibration point.

以上により最適な振巾が与えられるが、実用的に放物線
状の振巾な与えるには、第4図(alに示ずよう(・τ
、鉛直方向7〜L 7−2・・・・のような小振動子を
アレイ状に配設し、それぞれの振巾を調節して、第4図
+b)のように、それらの振巾の包絡線8−2が、第2
図()))の8で示す最適振巾曲線となるようにするの
が1つの方法である。
The optimal amplitude is given by the above, but in order to practically give a parabolic amplitude, as shown in Fig. 4 (al) (・τ
, vertical direction 7~L 7-2... are arranged in an array, and the amplitude of each is adjusted, as shown in Fig. 4+b). Envelope 8-2 is the second
One method is to obtain the optimum amplitude curve shown at 8 in the figure ())).

これに加え、更に鋳型の巾方向にも小振動子なマドl)
ンクス状に配設し、「IJ力方向は均一振巾となるよう
にすることも極めて有効である。
In addition to this, there is also a small oscillator in the width direction of the mold.
It is also extremely effective to arrange them in a box shape so that the IJ force direction has a uniform amplitude.

なお更に経済的に近似的に最適振巾を与える方法を次に
述べる。
Furthermore, a method for economically providing an approximate optimum amplitude will be described below.

第2図(a)のように、振動子を鉛直方向には1個とし
、振動子の中心に対応する位置Cが、溶融金属の凝固限
界よりやS下になるよう配設し、振動する部分1′の寸
法を丁度」鼓動の阿波長で、かつ操業上要求される溶融
全屈液面上限と、凝固位置下方限界との距離の2倍より
や5大きくとれば、第2図(b)にはX近い第2図(C
)の振巾分布曲線を実現することができる。
As shown in Fig. 2 (a), there is one vibrator in the vertical direction, and it is arranged so that the position C corresponding to the center of the vibrator is slightly below the solidification limit of the molten metal, and vibrates. If the dimensions of the portion 1' are set exactly at the wavelength of the heartbeat and are larger than twice the distance between the upper limit of the melting total flexion liquid level required for operation and the lower limit of the solidification position, as shown in Fig. 2 (b ) is close to X in Figure 2 (C
) can be realized.

なお式(力からも明らかなように、振巾、周波数のいず
れかを与えれば、鋳型の振動速度から自ずと他が決定さ
れる。非常に鋳造速度の遅い場合には、凝固限界深さh
は非常に小さいので、理論的には周波数が非猟に低く、
振巾も非常に小さく・値で充分な場合がある。従って鋳
造速度と抜熱条件から、まず周波数を定め、しがる後第
1図j′の振動部のディメンションを定め(これによっ
て振rlj分布が定まる。)るのが便利である。
Furthermore, as is clear from the equation (as is clear from the force), if either the amplitude or the frequency is given, the other will naturally be determined from the vibration speed of the mold.If the casting speed is very slow, the solidification limit depth h
is very small, so theoretically the frequency is extremely low,
The amplitude is also very small and may be sufficient. Therefore, it is convenient to first determine the frequency from the casting speed and heat removal conditions, and then determine the dimensions of the vibrating part shown in FIG. 1j' (this determines the vibration rlj distribution).

更に周波数は、被鋳造物によって鋳型が加熱されるに伴
し・、ヤング率の変化から多少変化させねばならないの
で、適当な範囲で・可変にしておくと便利である。
Furthermore, since the frequency must be changed somewhat due to changes in Young's modulus as the mold is heated by the object to be cast, it is convenient to make it variable within an appropriate range.

また本方法によれば、凝固シェルが溶融物静圧によりI
j型に密着しようとする速度よりも、鋳バ((の振動の
最大速度の方が太きいため、固体↑S1≦分が接触する
ような操業状態の場合にも、摩擦抵抗を減少させる上で
極めて有効である。
Further, according to this method, the solidified shell is caused by the static pressure of the melt to
Since the maximum speed of vibration of the casting bar (() is higher than the speed at which it tries to come into close contact with the J-shape, it is effective to reduce frictional resistance even in the case of operating conditions where solids↑S1≦ are in contact with each other. It is extremely effective.

」メ上述べた通り本発明の方法によれば、最適な振動状
態を確実かつ経済的に実現でき、被鋳造物と鋳型との焼
旬な防止することができる。
As described above, according to the method of the present invention, an optimum vibration state can be achieved reliably and economically, and it is possible to prevent the casting object and the mold from collapsing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は連続鋳造プロセスの断面図、第2図に1)は本
発明を第1図のプロセスに適用した場合の模式図、第2
図+i+は本発明の方法の理論的な振巾分布図、第2図
fc)は本発明の近似的に最適な振巾分布図、第3図(
aL (blは被鋳造物とりj型の挙動の模式図、第4
図ta+、 (b)は本発明の装置の模式図とその場合
の振巾分布図である。 1・鋳型       2 凝固シェルフ・・・振動子 第3図(0) 第4図(0)
Fig. 1 is a sectional view of the continuous casting process, Fig. 2 is a schematic diagram of the case where the present invention is applied to the process of Fig.
Figure +i+ is a theoretical amplitude distribution diagram of the method of the present invention, Figure 2 fc) is an approximately optimal amplitude distribution diagram of the present invention, Figure 3 (
aL (bl is a schematic diagram of the behavior of the j-shaped object to be cast, the fourth
Figure ta+, (b) is a schematic diagram of the device of the present invention and an amplitude distribution diagram in that case. 1. Mold 2 Solidification shelf... vibrator Figure 3 (0) Figure 4 (0)

Claims (1)

【特許請求の範囲】 被鋳造物と鋳型上の接触面積と垂直方向の超音波振動を
加える連続鋳造用鋳型において、振[1)Aが下記式を
満足するように連続的な振巾分布を形成ずろことを特徴
とする連続鋳造鋳型の超音波振動方法。 A>In7−1’iπf+B 但しg:重力の加速度 h:凝固限界深さ f:周波数 B:バイアス定数
[Claims] In a continuous casting mold that applies ultrasonic vibration in a direction perpendicular to the contact area between the casting object and the mold, a continuous amplitude distribution is created so that vibration [1) A satisfies the following formula. A method of ultrasonic vibration of a continuous casting mold, characterized by a forming grate. A>In7-1'iπf+B However, g: Acceleration of gravity h: Solidification limit depth f: Frequency B: Bias constant
JP6394483A 1983-04-12 1983-04-12 Ulttasonic oscillating method of continuous casting mold Pending JPS59189040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6394483A JPS59189040A (en) 1983-04-12 1983-04-12 Ulttasonic oscillating method of continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6394483A JPS59189040A (en) 1983-04-12 1983-04-12 Ulttasonic oscillating method of continuous casting mold

Publications (1)

Publication Number Publication Date
JPS59189040A true JPS59189040A (en) 1984-10-26

Family

ID=13243960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6394483A Pending JPS59189040A (en) 1983-04-12 1983-04-12 Ulttasonic oscillating method of continuous casting mold

Country Status (1)

Country Link
JP (1) JPS59189040A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109317629A (en) * 2018-11-22 2019-02-12 东北大学 A kind of system and method using power ultrasound control continuous casting billet quality
CN109482846A (en) * 2018-12-10 2019-03-19 昆明理工大学 A method of reducing the ingot casting surface crackle of electron-beam cold bed furnace production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109317629A (en) * 2018-11-22 2019-02-12 东北大学 A kind of system and method using power ultrasound control continuous casting billet quality
CN109482846A (en) * 2018-12-10 2019-03-19 昆明理工大学 A method of reducing the ingot casting surface crackle of electron-beam cold bed furnace production

Similar Documents

Publication Publication Date Title
Iguchi et al. Model study on the entrapment of mold powder into molten steel
JPH0366449A (en) Method and apparatus for vibrating mold for use in continuous casting of metal
JPS59189040A (en) Ulttasonic oscillating method of continuous casting mold
US4127158A (en) Process for preparing hollow metallic bodies
US2503819A (en) Continuous casting
WO1981001808A1 (en) Continous casting mold
KR20000053199A (en) Improved unit of equipments for the high-speed continuous casting of good quality thin steel slabs
JPH0215852A (en) Method for continuously casting steel
JPS6146368A (en) Ultrasonic oscillator for molten metal
US4572278A (en) Method for centrifugal casting
JPH0360849A (en) Apparatus for continuously casting strip
SU419309A1 (en) METHOD OF CASTING METALS AND ALLOYS P 1 &#34;G (^ ПППП 0 &#39;-&#39; i &#39;^ i&#39;! IC ФиД ^ siSii ^
JPS60148645A (en) Oscillating device for continuous casting mold
JPH06238398A (en) Method of forming separate spacing
JPH01191706A (en) Method and apparatus for manufacturing metal fine powder
JP2526827Y2 (en) Rear weir of continuous sheet casting machine
JPH0479744B2 (en)
JPS606248A (en) Oscillating method of continuous casting mold
JPS61295306A (en) Method and apparatus for producing pulverous metallic powder
JPS63212044A (en) Ultrasonic mold continuous casting method
JPS62253705A (en) Production of metal shot
KR19980024890A (en) Vibrators on the walls of crystallizers in ingot molds by actuators and associated devices
JPH0337455B2 (en)
JP2003305546A (en) Operation method for continuous casting machine
SU899239A1 (en) Method of continuous casting of aluminium