JPS59188600A - Device for melting and decontaminating metal contaminated with radioactivity - Google Patents

Device for melting and decontaminating metal contaminated with radioactivity

Info

Publication number
JPS59188600A
JPS59188600A JP58063362A JP6336283A JPS59188600A JP S59188600 A JPS59188600 A JP S59188600A JP 58063362 A JP58063362 A JP 58063362A JP 6336283 A JP6336283 A JP 6336283A JP S59188600 A JPS59188600 A JP S59188600A
Authority
JP
Japan
Prior art keywords
melting
metal
radioactively contaminated
slag
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58063362A
Other languages
Japanese (ja)
Other versions
JPH0374359B2 (en
Inventor
宇田 達彦
三浦 襄
弘行 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58063362A priority Critical patent/JPS59188600A/en
Publication of JPS59188600A publication Critical patent/JPS59188600A/en
Publication of JPH0374359B2 publication Critical patent/JPH0374359B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は放射性物質で汚染した金属廃棄物をスラグ剤存
在下で溶融し、放射性物質をスラグへ移行抽出させて金
補を除染する装置に係シ、特にスラグ再溶解方式を用い
た放射能汚染金属の溶融除染装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is directed to an apparatus for decontaminating metal waste by melting metal waste contaminated with radioactive substances in the presence of a slag agent and transferring and extracting the radioactive substances to the slag. In particular, the present invention relates to an apparatus for melting and decontaminating radioactively contaminated metals using a slag remelting method.

〔発明の背景〕[Background of the invention]

溶駒除染用溶解炉の型式として次の二つが考えられてい
る。一つはあらかじめ耐熱性ルツボに金属廃棄物とスラ
グ剤を納めておき外部加熱源を用いて全体を溶融する方
式である。他方は非消耗式電極を用いたエレクトロスラ
グ再溶解炉のごとき電気炉を用いて金属を順次供給し溶
融スラグの電気抵抗熱を利用して溶融しつつ溶融金属の
み分離し冷却凝固させていく方式である。
The following two types of melting furnaces for molten metal decontamination are considered. One method is to place metal waste and slag agent in a heat-resistant crucible in advance and melt the entire product using an external heating source. The other method uses an electric furnace such as an electroslag remelting furnace that uses non-consumable electrodes to supply metal one by one, and uses the electrical resistance heat of the molten slag to melt it while separating only the molten metal and cooling it to solidify it. It is.

前者方式は耐熱性のルツボを用いるが、熱による消耗劣
化が激しく、またルツボ内で冷却凝固した金属とスラグ
を分離回収するためにはルツボを破壊しなければならな
い。したがって、これらルツボ廃材も汚染物としての取
扱いとなるため、二次廃棄物が更に増すことになる。ま
たルツボをその都度交換するので経費も高くつく。後者
のエレクトロスラグ再溶解炉(li:Iectro 8
1agRemel ting = ES FLs以下E
SR,と略記)による方式は前者の欠点を除き、ルツボ
のくシ返し使用が可能であり、溶融スラグと金属間の反
応性もよいので経済性や除染効果の点で有利でちる。
The former method uses a heat-resistant crucible, but it is subject to severe wear and tear due to heat, and the crucible must be destroyed in order to separate and recover the metal and slag that have cooled and solidified inside the crucible. Therefore, since these crucible waste materials are also treated as pollutants, the amount of secondary waste will further increase. In addition, the cost is high because the crucible must be replaced each time. The latter electroslag remelting furnace (li: Ielectro 8
1agRemel ting = ES FLs or less E
The method using SR (abbreviated as SR) eliminates the drawbacks of the former, allows the crucible to be used repeatedly, and has good reactivity between the molten slag and the metal, so it is advantageous in terms of economy and decontamination effect.

そとで従来はESR,炉として第1図のごとき型式の炉
を用いて放射能汚染金属を溶解していた。
Conventionally, radioactively contaminated metals were melted using an ESR furnace as shown in Figure 1.

第1図において、水冷式調性ルツボ2は底部の中央部分
が円筒状の空間部からなる凝固金属滞留部を形成し、こ
の凝固金属溜留部上方に広径の溶融スラグ浴5が形成さ
れている。このような水冷式調性ルツボ2の溶融スラグ
浴5に放射能汚染金属を細断したスクラップ片8がスク
ラップ投入装置9から投入される。溶融スラグは、炭素
棒のごとき耐熱電導性の電極棒1と溶融金属層6、凝固
金属層7、ルツボ底盤3の間に負荷される定常電流によ
り発生したジュール熱によってそれ自身が加熱源となる
。この熱によって溶融したスクラップは中央の溶融金属
層6へ移り、溶融過程で汚染物はスラグ層5へ移行抽出
される。しかし、この方式では未溶融金属片が電極棒か
ら離れた位置に滞留し、かつ水冷ルツボの壁面側に投入
されるため、金喝溶解に係る熱効率が低い。例えば融点
1535Cの鉄を溶解するため鉄片滞留部のスラグ温度
を1550C以上に保つには電極棒近接部の温度をさら
に150〜200C高くする必要がある。このため供給
電力が増大することが開明となっていた。
In FIG. 1, the water-cooled tonal crucible 2 has a solidified metal retention section formed of a cylindrical space in the center of its bottom, and a wide-diameter molten slag bath 5 is formed above this solidified metal reservoir. ing. Scrap pieces 8 obtained by shredding radioactively contaminated metal are fed into the molten slag bath 5 of such a water-cooled tempering crucible 2 from a scrap feeding device 9 . The molten slag itself becomes a heating source due to the Joule heat generated by the steady current applied between the heat-resistant conductive electrode rod 1 such as a carbon rod, the molten metal layer 6, the solidified metal layer 7, and the crucible bottom plate 3. . The scrap melted by this heat moves to the central molten metal layer 6, and during the melting process, contaminants move to the slag layer 5 and are extracted. However, in this method, the unmelted metal pieces stay at a position away from the electrode rod and are thrown into the wall of the water-cooled crucible, so the thermal efficiency related to metal melting is low. For example, in order to melt iron with a melting point of 1535C and maintain the slag temperature in the iron piece retention area at 1550C or higher, it is necessary to further increase the temperature in the vicinity of the electrode rod by 150 to 200C. For this reason, it has become clear that the power supply will increase.

〔発明の目的〕[Purpose of the invention]

本発明の目的は非消耗式電極型エレクトロスラグ溶解(
E8R)炉を用いた放射能汚染金属の溶融除染装置にお
いて、熱効率を改善して供給電力を減少させ、未溶解金
哨の残存をなくし所定の溶融除染装置を得ることができ
る放射能汚染金属の溶融除染装置を提供することにある
The purpose of the present invention is to provide non-consumable electrode type electroslag melting (
E8R) In the melting decontamination equipment for radioactively contaminated metal using a furnace, it is possible to improve the thermal efficiency, reduce the power supply, eliminate the remaining unmelted metal, and obtain the desired melting decontamination equipment. An object of the present invention is to provide a metal melting decontamination device.

〔発明の概要〕[Summary of the invention]

本発明者らは、ESR炉におけるスラグ中での発熱部は
電極棒から下の溶融金属層へ向って伸びる電流線に沿っ
た電圧勾配に従って分布する点に着目し、非消耗式電極
下方の溶解炉底部に未溶融金属(スクラップ片)を滞留
させ、非消耗式電極下方付近の最も発熱部の大きい領域
で放射能汚染金属を溶解するようにしたものである。
The present inventors focused on the fact that the heat generating part in the slag in an ESR furnace is distributed according to the voltage gradient along the current line extending from the electrode rod to the molten metal layer below, and discovered that Unmelted metal (scrap pieces) is retained at the bottom of the furnace, and radioactively contaminated metal is melted in the region below the non-consumable electrode, where the heat generation part is the largest.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例によって本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

第2図は本発明の一実施例を示す縦断面図であって、第
2図において、水冷式銅等のルツボ13は円筒体からな
り、このルツボ13に冷水入口13Aと冷水出口13B
が設けられ、ルツボ13内を内部よシ水冷するようにな
っている。またルツボ13と同心円上にルツボ14が設
けられ、このルツボ14にも特に図示していないが冷水
の出入口が設けられ、内部から水冷するようになってい
る。ルツボ14の上端面は平面状をなし、この面上は未
溶融金属が滞留する受は部14Aとなっている。ルツボ
13とルツボ14とによって形成される環状空間部に環
状の銅製底盤15が設けられ、この銅製底盤15は底盤
引抜装置16によシ昇降する機構となっている。非消耗
式電極17は受は部14Aの上方に位置し、その下端部
が溶融スラグ18に浸漬する状態で配置され、かつ複数
本の電極が所定の間隔をおいて円筒状に配置されている
。図中、19は放射能汚染金属のスクラップ片を投入す
るためのスクラップ投入装置、20はスラグ剤供給装置
を示している。
FIG. 2 is a longitudinal cross-sectional view showing an embodiment of the present invention. In FIG. 2, a water-cooled crucible 13 made of copper or the like is made of a cylindrical body, and the crucible 13 has a cold water inlet 13A and a cold water outlet 13B.
is provided to cool the inside of the crucible 13 with water. Further, a crucible 14 is provided concentrically with the crucible 13, and this crucible 14 is also provided with an inlet/outlet for cold water, although not particularly shown, so that water cooling is performed from inside. The upper end surface of the crucible 14 has a planar shape, and a receptacle 14A is formed on this surface where unmolten metal remains. An annular copper bottom plate 15 is provided in the annular space formed by the crucible 13 and the crucible 14, and the copper bottom plate 15 has a mechanism to be raised and lowered by a bottom plate extraction device 16. The non-consumable electrode 17 is located above the receiving part 14A, and is arranged so that its lower end is immersed in the molten slag 18, and a plurality of electrodes are arranged in a cylindrical shape at predetermined intervals. . In the figure, reference numeral 19 indicates a scrap input device for inputting scrap pieces of radioactively contaminated metal, and reference numeral 20 indicates a slag agent supply device.

このような放射能汚染金属の溶融除染装置において、溶
解用ルツボ13の上部には溶融スラグなるように凝固金
属(インゴット)22を順次引抜界面位置を制御する。
In such an apparatus for melting and decontaminating radioactively contaminated metal, the position of the interface is controlled so that the solidified metal (ingot) 22 is sequentially pulled out so as to form molten slag in the upper part of the melting crucible 13.

未溶解金属(スクラップ片)23はスラグの発熱によっ
て溶融し、溶融過程で放射性物質はスラグ層へ移行し、
除染金属のみ溶融スラグ層18へ流入した後、冷却ルツ
ボ内で凝固する。
The unmelted metal (scrap pieces) 23 is melted by the heat generated by the slag, and during the melting process, the radioactive material is transferred to the slag layer.
After only the decontaminated metal flows into the molten slag layer 18, it solidifies in the cooling crucible.

ここで第1図に示す従来方式と、第2図に示す本実施例
とにおける熱効率等について対比する。
Here, the thermal efficiency, etc. of the conventional system shown in FIG. 1 and the present embodiment shown in FIG. 2 will be compared.

実際にスラグ層で発熱した熱量の内、スラグ層に金属溶
解熱源として留める熱量Q3は、総発熱量から気相、ル
ツボ、インゴット、電極棒へ散逸する分を差引いた残熱
分で割合は30〜35%である。この熱を金属溶解に使
う利用効率ηは従来法(第1図)のごとく外周投入式で
は約0.25、本実施例による方式では約0.3である
。最終的に総発熱量に対して金属溶解に使用する熱効率
はη・Qsの積であり従来法では7〜8%、本実施例で
は9〜10%である。
Of the heat actually generated in the slag layer, the heat Q3 retained in the slag layer as a heat source for metal melting is the residual heat obtained by subtracting the amount dissipated to the gas phase, crucible, ingot, and electrode from the total calorific value, and the ratio is 30 ~35%. The utilization efficiency η of using this heat for metal melting is approximately 0.25 in the peripheral injection method as in the conventional method (FIG. 1), and approximately 0.3 in the method according to this embodiment. Finally, the thermal efficiency used for metal melting with respect to the total calorific value is the product of η·Qs, which is 7 to 8% in the conventional method and 9 to 10% in this embodiment.

次に実発熱量の比較を行なう。必要な供給電力は主にス
ラグの総量によって決まる。電極棒の太さはルツボの径
に見合った径または断面積を選ぶ必要があり、−搬にフ
ィルレイジオ(電極棒直径/ルツボ内径比)で表わし、
0.3以上とるのが普通である。従来例の場合で第3図
に示すように電極棒1を配し、ルツボ内径を20cm、
電極棒径を7zとすると、スクラップ投入部の空隙中は
6crnとなる。一方、本実施例によれば第4図に示す
ように、スクラップ投入口の径を6備とし、従来例と同
じ横断面積を有する円筒電極棒を備える浸らば外径は9
.2 tynとなシ、ルツボ内径は高さ15cn1あれ
ばよい。ルツボ内径が20(7)から15crnに縮少
できれはスラグ量は約半分でよいことになシ、電力供給
量も同様に減少する。     ・更に、投入されたス
クラップ片をルツボの中心部発熱量の大きい領域に投入
することによシ、スラグの温度を過大に上げる必要がな
くなる。例えば、秩を溶解する場合、従来例では電極棒
付近の温度は1750t:’以上としなければならない
が、本実施例では1700r程度でもよい。この結果溶
融したケイ酸−カルシア(Show・20aO)スラグ
を500上げるに必要な熱量的2.5 kal / m
olが節減できる。これは約5%の熱量節減に相当する
Next, the actual calorific value will be compared. The required power supply is determined primarily by the total amount of slag. The thickness of the electrode rod must be selected to match the diameter or cross-sectional area of the crucible, and is expressed in fill ratio (electrode rod diameter/crucible inner diameter ratio).
It is normal to take 0.3 or more. In the case of the conventional example, the electrode rod 1 was arranged as shown in Fig. 3, and the inner diameter of the crucible was 20 cm.
If the diameter of the electrode rod is 7z, the space in the gap of the scrap input section will be 6 crn. On the other hand, according to this embodiment, as shown in FIG. 4, the diameter of the scrap inlet is 6 mm, and the outer diameter is 9 mm if the cylindrical electrode rod has the same cross-sectional area as the conventional example.
.. The inner diameter of the crucible should be 15 cm in height. If the inner diameter of the crucible is reduced from 20(7) to 15 crn, the amount of slag can be reduced to about half, and the amount of power supplied will also be reduced. -Furthermore, by introducing the scrap pieces into the central area of the crucible where the amount of heat generated is large, there is no need to excessively raise the temperature of the slag. For example, when melting copper, the temperature near the electrode rod must be 1750 t:' or higher in the conventional example, but it may be about 1700 r in this embodiment. As a result, the calorific value required to raise the molten silicic acid-calcia (Show 20aO) slag by 500% is 2.5 kal/m
OL can be saved. This corresponds to a heat saving of approximately 5%.

第5図は本発明の他の実施例を示し、第2図に示す実施
例とは、非消耗式電極スクラップ投入装置及びスラグ剤
投入装置の配置状態が異なっている。
FIG. 5 shows another embodiment of the present invention, which differs from the embodiment shown in FIG. 2 in the arrangement of the non-consumable electrode scrap charging device and the slag agent charging device.

すなわち、非消耗式電極24は第1図同様ルツボの中心
軸上に1本配置され、この非消耗式電極24の近傍にス
クラップ投入装置25の供給口側 25Aと、スラ多−給装置26の供給口26Aが設けら
れていることである。したがって第5図において、他の
構成部分は第2図と同一符号で示している。
That is, one non-consumable electrode 24 is arranged on the central axis of the crucible as in FIG. A supply port 26A is provided. Therefore, in FIG. 5, other components are designated by the same reference numerals as in FIG. 2.

(9) このような放射能汚染金属の除染装置においても、放射
能汚染金属のスクラップ片は受は部14A上に滞留して
効率的に溶解するため第2図に示す実施例同様の効果が
ある。
(9) Even in such a decontamination device for radioactively contaminated metal, scrap pieces of radioactively contaminated metal remain on the receiving part 14A and are efficiently dissolved, so that the same effect as in the embodiment shown in FIG. 2 can be obtained. There is.

第6図は本発明の他の実施例を示す部分縦断面図であっ
て、非消耗式電極24がルツボの中心軸上に1本配置さ
れ、この非消耗電極24と同心円上に円筒部材2γが設
けられ、この円筒部材27内にスクラップ投入装置25
から放射能汚染のスクラップ片が投入され、かつスラグ
剤供給装置26からスラグ剤が供給されるようになって
いる。
FIG. 6 is a partial vertical sectional view showing another embodiment of the present invention, in which one non-consumable electrode 24 is arranged on the central axis of the crucible, and a cylindrical member 2γ is placed concentrically with this non-consumable electrode 24. A scrap input device 25 is provided in this cylindrical member 27.
Radioactively contaminated scrap pieces are input from the slag agent supply device 26, and slag agent is supplied from the slag agent supply device 26.

本実施例において、他の構成部分は実質的に第2図の実
施例と同じである。
In this embodiment, the other components are substantially the same as the embodiment shown in FIG.

第7図は本発明の他の実施例を示す部分縦断面図であっ
て、ルツボの上部28が中心部ようも内径が小さくなり
、はぼ受は部14Aの径の外径とほぼ同じになっている
。非消耗式電極24はルツボの中心軸上に1本配置され
、ルツボの上部28の内部空間部にスクラップ片及びス
ラグ剤が投入される。本実施例では、スクラップ片は受
は部(10) 14A面上に滞留するので効率的に溶解するとともにル
ツボの上部開口面漬が小さく熱の放散を少なくすること
ができるので熱効率は高いものとなる。
FIG. 7 is a partial longitudinal sectional view showing another embodiment of the present invention, in which the upper part 28 of the crucible has a smaller inner diameter than the central part, and the outer diameter of the holder is approximately the same as the outer diameter of the part 14A. It has become. One non-consumable electrode 24 is arranged on the central axis of the crucible, and scrap pieces and slag agent are introduced into the internal space of the upper part 28 of the crucible. In this example, the scrap pieces accumulate on the 14A surface of the receiving part (10), so they are efficiently melted, and the upper opening of the crucible is small so that heat dissipation can be reduced, so the thermal efficiency is high. Become.

なお、第2図に示す実施例では複数本の非消耗式電極を
円筒状に配置したが、角筒状に配置してもよい。また単
一の非消耗式電極を円筒体、また角筒体としてもよい。
In the embodiment shown in FIG. 2, a plurality of non-consumable electrodes are arranged in a cylindrical shape, but they may be arranged in a rectangular tube shape. Further, the single non-consumable electrode may be a cylinder or a rectangular cylinder.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、放射性物質で汚染した金
属のスラグ中での溶解速度を速め、効率的に除染処理を
行なうことができる。
As described above, according to the present invention, the dissolution rate of metal contaminated with radioactive substances in slag can be increased, and decontamination treatment can be performed efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の放射能汚染金属の溶融除染装置の縦断面
図、第2図は本発明の溶融除染装置の一実施例を示す縦
断面図、第3図及び第4図はそれぞれ従来例及び第2図
に示す実施例の電極棒挿入時のスラグ層位置を示すため
の横断面図、第5図。 第6図及び第7図はそれぞれ本発明の池の実施例を示す
部分縦断面図である。 (11) 1.17.24・・・非消耗式電極(棒)、2,13゜
14・・・水冷銅ルツボ、a、15・・・銅製底盤、4
゜16・・・底盤引抜装置、5.18・・・溶融スラグ
、6゜21・・・溶融金属、7.22・・・凝固金属、
8.23・・・放射能汚染スクラップ片、9,19.2
5・・・スクラップ投入装置、10.20.26・・・
スラグ剤供給装置、11・・・電力供給電源、12・・
・冷却水出入口、14A・・・受は部。 代理人 弁理士 鵜沼辰之 (12) 第(口 第3区 第4区 lり
Fig. 1 is a longitudinal sectional view of a conventional melting decontamination device for radioactively contaminated metal, Fig. 2 is a longitudinal sectional view showing an embodiment of the melting decontamination device of the present invention, and Figs. 3 and 4 are respectively FIG. 5 is a cross-sectional view showing the position of the slag layer when the electrode rod is inserted in the conventional example and the embodiment shown in FIG. 2; FIGS. 6 and 7 are partial vertical sectional views showing embodiments of the pond of the present invention, respectively. (11) 1.17.24...Non-consumable electrode (rod), 2,13゜14...Water-cooled copper crucible, a, 15...Copper bottom plate, 4
゜16... Bottom plate pulling device, 5.18... Molten slag, 6゜21... Molten metal, 7.22... Solidified metal,
8.23...Radioactive contaminated scrap piece, 9,19.2
5... Scrap input device, 10.20.26...
Slag agent supply device, 11... Electric power supply, 12...
・Cooling water inlet/outlet, 14A...Reception part. Agent Patent Attorney Tatsuyuki Unuma (12) No. 3 (3rd Ward, 4th Ward)

Claims (1)

【特許請求の範囲】 1、放射能物質で汚染した金属を溶融スラグに負荷する
区部によって発生する熱により溶融し、汚染物質をスラ
グへ抽出させる溶融炉を備えた放射能汚染金属の溶融除
染装置において、前記溶解炉の炉底中央部にその周縁の
炉底部よシ高く形成された未溶融金属滞留部を設け、こ
の未溶融金属滞留部の上方に非消耗式電極を設けるとと
もに、溶融スラグの上方から前記未溶融金属滞留部面上
に放射能汚染金属を投入するだめの供給装置を設けたこ
とを特徴とする放射能汚染金属の溶融除染装置。 2、特許請求の範囲第1項において、前記非消耗式電極
は筒状体に形成され、前記供給装置の放射能汚染金属供
給口が前記筒状体の内部空間上方に位置することを特徴
とする放射能汚染金属の溶融除染装置。 3、特許請求の範囲第1項において、前記非消耗式電極
は複数の電極を間隔をおいて筒状に配置され、この筒状
部の内部空間上方に前記供給装置の放射能汚染金属供給
口が位置することを特徴とする放射能汚染金属の溶融除
染装置。 4、特許請求の範囲第1項において、前記非消耗式電極
は前記未溶融金属滞留部の中央部の上方に位置する1本
の電極からなシ、この電極に近接したスラグ上方に前記
供給装置の放射能汚染金属供給口が設けられていること
を特徴とする放射能汚染金属の溶融除染装置。 5、特許請求の範囲第2項において、前記筒状体が円筒
体である午とを特徴とする放射能汚染金属の溶融除染装
置。 6、特許請求の範囲第3項において、前記筒状が円筒状
であることを特徴とする放射能汚染金属の溶融除染装置
[Claims] 1. Melting and removal of radioactively contaminated metals, which is equipped with a melting furnace that melts metals contaminated with radioactive substances by heat generated by a section that loads the molten slag and extracts the contaminants into the slag. In the dyeing apparatus, an unmolten metal retention area is provided at the center of the bottom of the melting furnace and is formed higher than the furnace bottom at the periphery thereof, and a non-consumable electrode is provided above the unmolten metal retention area. 1. An apparatus for melting and decontaminating radioactively contaminated metal, characterized in that a supply device is provided for introducing radioactively contaminated metal onto the surface of the unmolten metal retention part from above the slag. 2. Claim 1, wherein the non-consumable electrode is formed in a cylindrical body, and the radioactively contaminated metal supply port of the supply device is located above the internal space of the cylindrical body. Melting and decontamination equipment for radioactively contaminated metals. 3. In claim 1, the non-consumable electrode is arranged in a cylindrical shape with a plurality of electrodes spaced apart, and a radioactively contaminated metal supply port of the supply device is provided above the inner space of the cylindrical part. An apparatus for melting and decontaminating radioactively contaminated metals, characterized in that: 4. In claim 1, the non-consumable electrode is a single electrode located above the central part of the unmolten metal retention section, and the supply device is located above the slag in the vicinity of this electrode. 1. A melting and decontamination device for radioactively contaminated metal, characterized in that a radioactively contaminated metal supply port is provided. 5. The apparatus for melting and decontaminating radioactively contaminated metal according to claim 2, characterized in that the cylindrical body is a cylindrical body. 6. The apparatus for melting and decontaminating radioactively contaminated metal according to claim 3, wherein the tubular shape is cylindrical.
JP58063362A 1983-04-11 1983-04-11 Device for melting and decontaminating metal contaminated with radioactivity Granted JPS59188600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58063362A JPS59188600A (en) 1983-04-11 1983-04-11 Device for melting and decontaminating metal contaminated with radioactivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58063362A JPS59188600A (en) 1983-04-11 1983-04-11 Device for melting and decontaminating metal contaminated with radioactivity

Publications (2)

Publication Number Publication Date
JPS59188600A true JPS59188600A (en) 1984-10-25
JPH0374359B2 JPH0374359B2 (en) 1991-11-26

Family

ID=13227075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58063362A Granted JPS59188600A (en) 1983-04-11 1983-04-11 Device for melting and decontaminating metal contaminated with radioactivity

Country Status (1)

Country Link
JP (1) JPS59188600A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013517131A (en) * 2010-02-05 2013-05-16 廣州市新棟力超聲電子設備有限公司 Clamp-type ultrasonic processor and its application
JP2020060375A (en) * 2018-10-05 2020-04-16 Jfeエンジニアリング株式会社 Method for manufacturing clearance metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013517131A (en) * 2010-02-05 2013-05-16 廣州市新棟力超聲電子設備有限公司 Clamp-type ultrasonic processor and its application
JP2020060375A (en) * 2018-10-05 2020-04-16 Jfeエンジニアリング株式会社 Method for manufacturing clearance metal

Also Published As

Publication number Publication date
JPH0374359B2 (en) 1991-11-26

Similar Documents

Publication Publication Date Title
JPH0720288A (en) Glass fusion processing method
JPS59188600A (en) Device for melting and decontaminating metal contaminated with radioactivity
EP0845789B1 (en) Method of melting treatment of radioactive solid wastes
JP2767189B2 (en) Method for melting radioactive miscellaneous solid waste
CA1227643A (en) Process for refining metal
US8917754B2 (en) Aluminum melting apparatus
KR100219827B1 (en) Method for melting incineration residue and apparatus therefor
CS209447B2 (en) Device for introducing the electroslag melted complementary metal in the ingot
RU2249270C2 (en) Method for decontaminating radioactive metal wastes by electroslag remelting
JPS572916A (en) Melting disposal furnace for incineration residue
JP3252355B2 (en) Melt solidification method of waste by induction heating
JP4655443B2 (en) Radioactive waste treatment method
JPS5840791A (en) Sludge exhausting method
RU2145126C1 (en) Ingot of radioactive metal wastes and its production process
JP2001163624A (en) Glass melting furnace
JPH0749182A (en) Method for melting solidification and cooling crucible therefor
JP2796450B2 (en) Metal recovery device for incineration
CA1067705A (en) Method of and device for effecting electroslag remelting processes
RU2039101C1 (en) Method for electroslag ferrotitanium smelting
RU2003111903A (en) METHOD FOR DECONTACTING RADIOACTIVE METAL WASTE BY ELECTRIC SLAG MELT
JPH09197094A (en) Melting decontamination method for radioactive metal waste
JPS59146000A (en) Capacity reduction treatment for radioactive waste
JP2920972B2 (en) DC arc furnace bottom electrode maintenance method
JPS61107200A (en) Method of melting and decontaminating radioactive contaminated metal
Ohtsuka Melting and Treating Metal Wastes