JPS59186144A - Focus error detector - Google Patents

Focus error detector

Info

Publication number
JPS59186144A
JPS59186144A JP6071483A JP6071483A JPS59186144A JP S59186144 A JPS59186144 A JP S59186144A JP 6071483 A JP6071483 A JP 6071483A JP 6071483 A JP6071483 A JP 6071483A JP S59186144 A JPS59186144 A JP S59186144A
Authority
JP
Japan
Prior art keywords
cylindrical lens
cylindrical
focus error
lens
error detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6071483A
Other languages
Japanese (ja)
Inventor
Yoshihiro Katase
片瀬 順弘
Toshihiko Goto
敏彦 後藤
Yoshihide Tabuchi
田「淵」 義英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6071483A priority Critical patent/JPS59186144A/en
Publication of JPS59186144A publication Critical patent/JPS59186144A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To make an optical system compact and to improve the accuracy of detection by setting an angle of two cylindrical lenses apart from a right angle to decrease the distance between the two cylindrical lenses. CONSTITUTION:The axis of the 1st cylindrical lens 14 and the 2nd cylindrical lens 15 having an identical focus (f) has an angle of 90 deg.+ or -theta (thetanot equal to 0) and the lenses are arranged at a distance d2 between the 2nd major plane 18 of the lens 14 and the 1st major plane 19 of the lens 15. Further, a photodetector 22 is placed at a position d3m (expressed in an equation I ) from the 2nd major plane 25 of the lens 15, and split lens 23, 24 of the photodetector 22 are tilted by nearly an angle of theta3 (expressed in an equation II) to the axis of the 2nd lens 15. A focus error signal is detected with high accuracy via a differential amplifier 6 by utilizing the change in the pattern of astigmatism images 20, 21 being in orthogonal relation on the photodetector through the constitution above. Further, since the distance betwen the two cylindrical lenses is decreased, the optical system is made compact.

Description

【発明の詳細な説明】 本発明は、光学式ビデオディスクプレーヤガどにおいて
、光源からの光束が光ディスクの情報面上に正しく集光
しているかどうかを検出するフォーカス誤差検出装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a focus error detection device for detecting whether a light beam from a light source is correctly focused on the information surface of an optical disc in an optical video disc player or the like.

〔発明の背景〕[Background of the invention]

光デイスク装置においては、その再生に当って、レーザ
等の光源からの光束を光学系により微小スホットとして
ディスクの情報面上に常に正しくフォーカスすることが
必要であり、そのためのフォーカス誤差検出装置が備え
られている。
In an optical disc device, during playback, it is necessary to always correctly focus the light beam from a light source such as a laser onto the information surface of the disc using an optical system as a minute spot, and a focus error detection device is provided for this purpose. It is being

このようなフォーカス誤差信号の検出においては、非点
収差像を生じせしめるために円柱レンズを使用し、4領
域に分割された受光器によってこれらの非点収差像の位
置を監視する方法が知られている。このような、従来の
フォーカス誤差検出装置においては、はぼ同一焦点距離
の、2枚の互いに間隔をもって直交的に配置された円柱
レンズが用いられた。この円柱レンズは、第1および第
2の非点収差像を形成する。
In detecting such a focus error signal, a method is known in which a cylindrical lens is used to generate astigmatism images, and the position of these astigmatism images is monitored using a light receiver divided into four regions. ing. In such a conventional focus error detection device, two cylindrical lenses having approximately the same focal length and arranged orthogonally at a distance from each other are used. This cylindrical lens forms first and second astigmatic images.

十分なフォーカス誤差検出範囲を得るには、これらの像
の間隔を十分大きくとる必要があるが、これらの像の間
隔は、両円柱レンズの間隔、 6 。
In order to obtain a sufficient focus error detection range, it is necessary to make the interval between these images sufficiently large, and the interval between these images is equal to the interval between both cylindrical lenses.

に等しく、このため両円柱レンズの間隔が大きくなり、
光学系が大きくなるという欠点がある。
is equal to , so the distance between both cylindrical lenses increases,
The disadvantage is that the optical system becomes larger.

また、両円柱レンズが空間的に離れているので、直又の
設定や間隔の精度を高めるのが困難であるという欠点が
ある。
Furthermore, since both cylindrical lenses are spatially separated, there is a drawback that it is difficult to increase the accuracy of the straight alignment and spacing.

さらに、上記した欠点を解決するために、光軸方向に大
きな間隔をもち、入射面、出射面がそれぞれ直交した円
柱レンズとなした、一体形のレンズも提案されているが
、光学樹脂材を用いて成形しても、温度・湿度等による
2面間の間隔の変動が大きく、実用上、使用できるよう
にはなっていない。
Furthermore, in order to solve the above-mentioned drawbacks, an integrated lens has been proposed, which is a cylindrical lens with a large distance in the optical axis direction and whose incident and exit surfaces are perpendicular to each other. Even when molded using this method, the distance between the two surfaces fluctuates greatly due to temperature, humidity, etc., and is not suitable for practical use.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、2枚の円柱レンズの間隔を小さくして
も、十分なフォーカス誤差検出範囲が得られるような改
良されたフォーカス誤差検出装置を提供することにある
An object of the present invention is to provide an improved focus error detection device that can obtain a sufficient focus error detection range even if the distance between two cylindrical lenses is reduced.

〔発明の概要〕[Summary of the invention]

2枚の円柱レンズを用いた非点収差光学系の一般解を導
びい友結果、次の諸点が明らかにな4 。
As a result of deriving a general solution for an astigmatism optical system using two cylindrical lenses, the following points become clear4.

った。すなわち、非点収差線像が2つ存在すること、そ
の非点収差線像の間隔は、円柱レンズの焦点距離、円柱
レンズの間隔および円柱レンズの角度によって決まるこ
と、円柱レンズの角度が90°からずれると、非点収差
線像の間隔が大きくなること、円柱レンズの間隔が小さ
いと、非点収差線像の間隔が小さくなること、非点収差
線像の角度と円柱レンズの角度は、円柱レンズの焦点距
離、円柱レンズの焦点距離2円柱レンズの間隔および2
つの円柱レンズの相対角度によって決まること、2つの
非点収差線像の相対角度は常に90°であること等であ
る。
It was. That is, there are two astigmatism line images, the interval between the astigmatism line images is determined by the focal length of the cylindrical lens, the interval between the cylindrical lenses, and the angle of the cylindrical lens, and the angle of the cylindrical lens is 90°. If the distance between the astigmatism line images deviates from this, the distance between the astigmatism line images will increase.If the distance between the cylindrical lenses is small, the distance between the astigmatism line images will become smaller.The angle of the astigmatism line images and the angle of the cylindrical lens will be Focal length of cylindrical lens, Focal length of cylindrical lens 2 Distance between cylindrical lenses and 2
This is determined by the relative angles of the two cylindrical lenses, and the relative angle between the two astigmatism line images is always 90°.

本発明では、2枚の円柱レンズの間隔を小さくするため
に、2枚の円柱レンズの相対角度を90°からずらして
設定する。
In the present invention, in order to reduce the distance between the two cylindrical lenses, the relative angle between the two cylindrical lenses is set to be shifted from 90°.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。半導
体レーザ1などの光源2から発射された発散光3はコリ
メートレンズ4によって平行光束5となって、光ディス
ク6の情報面7に達する第1の光学通路8に沿って投射
される。
An embodiment of the present invention will be described below with reference to FIG. Divergent light 3 emitted from a light source 2 such as a semiconductor laser 1 is converted into a parallel light beam 5 by a collimating lens 4 and projected along a first optical path 8 that reaches an information surface 7 of an optical disk 6 .

対物レンズ9は、光学通路8内に位置し、半導体レーザ
1から放射された光束を情報面7上の読取点10に焦点
を結ばせる。ビーム・スブリック11は、光学通路8内
に含まれていて、情報面7で反射された反射光束12の
ために第2の光学通路13を設定する。第1の円柱レン
ズ14と第2の円柱レンズ15は、はぼ同一の焦点距離
fを有し、第1の円柱レンズ14の軸16と、第2の円
柱レンズ15の軸17が互いに90’±θ(θ笑0°)
の角度をなし、第1の円柱レンズ14の第2主要面1日
と、第2の円柱レンズ15の第1主要面19との間隔d
、をもって、光学通路13に沿って位置している。これ
らの円柱レンズ14.15の各々は、第1図の実施例で
は、片凸円柱レンズを用いたが、両凸円柱レンズを用い
てもいっこうにかまわない。これらの円柱レンズ14.
15は、光学通路13に沿って、第1の非点収差線像2
0および第2の非点収差線像21を形成する。これらの
像20゜21は、読取点10の像である。一般に像2o
と像21の間隔Δは、f + 0+ d2を用いてと表
わされる。(1)式から、一般にΔ≧d2がなυたち、
θ=0.すなわち両円柱レンズ14.15が直交関係に
あるときのみ、Δ=d、2となることがわかる。
The objective lens 9 is located within the optical path 8 and focuses the light beam emitted from the semiconductor laser 1 onto a reading point 10 on the information surface 7 . The beam subric 11 is contained within the optical path 8 and establishes a second optical path 13 for the reflected light beam 12 reflected at the information surface 7 . The first cylindrical lens 14 and the second cylindrical lens 15 have almost the same focal length f, and the axis 16 of the first cylindrical lens 14 and the axis 17 of the second cylindrical lens 15 are 90' from each other. ±θ (θ 0°)
, and the distance d between the second major surface of the first cylindrical lens 14 and the first major surface 19 of the second cylindrical lens 15
, located along the optical path 13. Although each of these cylindrical lenses 14 and 15 is a single-convex cylindrical lens in the embodiment shown in FIG. 1, a double-convex cylindrical lens may also be used. These cylindrical lenses 14.
15 is a first astigmatism line image 2 along the optical path 13
0 and a second astigmatism line image 21 are formed. These images 20° 21 are images of the reading point 10. Generally statue 2o
The distance Δ between the image 21 and the image 21 is expressed as f + 0+ d2. From equation (1), generally Δ≧d2 is υ,
θ=0. That is, it can be seen that Δ=d, 2 only when both cylindrical lenses 14 and 15 are in an orthogonal relationship.

一方、読取点10に対する像2oおよび像21の横る。On the other hand, the image 2o and the image 21 are lateral to the reading point 10.

ここにf8は対物レンズ9の焦点距離である。Here, f8 is the focal length of the objective lens 9.

受光器22は、第2図に示すように、直交する2本の分
割線23..24によシ4つの受光素子22a。
As shown in FIG. 2, the light receiver 22 has two orthogonal dividing lines 23. .. 24 and four light receiving elements 22a.

22b、22c、22d ic分割された形状を有し、
像2oおよび像21のほぼ中間に位置する。
It has a divided shape of 22b, 22c, and 22d ic,
It is located approximately midway between the image 2o and the image 21.

一般に、像20および像21は、第2の円柱レンズ15
の第2主要面25から の位置にあるので、受光器22は、第2の円柱レンズ1
5の第2主要面から の位置に配置される。
Generally, images 20 and 21 are formed by the second cylindrical lens 15
Since the light receiver 22 is located from the second main surface 25 of the second cylindrical lens 1
5 from the second main surface.

また、像20および像21と、第2の円柱レンズ15の
軸方向17の相対角は、 m−1α、但し、 である。両円柱レンズ14.15が直交関係にあるとき
に、像20.21も直交関係にあることは従来よりよく
知られているが、一般に両円柱レンズ14.15の軸方
向16.17の相対角度90°±θのいかんにかかわら
ず、像20.21は直交関係となる。
Further, the relative angle between the images 20 and 21 and the axial direction 17 of the second cylindrical lens 15 is m-1α, where: It has been well known that when the two cylindrical lenses 14.15 are in an orthogonal relationship, the images 20.21 are also in an orthogonal relationship; Regardless of the angle of 90°±θ, the images 20.21 are orthogonal.

したがって、受光器22の分割線23.24を、第2の
円柱レンズ15の軸方向17に対して、はぼθ3”ta
n−’α±45゜ の角度だけ傾むけて設置すれば、以下述べるように、受
光器22上の非点収差像のパタンの変化を有効に活用し
て、第1の対角方向に並んだ2つの受光素子22α、2
2Cの和信号と、第2の対角方向に並んだ2つの受光素
子221)、22dの和信号を差動増幅器26に入力さ
せて、その出力信号からフォーカス誤差信号を検出する
ことができる。
Therefore, with respect to the axial direction 17 of the second cylindrical lens 15, the dividing line 23.24 of the light receiver 22 is approximately θ3”ta.
If the installation is tilted by an angle of n-'α±45°, the changes in the pattern of the astigmatism image on the light receiver 22 can be effectively used to align the images in the first diagonal direction, as described below. Two light receiving elements 22α, 2
The sum signal of 2C and the sum signal of the two light receiving elements 221) and 22d arranged in the second diagonal direction are input to the differential amplifier 26, and the focus error signal can be detected from the output signal thereof.

すなわち、情報面7の上下方向の移動距離Δ′に対して
、読取光点は同方向に2Δ′だけ変動する。
That is, with respect to the moving distance Δ' of the information surface 7 in the vertical direction, the reading light spot changes by 2 Δ' in the same direction.

したがって、像20.21は、2Δ’Mまたけ同方向に
変動する。受光器22上のバタンか直交関係にある像2
0から像21まで変化する間に、フォーカス誤差検出信
号はほぼリニアに変化し、これはフォヘカス制御サーボ
装置にとって最も有効な信号である。このような信号が
得られる情報面7の移動距離Δ′は、一般にフォーカス
誤差検出Δ 範囲と呼ばれ、以上の説明により、Δ′−□2M” である。
Therefore, the images 20.21 vary in the same direction over 2Δ'M. Image 2 that is orthogonal to the button on the photoreceiver 22
During the change from 0 to image 21, the focus error detection signal changes almost linearly, and this is the most effective signal for the fohecus control servo device. The moving distance Δ' of the information surface 7 from which such a signal is obtained is generally called the focus error detection Δ range, and is Δ'-□2M'' according to the above explanation.

以上のごとく、f、θ、d、、M  の値が与えられれ
ば、(11式よシΔが求められ、したがってフォ−カス
誤差検出範囲Δ′が求められる。第6図にf = 78
 m 、 M = 18.4 、θ=0°、1°、2°
、3°、4°、5゜におけるd2とΔ′の関係を示す。
As mentioned above, if the values of f, θ, d, .
m, M = 18.4, θ = 0°, 1°, 2°
, 3°, 4°, and 5°.

また、−例として第1表に、第3図においてΔ′を12
.5μm とするためのθとd2の関係を示す。第1表
からもわかるよう圧、θが大きくなるとd2は小さくな
る。
- As an example, in Table 1, in Figure 3, Δ' is 12
.. The relationship between θ and d2 for setting it to 5 μm is shown. As can be seen from Table 1, as the pressure θ increases, d2 decreases.

θ=0・のときにはd2 = 8.1 mとがなp大き
い値であるが、θ=3°とすることによ#) d2= 
2.7 tmと約−に小さくすることができる。
When θ=0・, d2=8.1 m is a large value, but by setting θ=3°, d2=
It can be reduced to approximately -2.7 tm.

第  1   表 θ  d2 0° 8.1祁 108.0L11++1 2° 6.7− 3’  2.7− このように、第1の円柱レンズ14の第2主要面18と
第2の円柱レンズ15の第1主要面19の間隔d2を小
さくできるので、2枚の円柱レンズ14.15の間隔を
小さく設定できるという利点がある。
Table 1 θ d2 0° 8.1 108.0L11++1 2° 6.7- 3' 2.7- In this way, the second main surface 18 of the first cylindrical lens 14 and the second cylindrical lens 15 are Since the distance d2 between the first main surfaces 19 can be made small, there is an advantage that the distance between the two cylindrical lenses 14, 15 can be set small.

さらに、第4図に示すように、2枚の片凸円柱レンズ1
4.15の平面どうしを密着させる構成とすることもで
きる。平面どうしを@着させることによシ、密着させな
い場合に比べて両円柱レンズの間隔のばらつきや変動を
小さく抑えることができるという利点がある。
Furthermore, as shown in FIG. 4, two single-convex cylindrical lenses 1
It is also possible to have a configuration in which the 4.15 planes are brought into close contact with each other. By bringing the planes into contact with each other, there is an advantage that variations and fluctuations in the distance between the two cylindrical lenses can be suppressed to a smaller level than when they are not brought into close contact.

また、第4図に示した円柱レンズ14.15の平面形状
はその1辺が円柱レンズの軸方向と平行な長方形である
が、第5図に示す円柱レンズ27゜28は、その平面形
状を、対向する2辺29.30が円柱レンズ27の軸方
向31と平行で、対向する2内角32.33が円柱レン
ズ27.28の軸方向31.34の相対角90°十〇(
θ第0)に等しいひし型形状としたものである。このよ
うにすれば、両円柱レンズ27.28の平面とおしを密
着する際に、両円柱レンズの辺と辺を合わせるのみで両
円柱レンズ27.28の軸方向31.34相対角度設定
がなされるので、角度設定が容易になり、角度ばらつき
を小さく抑えることができるという利点がある。
Furthermore, the planar shape of the cylindrical lenses 14 and 15 shown in FIG. , the two opposing sides 29.30 are parallel to the axial direction 31 of the cylindrical lens 27, and the two opposing internal angles 32.33 are relative angles of 90° 10 (
It has a rhombic shape equal to θth). In this way, when the planes of both cylindrical lenses 27 and 28 are brought into close contact with each other, the relative angles in the axial directions 31 and 34 of both cylindrical lenses 27 and 28 can be set simply by aligning the sides of both cylindrical lenses. Therefore, there is an advantage that the angle setting becomes easy and the angle variation can be kept small.

また、2枚の円柱レンズを用いる代わりに1.11 。Also, instead of using two cylindrical lenses, 1.11.

第6図に示すような、両凸円柱レンズ35を用いること
もできる。この場合には、光学ガラスの両面を直接加工
して円柱面を形成することも可能であるが、アクリル樹
脂等の光学用樹脂材を各種成形法によシ一体として成形
することも可能である。
A biconvex cylindrical lens 35 as shown in FIG. 6 may also be used. In this case, it is possible to directly process both sides of the optical glass to form a cylindrical surface, but it is also possible to form an optical resin material such as acrylic resin as one piece using various molding methods. .

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、2つの円柱レンズ
の角度を90°からずらして設定することによって、2
つの非点収差線像の直交関係を保ったまま、非点収差線
像の間隔を円柱レンズの間隔よりも大きくできるので、
2枚の円柱レンズの間隔を小さく設定することができ、
さらに密着や一体化することができる。この場合、円柱
レンズを薄くすることができるため、光学樹脂等を用い
ても温度や熱による変形は微小で実用上、何ら支障がな
い等の効果をもあわせもつ。
As described above, according to the present invention, by setting the angles of the two cylindrical lenses to be shifted from 90°,
While maintaining the orthogonal relationship between the two astigmatism line images, the interval between the astigmatism line images can be made larger than the interval between the cylindrical lenses.
The distance between the two cylindrical lenses can be set small,
Furthermore, they can be brought into close contact and integrated. In this case, since the cylindrical lens can be made thin, even if an optical resin or the like is used, the deformation due to temperature or heat is minute and there is no problem in practical use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明により構成されたフォーカス誤差検出
装置の正面図及び側面図、第2図は12゜ 第1図に示した受光器および差動増幅器を示す図、第3
図は、θ、d2.Δ′の関係を示すグラフ第4図、第5
図、第6図は円柱レンズの正面図上面図及び側面図であ
る。 符号の説明 2・・・・・・・・・・・・・・・・・・・・・光源6
・・・・・・・・・・・・・・−・・・・・発散光5・
・・・・・・・・・・・・・・・・・・・・平行光束6
・・・・・・・・・・・・・・・・・・・・・光ディス
ク7・・・・・・・・・・・・・・・・・・・・・情報
面12・・・・・・・・・・・・・・・・・・反射光束
14・・・・・・・・・・・・・−・・・・第1の円柱
レンズ15・・・・・・・・・・・・・・・・・・第2
の円柱レンズ16・・・・・・・・・・・・・・・・・
・第1の円柱レンズ14の軸17・・・・・・・・・・
・−・・・・・第2の円柱レンズ15の軸18・・・・
・−・・・・・・・・・・・第1の円柱レンズ14の第
2主要面 19・・・・・・・・・・・・・・・・・・第2の円柱
レンズ15の第1主要面 20・・・・・・・・・・・・・・・・・・第1の非点
収線線像21・・・・・・・・・・・・・・・・・・第
2の非点収差線像22・・・・・−・・・・・・・・・
・・受光器23.24・・・・・・・・・・・・分割線
22α、b、C,d・・・受光素子 25・・・・・・・・・・・・・・−・・第2の円柱レ
ンズ15の第2主要面 26・・・・・・・・・・・・・・・・・・差動増幅器
27.28・・・・・・・・・・・・円柱レンズ29.
30・・・・・・・・・・・・対向する2辺31.34
・・・・・・・・・・・・円柱レンズ27.28の軸方
向32.33・・・・・・・・・・・・対向する内角3
5・・・・・・・・−・・・・・・・・両凸円柱レンズ
代理人弁理士 高 橋 明 夫 第 3 図 OL2 (mm ) 第 4  図 宛 5 図 2 9 箪6レ 242−
1 is a front view and a side view of a focus error detection device constructed according to the present invention, FIG. 2 is a view showing the optical receiver and differential amplifier shown in FIG.
The figure shows θ, d2. Graphs 4 and 5 showing the relationship between Δ'
6 are a front view, a top view, and a side view of a cylindrical lens. Explanation of symbols 2・・・・・・・・・・・・・・・・・・Light source 6
・・・・・・・・・・・・・・・-・・・・・・Divergent light 5・
・・・・・・・・・・・・・・・・・・・・・Parallel light flux 6
・・・・・・・・・・・・・・・・・・・・・Optical disc 7・・・・・・・・・・・・・・・・・・ Information side 12...・・・・・・・・・・・・Reflected light flux 14・・・・・・・・・・・・・−・First cylindrical lens 15・・・・・・・・・・・・・・・・・・・Second
Cylindrical lens 16・・・・・・・・・・・・・・・
- Axis 17 of the first cylindrical lens 14...
...Axis 18 of second cylindrical lens 15...
...... Second main surface 19 of the first cylindrical lens 14 ......... Second main surface 19 of the second cylindrical lens 15 First principal surface 20......First astigmatic convergent line image 21......・Second astigmatism line image 22...
・・Photo receiver 23, 24・・・・・・・・・・・Dividing line 22α, b, C, d・・Photo receiving element 25・・・・・・・・・・・・・・・・Second main surface 26 of second cylindrical lens 15・・・・・・・・・・・・・・・Differential amplifier 27.28・・・・・・・・・Cylinder Lens 29.
30・・・・・・・・・Two opposing sides 31.34
・・・・・・・・・Axis direction 32.33 of cylindrical lens 27.28・・・・・・・・・Opposing internal angle 3
5・・・・・・・・・・−・・・・・・・・・Patent attorney for biconvex cylindrical lens Akio Takahashi No. 3 OL2 (mm) To Fig. 4 5 Fig. 2 9 6th line 242-

Claims (1)

【特許請求の範囲】 1、 光源から発射された光束が光ディスクの情報面上
に正しく集光しているかどうかを検出するために、前記
情報面で反射した光束を収束し、かつ非点収差を生じせ
しめる光学手段と、前記情報面で反射した光束が入射す
る、直交する2本の分割線によシ4つの受光素子に分割
された受光器とから成り、前記受光器の第1の対角方向
に並んだ2つの前記受光素子の和信号と、前記受光器の
第2の対角方向に並んだ2つの前記受光素子の和信号と
の差信号によりフォーカス誤差信号を検出するフォーカ
ス誤差検出装置において、前記光学手段は、同一の焦点
距離を有する第1の円柱レンズと第2の円柱レンズとで
構成され、′前記第1および第2の円柱レンズは、軸方
向が互いに90・±θ(θ矢0°)の角度をなし、前記
第1の円柱レンズの第2主要面と、前記第2の円柱レン
ズの第1主要面との間隔d2をもって配置され、前記受
光器は、前記第2の円柱レンズの第2主要面から の位置に設置され、前記受光器の1分割線が前記第2の
円柱レンズの軸方向に対して、はぼ θB = tan−’α±45°、ただしの角度だけ傾
むけられていることを特徴とするフォーカス誤差検出装
置。 2、前記第1および第2の円柱レンズは、それぞれ片凸
円柱レンズであり、前記第1および第2の円柱レンズの
平面どうしを密着する構成としたことを特徴とする特許
請求の範囲第1項に記載のフォーカス誤差検出装置。 3 前記第1および第2の円柱レンズは、それぞれ片凸
円柱レンズであり、前記片凸円柱レンズの平面形状は、
対向する2辺が前記円柱レンズの軸方向と平行で、対向
する2内角が前記第1および第2の円柱レンズの軸方向
のなす角度90°±θ(θNO)に等しいひし型形状と
することを特徴とする特許請求の範囲第1項に記載のフ
ォーカス誤差検出装置。 4、 前記光学手段は、両面が各々凸円柱面をなした、
光学的に透過性を有する高分子材料により一体として成
形された両凸円柱レンズであることを特徴とする特許請
求の範囲第1項に記載のフォーカス誤差検出装置。
[Claims] 1. In order to detect whether the light beam emitted from the light source is correctly focused on the information surface of the optical disk, the light beam reflected on the information surface is converged and astigmatism is eliminated. and a light receiver divided into four light receiving elements by two orthogonal dividing lines, into which the light beam reflected on the information surface enters, and a first diagonal of the light receiver. A focus error detection device that detects a focus error signal based on a difference signal between a sum signal of the two light receiving elements arranged in a diagonal direction and a sum signal of two light receiving elements arranged in a second diagonal direction of the light receiver. The optical means is composed of a first cylindrical lens and a second cylindrical lens having the same focal length, and the axial directions of the first and second cylindrical lenses are at an angle of 90·±θ( The second main surface of the first cylindrical lens and the first main surface of the second cylindrical lens are arranged with a distance d2 between the second main surface of the first cylindrical lens and the second main surface of the second cylindrical lens. is installed at a position from the second main surface of the cylindrical lens, and the dividing line of the light receiver is approximately θB = tan-'α±45° with respect to the axial direction of the second cylindrical lens. A focus error detection device characterized by being tilted by an angle. 2. The first and second cylindrical lenses are each a single-convex cylindrical lens, and the flat surfaces of the first and second cylindrical lenses are in close contact with each other. The focus error detection device described in . 3. The first and second cylindrical lenses are each a single-convex cylindrical lens, and the planar shape of the single-convex cylindrical lens is as follows:
A rhombic shape with two opposing sides parallel to the axial direction of the cylindrical lens and two opposing internal angles equal to the angle 90°±θ (θNO) formed by the axial direction of the first and second cylindrical lenses. A focus error detection device according to claim 1, characterized in that: 4. The optical means has both surfaces each having a convex cylindrical surface,
The focus error detection device according to claim 1, wherein the focus error detection device is a biconvex cylindrical lens integrally molded from an optically transparent polymeric material.
JP6071483A 1983-04-08 1983-04-08 Focus error detector Pending JPS59186144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6071483A JPS59186144A (en) 1983-04-08 1983-04-08 Focus error detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6071483A JPS59186144A (en) 1983-04-08 1983-04-08 Focus error detector

Publications (1)

Publication Number Publication Date
JPS59186144A true JPS59186144A (en) 1984-10-22

Family

ID=13150229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6071483A Pending JPS59186144A (en) 1983-04-08 1983-04-08 Focus error detector

Country Status (1)

Country Link
JP (1) JPS59186144A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111777U (en) * 1990-02-28 1991-11-15

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111777U (en) * 1990-02-28 1991-11-15

Similar Documents

Publication Publication Date Title
EP0121989B1 (en) Focussing error detecting apparatus
JP2913984B2 (en) Tilt angle measuring device
US5113386A (en) Focus and tracking error detector apparatus for optical and magneto-optical information storage systems
JPH0582658B2 (en)
US5546235A (en) Astigmatic lens for use in detecting a focussing error in an optical pickup system
JPH0447377B2 (en)
JPS59186144A (en) Focus error detector
JPS6329337B2 (en)
US5636189A (en) Astigmatic method for detecting a focussing error in an optical pickup system
US4683559A (en) Optical pickup with a two-detector arrangement
JPS5897140A (en) Reproducer for optical information signal
JPS6331858B2 (en)
JPS63291238A (en) Optical memory device
JP2637739B2 (en) Magneto-optical head
JPH04167236A (en) Optical disk apparatus
US5243178A (en) Focus detecting optical device utilizing two plane parallel plates
JPS58155535A (en) Photodetector for optical pickup optical system
JPS5845629A (en) Condensing device having focal error signal detecting function
JPH0519850Y2 (en)
JPS62159354A (en) Optical pickup of optical information signal recording and reproducing device
KR850002997Y1 (en) The detecting apparatus of collection condition in object lens
JPS5856235A (en) Optical track tracing device
JPS5837849A (en) Detector of focus servo signal for optical information reader
JPS62285234A (en) Reader for reflected optical disk
JPH0329121A (en) Optical head