JPS63140744A - Continuous casting method - Google Patents
Continuous casting methodInfo
- Publication number
- JPS63140744A JPS63140744A JP28806086A JP28806086A JPS63140744A JP S63140744 A JPS63140744 A JP S63140744A JP 28806086 A JP28806086 A JP 28806086A JP 28806086 A JP28806086 A JP 28806086A JP S63140744 A JPS63140744 A JP S63140744A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- vibration
- molten metal
- ultrasonic
- amplitude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 17
- 238000009749 continuous casting Methods 0.000 title claims description 13
- 239000002184 metal Substances 0.000 claims abstract description 28
- 229910052751 metal Inorganic materials 0.000 claims abstract description 28
- 230000010355 oscillation Effects 0.000 claims description 7
- 238000001816 cooling Methods 0.000 abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 4
- 230000002093 peripheral effect Effects 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract 2
- 230000005540 biological transmission Effects 0.000 description 23
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000001902 propagating effect Effects 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/053—Means for oscillating the moulds
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、超音波振動が付与される連続鋳造鋳型(以下
単に鋳型という)に溶融金属を注入して連続鋳造する方
法に関し、更に詳述すると、鋳型の壁に2種以上の異な
る周波数の超音波振動を夫々異なる位置から付与して鋳
型内に注入した溶融金属の鋳型壁への焼付きを防止し、
連続鋳造する方法を提供するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for continuous casting by injecting molten metal into a continuous casting mold (hereinafter simply referred to as the mold) to which ultrasonic vibrations are applied. Then, ultrasonic vibrations of two or more different frequencies are applied to the mold wall from different positions to prevent the molten metal injected into the mold from sticking to the mold wall,
This provides a method for continuous casting.
連続鋳造においては、溶融金属が鋳型壁に焼付くのを防
止するために、鋳型を一定の振幅で振動させることが行
われている。In continuous casting, the mold is vibrated at a constant amplitude to prevent molten metal from sticking to the mold walls.
鋳型を振動させる手段としては、鋳型自身が上下に運動
する上下往復運動鋳型方式(オソシレーション方式)、
又は第5図(平面図)に示す如(溶融金属8を冷却する
鋳型壁1の外側の面にそれと垂直な方向に設けた振動伝
達棒7を介して超音波振動子6を取付けて鋳型壁1の肉
厚方向に超音波振動させる超音波振動方式がある。Means for vibrating the mold include a vertical reciprocating mold method (ossocillation method) in which the mold itself moves up and down;
Alternatively, as shown in FIG. 5 (plan view), an ultrasonic vibrator 6 is attached to the outer surface of the mold wall 1 that cools the molten metal 8 via a vibration transmission rod 7 provided in a direction perpendicular to the outer surface of the mold wall 1. There is an ultrasonic vibration method that generates ultrasonic vibration in the thickness direction of 1.
斯かる超音波振動方式は鋳型壁に前記の超音波振動を加
え、溶融、金属と鋳型壁との間での摩擦を軽減し、溶融
金属の鋳型壁への焼付きを防止するという機能を利用し
たものである。This ultrasonic vibration method uses the function of applying the above-mentioned ultrasonic vibration to the mold wall, reducing the friction between the melting metal and the mold wall, and preventing the molten metal from sticking to the mold wall. This is what I did.
叙上の機能は、超音波振動により溶融金属と接する鋳型
壁部分をその肉厚方向に振動させ、溶融金属が鋳型壁の
動きに追従できずに瞬間的に鋳型壁と溶融金属との間に
空間ができることにより両者間の摩擦が軽減され、焼付
きを防止するものと考えられる。そのためには、鋳型壁
の肉厚方向の振動の変位が大きいことが必要である。The function described above uses ultrasonic vibrations to vibrate the part of the mold wall that is in contact with the molten metal in the direction of its wall thickness, causing the molten metal to be unable to follow the movement of the mold wall and momentarily create a gap between the mold wall and the molten metal. It is thought that the creation of a space reduces friction between the two and prevents seizure. For this purpose, it is necessary that the vibration displacement in the thickness direction of the mold wall be large.
第6図は横軸に矩形断面の鋳片用鋳型の長辺位置をとり
、縦軸に鋳型の振動振幅をとって、鋳型の2つの長辺夫
々に2個づつ超音波振動子を同高さ位置に取付けてすべ
て同一周波数、例えば16.2K Ilzの超音波振動
を鋳型に付与した場合に、1長辺について超音波振動子
取付位置の水平方向での両者の関係を示したグラフであ
る。この図より理解される如く、従来方法による場合に
は鋳型に振動振幅の小さい箇所が生じて全面に亘って十
分大きな振動を確保できないという難点があった。In Figure 6, the horizontal axis represents the position of the long side of a slab mold with a rectangular cross section, the vertical axis represents the vibration amplitude of the mold, and two ultrasonic vibrators are placed at the same height on each of the two long sides of the mold. This is a graph showing the relationship between the two in the horizontal direction of the ultrasonic transducer mounting position for one long side when the ultrasonic vibrations of the same frequency, for example, 16.2K Ilz are applied to the mold with the ultrasonic transducer mounted at the same position. . As can be understood from this figure, in the case of the conventional method, there is a problem in that there are parts of the mold where the vibration amplitude is small, and it is not possible to ensure a sufficiently large vibration over the entire surface.
これを解消すべく、超音波振動子の発振周波数を周期的
に一定の周波数範囲内で変化させて全面での振動を均一
化する方法(特開昭55−45558号)或いは定常場
面近傍の鋳型の振動又は鋳型温度を検出して最大振幅箇
所が上記場面近傍に位置するように超音波振動子の発振
周波数を追従側?71する方法(特開昭56−1115
1号、特開昭59−197366号)が提案されている
。In order to solve this problem, there is a method of uniformizing the vibration over the entire surface by periodically changing the oscillation frequency of the ultrasonic vibrator within a certain frequency range (Japanese Patent Application Laid-Open No. 55-45558), or using a mold near the steady state. Detect the vibration or mold temperature and follow the oscillation frequency of the ultrasonic transducer so that the maximum amplitude point is located near the above scene? 71 method (Unexamined Japanese Patent Publication No. 56-1115
No. 1, Japanese Unexamined Patent Publication No. 59-197366) has been proposed.
これら両方法による場合には、周波数を変化させるため
の回路を必要とし、その構成が複雑である。また、超音
波振動子及び振動伝達棒の形状。Both of these methods require a circuit for changing the frequency, and the configuration thereof is complicated. Also, the shape of the ultrasonic vibrator and vibration transmission rod.
寸法が一定であるため、周波数を広い範囲で変化させて
もその全域に亘って同一効率で鋳型にその厚み方向の振
動を付与できない。特に、後者の方法による場合には鋳
型の振動量又は鋳型温度を検出する検出素子を鋳型に取
付ける必要があり、この保守が困難である等の問題点が
ある。Since the dimensions are constant, even if the frequency is varied over a wide range, it is not possible to apply vibration in the thickness direction to the mold with the same efficiency over the entire range. In particular, when using the latter method, it is necessary to attach a detection element to the mold to detect the amount of vibration of the mold or the temperature of the mold, which poses problems such as difficulty in maintenance.
本発明は斯かる事情に鑑みてなされたものであり、周波
数を変化させる回路を不要にでき、また保守の困難な検
出素子の使用を必要とせず、鋳型全内周面の全域で十分
な振動を6′在保して焼付きを防止した状態で連続鋳造
できる方法を提供することを目的とする。The present invention was made in view of the above circumstances, and eliminates the need for a circuit for changing the frequency, eliminates the need for a detection element that is difficult to maintain, and generates sufficient vibration throughout the entire inner circumferential surface of the mold. It is an object of the present invention to provide a method that allows continuous casting in a state where 6' is maintained and seizure is prevented.
本発明は、鋳型にその異なる位置から2種以上の異なる
固有周波数の超音波振動を付与する。In the present invention, ultrasonic vibrations of two or more different natural frequencies are applied to the mold from different positions thereof.
即ち、本発明に係る連続鋳造方法は、溶融金属が注入さ
れる連続鋳造用鋳型の湯面位置近傍の周方向の相異なる
位置に複数の超音波振動子を取付け、各超音波振動子よ
り、少なくとも2種の周波数を用いてまた隣り合う振動
子の発振周波数が異なるようにして、超音波振動を鋳型
に付与して連続鋳造を行うことを特徴とする。That is, in the continuous casting method according to the present invention, a plurality of ultrasonic transducers are installed at different positions in the circumferential direction near the molten metal level of a continuous casting mold into which molten metal is injected, and from each ultrasonic transducer, The method is characterized in that continuous casting is performed by applying ultrasonic vibration to the mold using at least two types of frequencies and by making the oscillation frequencies of adjacent vibrators different.
本発明にあっては、異なる2種以上の固有周波数の超音
波振動が鋳型に付与されるので、それらの振動成分が干
渉して2振動量分による振幅が小さい鋳型部分に他の振
動成分が付与されてその部分の振幅が高められる。In the present invention, since ultrasonic vibrations with two or more different natural frequencies are applied to the mold, these vibration components interfere with each other, and other vibration components are generated in parts of the mold where the amplitude of the two vibration amounts is small. is applied to increase the amplitude of that part.
以下に本発明を図面に基づき説明する。第1図は本発明
の実施状態を示す斜視図、第2図は超音波振動子の取付
位置近傍を示す断面図であり、図中1は溶鋼等の溶融金
属8がノズル10を通って注入される鋳型を示す。鋳型
1内に注入された溶融金属8は、ここで1次冷却されて
周壁が形成された鋳片となり、下方へ引抜かれていく。The present invention will be explained below based on the drawings. FIG. 1 is a perspective view showing the implementation state of the present invention, and FIG. 2 is a cross-sectional view showing the vicinity of the attachment position of the ultrasonic transducer. Shows the mold to be used. The molten metal 8 injected into the mold 1 is primarily cooled here to become a slab with a peripheral wall formed thereon, and is drawn out downward.
鋳型1は対向する2枚の短辺側鋳型壁1c、 ldを挾
んで2枚の長辺側鋳型壁1a、 lbが対設されており
、各鋳型壁1a、 lb、 lc、 ldの外側にはそ
の外表面部分を内部に空間を有するように覆う水冷枠2
a。The mold 1 has two opposing short side mold walls 1c, ld sandwiched between two long side mold walls 1a, lb. On the outside of each mold wall 1a, lb, lc, ld. is a water-cooling frame 2 that covers the outer surface part so as to have a space inside.
a.
2b、 2c、 2dが形成され、夫々の水冷枠と鋳型
壁との間には冷却水が供給されるようになっている。2b, 2c, and 2d are formed, and cooling water is supplied between each water cooling frame and the mold wall.
水冷枠2aには長辺側鋳型壁1aの溶融金属の湯面、つ
まりメニスカス部と対向する部分よりも50重l程度下
に中心を有する円形の穴3a、 3bが開設されており
、また水冷枠2bにも同様にして2つの穴3 c +3
dが開設されている。The water cooling frame 2a is provided with circular holes 3a and 3b whose centers are approximately 50 g lower than the molten metal surface of the long side mold wall 1a, that is, the part facing the meniscus. Similarly, make two holes 3c +3 in frame 2b.
d has been established.
その穴3a、 3b、 3c、 3dには円柱状の振動
伝達棒7a、 7b、 7c、 7dが水平方向に貫通
してあり、振動伝達棒7a、 7b、 7c、 7dは
穴3a、 3b、 3c、 3d内に設けた振動吸収作
用のあるシール部材、例えばQ IJング4a、 4b
、 4c、 4dにより支持され、振動伝達棒7a+
7b、 7c+ 7dと穴3a、 3b、 3c、 3
dとの間はその0リングによりシールされている。振動
伝達棒7a。Column-shaped vibration transmission rods 7a, 7b, 7c, and 7d penetrate horizontally through the holes 3a, 3b, 3c, and 3d, and vibration transmission rods 7a, 7b, 7c, and 7d penetrate through the holes 3a, 3b, and 3c. , 3d, a sealing member with a vibration absorbing effect, such as a Q IJ ring 4a, 4b.
, 4c, and 4d, and the vibration transmission rod 7a+
7b, 7c+ 7d and holes 3a, 3b, 3c, 3
d is sealed by the O-ring. Vibration transmission rod 7a.
7bはその先端側に形成しである軸長方向中間部よりも
小径の雄ネジ部5a、 5bを、長辺側鋳型壁1aに形
成しである雌ネジ部9a、 9bに嵌合して先端側を固
定してあり、基端側には超音波振動子6a、 6bを接
続している。振動伝達棒7c、 7dは同じくその先端
側に形成しである軸長方向中間部よりも小径の雄ネジ部
5c、 5dを、長辺側鋳型壁1bに形成しである雌ネ
ジ部9c、 9dに嵌合して先端側を固定してあり、基
端側には超音波振動子6c、 6dを接続している。7b has male threaded parts 5a, 5b formed on the tip side thereof, which have a smaller diameter than the middle part in the axial direction, and which are fitted into female threaded parts 9a, 9b formed on the long side mold wall 1a. The sides are fixed, and the ultrasonic transducers 6a and 6b are connected to the proximal end. The vibration transmission rods 7c, 7d also have male threaded portions 5c, 5d formed on their distal ends and having a smaller diameter than the middle portion in the axial direction, and female threaded portions 9c, 9d formed on the long side mold wall 1b. The distal end side is fixed by fitting into the transducer, and ultrasonic transducers 6c and 6d are connected to the proximal end side.
2つの長辺側鋳型壁1a、 lb夫々の1つの超音波振
動子6a、 6bには所定の周波数信号を出力する発振
器(図示せず)が接続されており、また残りの超音波振
動子6b、 6dにも所定の周波数信号を出力する発振
器(図示せず)が接続されている。これらの発振器の周
波数は少なくとも2種以上で、隣り合う発振器の周波数
を異なるようにする。発振周波数としては一般に、強力
な出力を得られる振動子の製作上の限界より50 KH
z以下がよく、また周囲環境への騒音、振動子サイズの
制約より5KHz以上がよく、その結果5〜50KHz
の範囲が好ましい。An oscillator (not shown) that outputs a predetermined frequency signal is connected to one ultrasonic transducer 6a, 6b of each of the two long side mold walls 1a, lb, and the remaining ultrasonic transducer 6b , 6d are also connected to an oscillator (not shown) that outputs a predetermined frequency signal. These oscillators have at least two types of frequencies, and adjacent oscillators have different frequencies. The oscillation frequency is generally 50 KH due to the manufacturing limit of a vibrator that can obtain a strong output.
z or less is better, and 5KHz or more is better due to noise to the surrounding environment and restrictions on vibrator size, and as a result, 5 to 50KHz.
A range of is preferred.
上記振動伝達棒7a、 7b、 7c、 7dの各長さ
は、超音波振動子6a、 6b、 6c、 6dから発
振される超音波の波長λの2の整数倍に定めてあり、ま
たOリング4a、 4b、 4c、 4dにて支持する
振動伝達棒7a、 7b。The length of each of the vibration transmission rods 7a, 7b, 7c, and 7d is determined to be an integral multiple of 2 of the wavelength λ of the ultrasonic waves emitted from the ultrasonic transducers 6a, 6b, 6c, and 6d, and an O-ring Vibration transmission rods 7a, 7b supported by 4a, 4b, 4c, 4d.
7c、 7dの位置は振動伝達棒内を通る超音波の節(
振幅がゼロのところ)に相当する部分とする。The positions 7c and 7d are the nodes of the ultrasonic waves passing through the vibration transmission rod (
(where the amplitude is zero).
このように構成された装置による本発明方法を以下に説
明する。The method of the present invention using the apparatus configured as described above will be explained below.
まず、図示しない発振器より所定の周波数信号を超音波
振動子6a、 6b、 6c、 6dに出力する。First, a predetermined frequency signal is output from an oscillator (not shown) to the ultrasonic transducers 6a, 6b, 6c, and 6d.
斯かる準備が終了すると、ノズル10を介して鋳型1内
への溶融金属8の注入を開始する。熔融金属8は鋳型1
内に下方から装入された例えば図示しないダミーバヘッ
ド上に貯留されていき、鋳型上端から約100 鶴下の
定常場面位置に場面が上昇するとそれ以降ダミーバヘッ
ドを下方に引抜いていくと共に場面高さが定常場面位置
に一定に保たれるように溶融金属8の注入量を調整する
。また、湯面上に潤滑剤を投入して鋳型1と前記鋳片と
の潤滑を図る。When such preparation is completed, injection of molten metal 8 into mold 1 via nozzle 10 is started. Molten metal 8 is mold 1
For example, when the dummy bar head (not shown) is charged from below into the mold, the dummy bar head is stored, and when the dummy bar head rises to a steady state position of about 100 mm from the upper end of the mold, the dummy bar head is pulled out downward and the scene height increases. The injection amount of the molten metal 8 is adjusted so that the molten metal 8 is kept constant at a steady state position. In addition, a lubricant is poured onto the surface of the molten metal to lubricate the mold 1 and the slab.
鋳型1に注入された溶融金属8は、上述の超音波振動が
鋳型1に付与されているので、鋳型1との離反が鋳型1
内表面全域に亘って促進される。The molten metal 8 injected into the mold 1 is not separated from the mold 1 because the above-mentioned ultrasonic vibration is applied to the mold 1.
It is promoted over the entire inner surface.
これを詳述すると、鋳型壁1a、 lb夫々には異なる
2周波数の超音波振動が付与されており、2つの振動成
分が各鋳型壁1a、 lbを振動伝達棒7a、・・・7
dが接触する位置を中心として放射状に鋳型壁内部を伝
播していく。このとき、1つの振動成分による振動だけ
では、従来同様第6図に示す如く振幅の小さい鋳型箇所
が存在するが、他の振動成分の周波数が異なるためそれ
による振動により上記振幅の小さい鋳型箇所に大きい振
動が付与され、その結果として2つの超音波振動が干渉
して振幅が全面に亘って従来よりも大きくなる。To explain this in detail, ultrasonic vibrations of two different frequencies are applied to each of the mold walls 1a, lb, and two vibration components are transmitted to the mold walls 1a, lb by the vibration transmission rods 7a, . . . 7.
It propagates inside the mold wall radially centering on the position where d contacts. At this time, when the vibration is caused by only one vibration component, there are parts of the mold where the amplitude is small as shown in Fig. 6, as in the conventional case, but since the frequencies of the other vibration components are different, the resulting vibration causes the parts of the mold where the amplitude is small. A large vibration is applied, and as a result, the two ultrasonic vibrations interfere, and the amplitude becomes larger over the entire surface than before.
この振幅の大きさは、振動伝達棒の長さ、その長さ方向
の固定位置により影響を受ける。つまり、超音波振動子
から発せられた超音波の節の位置が鋳型壁の外表面にあ
1と鋳型1に振動を付与できず、逆に腹(振幅が最大の
ところ)の位置が鋳型壁の外表面にあると鋳型振動の振
幅は最大となる。The magnitude of this amplitude is influenced by the length of the vibration transmission rod and its fixed position in the longitudinal direction. In other words, if the position of the node of the ultrasonic wave emitted from the ultrasonic transducer is on the outer surface of the mold wall, vibration cannot be imparted to mold 1, and conversely, the position of the antinode (where the amplitude is maximum) is on the mold wall. At the outer surface of the mold, the amplitude of mold vibration is maximum.
このため、振動伝達棒の長さ! (第2図参照)は、前
述の如(その中を伝播する超音波の波長λのAの整数倍
として鋳型振動の振幅を最大とする。For this reason, the length of the vibration transmission rod! (See FIG. 2), as described above, the amplitude of the mold vibration is maximized as an integral multiple of A of the wavelength λ of the ultrasonic wave propagating therein.
また、0リング4a、 4b、 4c、 4dにより振
動伝達棒7a、 7b、 7c、 7dが支持される位
置が、振動伝達棒を伝播する超音波の腹に相当する振動
伝達棒部分である場合には鋳型1へ伝達される振動の振
幅が減衰されて、鋳型振動の振幅が全体的に小さくなる
。このため、振動伝達棒7a、 7b、 7c、 7d
をOリング4a、 4b、 4c、 4dにて支持する
位置は、振動伝達棒内を伝播する超音波の節に相当する
振動伝達棒部分として振動の減衰防止を図っている。Furthermore, when the position where the vibration transmission rods 7a, 7b, 7c, and 7d are supported by the O-rings 4a, 4b, 4c, and 4d is the vibration transmission rod portion corresponding to the antinode of the ultrasonic wave propagating through the vibration transmission rod, In this case, the amplitude of the vibration transmitted to the mold 1 is attenuated, and the amplitude of the mold vibration becomes smaller overall. Therefore, vibration transmission rods 7a, 7b, 7c, 7d
The positions where the O-rings 4a, 4b, 4c, and 4d support the vibration transmitting rod correspond to the nodes of the ultrasonic wave propagating within the vibration transmitting rod, and are intended to prevent vibration attenuation.
そして、焼付きが発生する鋳型位置が定常場面位置から
その下約100 鶴までの範囲であり、また超音波振動
が鋳型内を伝播するうちに減衰されるため、前述の如く
穴3a等の位置を定常場面位置よりも50鶴程度下の水
冷枠2a等に開設して、これを挿通する振動伝達棒7a
等を介して超音波振動子6a等からの超音波振動を焼付
きの発生しやすい範囲の高さ方向中央位置に、鋳型壁内
での減衰が少ない状態で付与する。鋳型壁内に付与され
た振動は付与された位置を中心として全域に放射状に伝
播していき、鋳型はその全域で従来よりも大きい振幅で
振動する。The mold position where seizure occurs is in the range from the steady scene position to about 100 mm below it, and since the ultrasonic vibration is attenuated as it propagates inside the mold, the positions of holes 3a etc. A vibration transmission rod 7a is opened in the water cooling frame 2a, etc., approximately 50 degrees below the normal scene position, and is inserted through the vibration transmission rod 7a.
The ultrasonic vibration from the ultrasonic vibrator 6a etc. is applied to the central position in the height direction of the range where seizure is likely to occur, with little attenuation within the mold wall. The vibration applied to the mold wall propagates radially throughout the entire area centering on the applied position, and the mold vibrates with a larger amplitude than before in the entire area.
従って、本発明による場合には有効に焼付きを防止でき
、このため潤滑剤の鋳型、鋳片間への流入も均一化され
、また従来のオフシレージョン方式の振動を鋳型に与え
る必要がないので表面にオフシレージョンマークのない
平滑な表面をもつ鋳片を製造できる。Therefore, in the case of the present invention, seizure can be effectively prevented, the flow of lubricant into the mold and between the slabs is made uniform, and there is no need to apply vibration to the mold as in the conventional off-sillion method. Therefore, slabs with smooth surfaces without off-sill marks can be produced.
第3図は横軸に長辺、短辺夫々の周方向鋳型位置をとり
、縦軸に鋳型の振動振幅(μm)をとって、本発明によ
り長辺側鋳型壁夫々に2つの異なる周波数の超音波振動
を付与した場合の鋳型位置に対する振動振幅変化を示し
たグラフである。振幅の測定条件として、鋳型について
は水平方向断面の縦、横寸法が100 mmX4QQ
Ill、厚みが25mmの銅製のものを使用し、その定
常場面位置より50mm下方の位置(鋳型上端より15
0 鰭下方の位置)の周方向に、長さが330龍の振動
伝達棒7a、 7cを取付け、これに16.2 KHz
(400W)の超音波を発振する超音波振動子6a、
6cを接続し、また長さが274鰭の振動伝達棒7b
、 7dを取付け、これに18KHz(400W)の超
音波を発振する超音波振動子6b。In Figure 3, the horizontal axis represents the circumferential mold position on the long side and the short side, and the vertical axis represents the vibration amplitude (μm) of the mold. It is a graph showing the vibration amplitude change with respect to the mold position when ultrasonic vibration is applied. As for the amplitude measurement conditions, the vertical and horizontal dimensions of the horizontal cross section of the mold are 100 mm x 4QQ.
Ill, use a copper one with a thickness of 25 mm, and position it 50 mm below the steady scene position (15 mm from the top of the mold).
0 (position below the fin), vibration transmission rods 7a and 7c with a length of 330 mm are attached in the circumferential direction, and a 16.2 KHz vibration transmission rod is attached to this.
an ultrasonic transducer 6a that oscillates ultrasonic waves of (400W);
6c and a vibration transmission rod 7b having a length of 274 fins.
, 7d is attached, and an ultrasonic transducer 6b that oscillates an 18 KHz (400 W) ultrasonic wave.
6dを接続した。6d was connected.
この図より理解される如く、本発明による場合には、2
つの異なる周波数の振動成分が同一の長辺側鋳型壁にて
干渉するため最小振幅及び長辺側の全体の振幅レベルを
共に従来よりも大きくでき、長辺側の全体の振幅レベル
を10μm以上に、また短辺側の全体の振幅レベルを5
μm以上にすることができ、更に図中矢符にて示す超音
波振動を付与する鋳型位置、即ち振動伝達棒の取付は位
置では振動振幅が大きく、その位置を焼付きの発生しや
すい部分としているので、焼付きを有効に防止できる。As understood from this figure, in the case of the present invention, 2
Since vibration components of two different frequencies interfere on the same mold wall on the long side, both the minimum amplitude and the overall amplitude level on the long side can be made larger than before, and the overall amplitude level on the long side can be increased to 10 μm or more. , and the overall amplitude level on the short side is set to 5.
μm or more, and the vibration amplitude is large at the mold position where the ultrasonic vibration is applied, as indicated by the arrow in the figure, i.e., where the vibration transmission rod is attached, and this position is a part where seizure is likely to occur. Therefore, burn-in can be effectively prevented.
但し、矩形断面の鋳片用鋳型の場合には1つの鋳型壁に
対して異なる周波数の超音波振動を付与せしめて、干渉
がより生じやすくするのか好ましい。However, in the case of a slab mold having a rectangular cross section, it is preferable to apply ultrasonic vibrations of different frequencies to one mold wall to make interference more likely to occur.
なお、上記説明では1つの長辺側鋳型壁に2個の超音波
振動子を取付けているが、本発明はこれに限らず、短辺
側鋳型壁を含めて鋳型に複数の超音波振動子を取付けて
、これらから夫々所定の周波数であってその周波数は少
なくとも2種以上で、隣り合う振動子の発振周波数が異
なる超音波振動を鋳型に付与してもよい。In addition, in the above description, two ultrasonic transducers are attached to one long-side mold wall, but the present invention is not limited to this, and a plurality of ultrasonic transducers are attached to the mold including the short-side mold wall. may be attached, and ultrasonic vibrations of at least two or more predetermined frequencies, each of which has a predetermined frequency, and in which adjacent vibrators have different oscillation frequencies, may be applied to the mold.
また、上記説明では長、短辺側鋳型壁により構成された
鋳型を用いて連続鋳造しているが、本発明はこれに限ら
ず第4図に示す如(、水平方向の断面が円形の鋳型11
を用いる場合であっても同様にして2箇所に超音波振動
子16a、 16b、振動伝達棒17a、 17bを取
付け、或いは3箇所以上に超音波振動子、振動伝達棒を
取付け、2種以上の異なる周波数の超音波振動を付与す
ることにより同様の効果を得られる。Further, in the above description, continuous casting is performed using a mold configured with long and short side mold walls, but the present invention is not limited to this, and as shown in FIG. 11
Even when using ultrasonic vibrators 16a, 16b and vibration transmitting rods 17a, 17b in two places, or attaching ultrasonic vibrators and vibration transmitting rods in three or more places, two or more types of A similar effect can be obtained by applying ultrasonic vibrations of different frequencies.
以上詳述した如く、本発明は鋳型の湯面位置近傍の周方
向の相異なる位置に複数の超音波振動子を取付け、各超
音波振動子より、少なくとも2種以上の周波数を用いて
また隣り合う振動子の発振周波数が異なるようにして超
音波振動を鋳型に付与するので、鋳型振動の最小振幅及
び全体の振幅を共に大きくでき、これにより焼付きを有
効に防止できる。また、従来必要であった周波数を変化
させる回路を不要にでき、また鋳型振動量、鋳型温度を
検出する必要がないのでこれらの検出器の取付けを省略
でき、保守が簡単である等、本発明は優れた効果を奏す
る。As described in detail above, the present invention installs a plurality of ultrasonic transducers at different positions in the circumferential direction near the molten metal level of the mold, and uses at least two or more types of frequencies from each ultrasonic transducer. Since ultrasonic vibrations are applied to the mold by making the oscillation frequencies of matching vibrators different, both the minimum amplitude and the overall amplitude of the mold vibration can be increased, thereby effectively preventing seizure. In addition, the present invention eliminates the need for a circuit that changes the frequency, which was required in the past, and also eliminates the need to detect the amount of mold vibration and mold temperature, so the installation of these detectors can be omitted and maintenance is simple. has excellent effects.
【図面の簡単な説明】
第1図は本発明の実施状態を示す模式図、第2図は本発
明実施に際しての超音波振動子の取付内容の説明図、第
3図は本発明の詳細な説明図、第4図は本発明の他の実
施例を示す模式図、第5図は従来技術の内容説明図、第
6図は従来の問題点の説明図である。
■・・・鋳型 6a、6b、6c、6d・・・超音波振
動子持 許 出願人 住友金属工業株式会社代理人
弁理士 河 野 登 夫第 4 図
嶌 S 図
長幼
%6図[Brief Description of the Drawings] Fig. 1 is a schematic diagram showing the implementation state of the present invention, Fig. 2 is an explanatory diagram of the installation details of the ultrasonic transducer when implementing the present invention, and Fig. 3 is a detailed diagram of the present invention. FIG. 4 is a schematic diagram showing another embodiment of the present invention, FIG. 5 is an explanatory diagram of the contents of the prior art, and FIG. 6 is an explanatory diagram of the problems of the prior art. ■...Mold 6a, 6b, 6c, 6d...Ultrasonic vibrator holder Applicant Agent Sumitomo Metal Industries Co., Ltd.
Patent Attorney Noboru Kono No. 4 Zushima S Zucho Yo%6
Claims (1)
傍の周方向の相異なる位置に複数の超音波振動子を取付
け、各超音波振動子より、少なくとも2種の周波数を用
いてまた隣り合う振動子の発振周波数が異なるようにし
て、超音波振動を鋳型に付与して連続鋳造を行うことを
特徴とする連続鋳造方法。1. A plurality of ultrasonic transducers are installed at different positions in the circumferential direction near the molten metal level of a continuous casting mold into which molten metal is injected, and each ultrasonic transducer emits at least two types of frequencies. A continuous casting method characterized by performing continuous casting by applying ultrasonic vibration to a mold so that adjacent vibrators have different oscillation frequencies.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28806086A JPS63140744A (en) | 1986-12-02 | 1986-12-02 | Continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28806086A JPS63140744A (en) | 1986-12-02 | 1986-12-02 | Continuous casting method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63140744A true JPS63140744A (en) | 1988-06-13 |
Family
ID=17725315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28806086A Pending JPS63140744A (en) | 1986-12-02 | 1986-12-02 | Continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63140744A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1250972A2 (en) * | 2001-04-20 | 2002-10-23 | SMS Demag AG | Method and device for continuous casting slabs, especially thin slabs |
KR100593677B1 (en) | 2004-10-07 | 2006-06-30 | 재단법인 포항산업과학연구원 | Ultrasonic casting device |
CN101905295A (en) * | 2010-08-05 | 2010-12-08 | 安徽工业大学 | Continuous casting crystallizer device using ultrasonic vibration |
CN104001881A (en) * | 2014-06-23 | 2014-08-27 | 安徽工业大学 | Stainless steel producing method based on ultrasonic vibration type crystallizer |
CN104057040A (en) * | 2014-06-23 | 2014-09-24 | 安徽工业大学 | Ultrasonic vibration application device used for horizontal continuous casting of gear steel and method thereof |
CN104722725A (en) * | 2013-12-20 | 2015-06-24 | Posco公司 | Mold vibrated apparatus for continuous caster |
US9481031B2 (en) | 2015-02-09 | 2016-11-01 | Hans Tech, Llc | Ultrasonic grain refining |
US9617617B2 (en) | 2010-04-09 | 2017-04-11 | Southwire Company, Llc | Ultrasonic degassing of molten metals |
US10022786B2 (en) | 2015-09-10 | 2018-07-17 | Southwire Company | Ultrasonic grain refining |
US10233515B1 (en) | 2015-08-14 | 2019-03-19 | Southwire Company, Llc | Metal treatment station for use with ultrasonic degassing system |
US10316387B2 (en) | 2013-11-18 | 2019-06-11 | Southwire Company, Llc | Ultrasonic probes with gas outlets for degassing of molten metals |
CN112091191A (en) * | 2020-11-11 | 2020-12-18 | 西安斯瑞先进铜合金科技有限公司 | Preparation method and device of non-vacuum down-drawing semi-continuous casting copper-manganese alloy slab ingot |
CN113102735A (en) * | 2021-03-30 | 2021-07-13 | 西北工业大学 | Immersion type three-dimensional ultrasonic metal solidification device and method with controllable sound field |
-
1986
- 1986-12-02 JP JP28806086A patent/JPS63140744A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1250972A3 (en) * | 2001-04-20 | 2004-09-22 | SMS Demag AG | Method and device for continuous casting slabs, especially thin slabs |
EP1250972A2 (en) * | 2001-04-20 | 2002-10-23 | SMS Demag AG | Method and device for continuous casting slabs, especially thin slabs |
KR100593677B1 (en) | 2004-10-07 | 2006-06-30 | 재단법인 포항산업과학연구원 | Ultrasonic casting device |
US9617617B2 (en) | 2010-04-09 | 2017-04-11 | Southwire Company, Llc | Ultrasonic degassing of molten metals |
US10640846B2 (en) | 2010-04-09 | 2020-05-05 | Southwire Company, Llc | Ultrasonic degassing of molten metals |
CN101905295A (en) * | 2010-08-05 | 2010-12-08 | 安徽工业大学 | Continuous casting crystallizer device using ultrasonic vibration |
US10316387B2 (en) | 2013-11-18 | 2019-06-11 | Southwire Company, Llc | Ultrasonic probes with gas outlets for degassing of molten metals |
CN104722725A (en) * | 2013-12-20 | 2015-06-24 | Posco公司 | Mold vibrated apparatus for continuous caster |
CN104722725B (en) * | 2013-12-20 | 2017-10-03 | Posco公司 | Mold vibration device for conticaster |
CN104057040A (en) * | 2014-06-23 | 2014-09-24 | 安徽工业大学 | Ultrasonic vibration application device used for horizontal continuous casting of gear steel and method thereof |
CN104001881B (en) * | 2014-06-23 | 2016-04-13 | 安徽工业大学 | A kind of stainless steel production method based on ultrasonic wave oscillation mould |
CN104057040B (en) * | 2014-06-23 | 2016-03-16 | 安徽工业大学 | A kind of pinion steel horizontal casting applies the devices and methods therefor of ultrasonic wave vibration |
CN104001881A (en) * | 2014-06-23 | 2014-08-27 | 安徽工业大学 | Stainless steel producing method based on ultrasonic vibration type crystallizer |
US9481031B2 (en) | 2015-02-09 | 2016-11-01 | Hans Tech, Llc | Ultrasonic grain refining |
US10441999B2 (en) | 2015-02-09 | 2019-10-15 | Hans Tech, Llc | Ultrasonic grain refining |
US10233515B1 (en) | 2015-08-14 | 2019-03-19 | Southwire Company, Llc | Metal treatment station for use with ultrasonic degassing system |
US10022786B2 (en) | 2015-09-10 | 2018-07-17 | Southwire Company | Ultrasonic grain refining |
US10639707B2 (en) | 2015-09-10 | 2020-05-05 | Southwire Company, Llc | Ultrasonic grain refining and degassing procedures and systems for metal casting |
CN112091191A (en) * | 2020-11-11 | 2020-12-18 | 西安斯瑞先进铜合金科技有限公司 | Preparation method and device of non-vacuum down-drawing semi-continuous casting copper-manganese alloy slab ingot |
CN112091191B (en) * | 2020-11-11 | 2021-02-09 | 西安斯瑞先进铜合金科技有限公司 | Preparation method and device of non-vacuum down-drawing semi-continuous casting copper-manganese alloy slab ingot |
CN113102735A (en) * | 2021-03-30 | 2021-07-13 | 西北工业大学 | Immersion type three-dimensional ultrasonic metal solidification device and method with controllable sound field |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63140744A (en) | Continuous casting method | |
KR101429483B1 (en) | Cleaning device and cleaning method | |
JPH0741374B2 (en) | Method and apparatus for vibrating mold for continuous casting of metal | |
KR100584939B1 (en) | Ultrasonic welding method of resin case | |
KR920002105B1 (en) | Vibrating ingot mold for continuous casting of metals | |
KR20110138897A (en) | Continuous caster | |
EP0042007B1 (en) | Continuous casting mold | |
JPS6143139B2 (en) | ||
JPS6141658B2 (en) | ||
JPH0754891B2 (en) | Vertical crystal unit | |
JPH0534849B2 (en) | ||
JPH0275213A (en) | Longitudinal crystal resonator | |
KR840002321B1 (en) | Continuous casting molds | |
JP5641761B2 (en) | Continuous casting equipment | |
JPS596735B2 (en) | Continuous casting method | |
JPH0534848B2 (en) | ||
JPS6143145B2 (en) | ||
KR840001297B1 (en) | Continuous casting mould | |
JPS6143144B2 (en) | ||
KR840002320B1 (en) | Continuous casting molds | |
IT1288989B1 (en) | PROCEDURE FOR OBTAINING VIBRATIONS OF THE WALLS OF THE CRYSTALLIZER OF AN INGOT MILL BY MEANS OF ACTUATORS AND | |
JPH0279509A (en) | Longitudinal crystal resonator | |
JPS63212044A (en) | Ultrasonic mold continuous casting method | |
JPS6143140B2 (en) | ||
JPH0828639B2 (en) | Vertical crystal unit |