JPS5837849A - Detector of focus servo signal for optical information reader - Google Patents
Detector of focus servo signal for optical information readerInfo
- Publication number
- JPS5837849A JPS5837849A JP13556181A JP13556181A JPS5837849A JP S5837849 A JPS5837849 A JP S5837849A JP 13556181 A JP13556181 A JP 13556181A JP 13556181 A JP13556181 A JP 13556181A JP S5837849 A JPS5837849 A JP S5837849A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- light
- photodetector
- lens
- beam splitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/08—Disposition or mounting of heads or light sources relatively to record carriers
- G11B7/09—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B7/0908—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
Landscapes
- Automatic Focus Adjustment (AREA)
- Optical Recording Or Reproduction (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、光学式情報読取装置におけるフォーカスサー
ボ信号検出装置fに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a focus servo signal detection device f in an optical information reading device.
ビデオあるいはオーディオのディスクから記録信号を光
学式情報読取装置を用いて再生する際に生じ得る面ぶれ
等による焦点ずれを検出する方法として、戻り光が焦点
ずれにより収束光あるいは発散光、となることを非点収
束を利用して、検出器上に投影されるスポット形状の変
化に変換して検出したり、あるいはプリズムを用いそれ
を光軸と直交する方向のスポット変位に変換して検出す
る等様々な例が考えられている0
例えば、第1図に示すような光学系では、光源1を出た
光はレンズ2によって平行光線となり、m光ビームスプ
リッタ3を通過後λ/4板4で円偏光に変換され、焦点
レンズ5によって集光され記録担体6で反射され、再び
レンズ5を通りλ/4板4で直線偏光になり、偏光ビー
ムスプリッタ3で反射され、レンズ7に入射する0この
時の偏光は紙面に垂直方向である0レンズTに入射した
光は、このレンズ7でしぼり込まれるが、シリンドリカ
ルレンズ8の性質によって非点収束光となり、光検知器
B上に至る、焦点ずれ量により光検知ias上には円あ
るいは楕円が投影され、光検知器904分割センナによ
り第2図に示すようなフォーカスサーボ用の電気信号に
変換される。As a method for detecting focus shifts due to surface blur, etc. that may occur when reproducing recorded signals from video or audio discs using an optical information reading device, returning light becomes convergent light or diverging light due to focus shift. This can be detected by converting it into a change in the shape of a spot projected onto a detector using astigmatic convergence, or by converting it into a spot displacement in a direction perpendicular to the optical axis using a prism. Various examples have been considered.0 For example, in an optical system as shown in FIG. It is converted into circularly polarized light, focused by the focusing lens 5, reflected by the record carrier 6, passes through the lens 5 again, becomes linearly polarized light by the λ/4 plate 4, is reflected by the polarizing beam splitter 3, and enters the lens 7. At this time, the polarized light is perpendicular to the plane of the paper.The light incident on the lens T is condensed by this lens 7, but due to the properties of the cylindrical lens 8, it becomes astigmatic convergent light, which reaches the focal point on the photodetector B. Depending on the amount of shift, a circle or an ellipse is projected on the photodetector ias, which is converted into an electric signal for focus servo as shown in FIG. 2 by the photodetector 904 divided sensor.
しかし、第1図に示した光学系においては、光学部品を
多く必要とし、またそれらの位置調整も必要であり、更
に光検知器9上に写る光スポットが微少であるため、調
整が嬉しいと共に振動等の外乱に弱いという問題があっ
た。However, the optical system shown in Fig. 1 requires many optical parts, and their positions must also be adjusted.Furthermore, the light spot reflected on the photodetector 9 is minute, so it is nice to be able to make adjustments. There was a problem that it was susceptible to disturbances such as vibration.
本発明は以上のような点に鑑みて成されたもの大あり、
その目的は、フォーカスサーボ信号の検出をファーフィ
ールドで検出可能として、光学部品が減少でき、位置調
整が容易となり、外乱の影響も受は雌いようにしたフォ
ーカスサーボ信号検出装置を提供することである。The present invention has been made in view of the above points,
The purpose is to provide a focus servo signal detection device that can detect focus servo signals in the far field, reduces the number of optical components, facilitates position adjustment, and is less susceptible to external disturbances. be.
以下、本発明を実施例によって詳細に説明する0第3図
はその第1実施例の光学系を示す図であり、光源10よ
り出た光はレンズ11によって平行光線となり、偏光ビ
ームスプリッタ12を通過した後λ/4板13で円偏光
になり、その後レンズ14r−よって記録担体6上に集
光され、そこで反射して再びレンズ14を通りλ/4板
で直線偏光に変換される。この時、戻り光の偏光方向は
、入射光と直光する方向となっている。従って、偏光ビ
ームスプリッタ12により反射されてレンズ15に入射
する。この入射光はy方向(紙面に当直方向)の直線偏
光である−その後光軸方向に結ル軸のある複屈折性結晶
板16を通り、偏光分離板11を通過後、光検知器11
1F−て電気信号に変換される。なお、偏光分離板17
は、第4図に示すように、斜め45度方向を中心とし中
心角αをもつ扇形で成り、各々の扇形部分は矢印方向の
偏光成分のみを通過させるものとする0この偏光分離板
17はポラロイド板等で作り得る0まだ、光検知器18
は、tss図に示すようにy方向に分割線をもつ分割検
知器で、センサ18aの電気出力Pム とセン−r1
lbの゛鑞気出力P、の差(PムーPB ’)をフォ
ーカスエラー信号として出力する。Hereinafter, the present invention will be explained in detail by way of an example. FIG. After passing through, it becomes circularly polarized light by the λ/4 plate 13, and is then focused onto the record carrier 6 by the lens 14r, where it is reflected, passes through the lens 14 again, and is converted into linearly polarized light by the λ/4 plate. At this time, the polarization direction of the returned light is a direction that is direct to the incident light. Therefore, it is reflected by the polarizing beam splitter 12 and enters the lens 15. This incident light is linearly polarized light in the y direction (direction perpendicular to the plane of the paper) - it then passes through a birefringent crystal plate 16 with a coupling axis in the optical axis direction, passes through a polarization splitter plate 11, and then passes through a photodetector 11.
1F- is converted into an electrical signal. In addition, the polarization separation plate 17
As shown in FIG. 4, the polarization separation plate 17 is formed into a fan shape with a center angle α centered at an angle of 45 degrees, and each fan-shaped portion passes only the polarized light component in the direction of the arrow. A photodetector 18 that can be made from a Polaroid board, etc.
is a divided detector with a dividing line in the y direction as shown in the tss diagram, and the electric output Pm of the sensor 18a and the sensor r1
The difference (Pmu PB') between the pneumatic output P and lb is output as a focus error signal.
第1図は第2実施例を示し、戻り光が偏向ビームスプリ
ッタ12で反射して複屈折性結晶板19に入射するまで
は前記した第1実施例と同様である。しかし、第1実施
例におけるレンズ15が無いので、そのレンズ15によ
って収束光になることなく複屈折性結晶19に入射する
。この複屈折性結晶板1sは、その結晶軸22が、第1
1図に拡大して示すように、ξ−2平面、つまり紙面に
45度の傾きをもつ園内にあり、光軸2に対してθの傾
きをもっている0複屈折性結晶板19を通過した戻り光
は、偏光分離板20を通り光検知器21にて電気信号に
変換される。なお、偏光分離板20は嬉8図に示すよう
に4分割されて成り、各々の分割部分は矢印方向の偏光
成分のみを通過させる。また、光検知器21は第9図に
示すように、4分割のセンナ218〜21dで成り、各
センナ21a〜21dで検出される電気信号をQム〜Q
D とすると、(QA −QB ) −(Q:o −
Qc )をフォーカスエラー信号として出力する。FIG. 1 shows a second embodiment, which is the same as the first embodiment described above until the returned light is reflected by the polarizing beam splitter 12 and enters the birefringent crystal plate 19. However, since there is no lens 15 in the first embodiment, the light is not converged by the lens 15 and enters the birefringent crystal 19. This birefringent crystal plate 1s has its crystal axis 22 aligned with the first
As shown in the enlarged view in Figure 1, the return after passing through the zero-birefringent crystal plate 19, which is located in the ξ-2 plane, that is, at an angle of 45 degrees to the plane of the paper, and which has an inclination of θ with respect to the optical axis 2. The light passes through a polarization separation plate 20 and is converted into an electrical signal by a photodetector 21. Note that the polarization separation plate 20 is divided into four parts as shown in Figure 8, and each divided part allows only the polarized light component in the direction of the arrow to pass through. Further, as shown in FIG. 9, the photodetector 21 consists of four divided sensors 218 to 21d, and the electrical signals detected by each sensor 21a to 21d are transmitted from Q to Q.
D, then (QA −QB ) −(Q:o −
Qc) is output as a focus error signal.
次に作用を説明する。以上の第1および第2実施例共に
複屈折性結晶板16.19に入射する戻り光は、紙面に
農直なy方向の偏光である。光検知器21側から偏光ビ
ームスプリッタ12を見た第10図に示すように座標を
定めると、y方向の偏光は、E=(0+acosωt)
で表わされる。この偏光が複屈折性結晶板1’6.19
を通過すると、陽光状態が変化し、例えば−軸性結晶の
場合には、常光と呼ばれる進行方向および結昂軸を含む
平面内の偏光と、これと垂直に一振動する偏光(異常光
線)とに別れ、その屈折率の違いから結晶通過後に位相
差を生じる。いま、入射偏光P (PJ * Py)が
結晶通過により偏光p I (p、I 、 p、I )
になったとすると、本発明では、偏光分離板t7%2
Gと光検知器18.21を用いて、複屈折性結晶板11
1.1!IIc入射する全ての光線についてのX方向の
強度とy方向の強度との差へS(=<P’s>t−<
P’y >t )の総和を検出する0第1実施例におい
ては、第6因に示すように点P(g、y)を通って複屈
折結晶板16r−入射する光線の入射角iは、mi =
(r)ν)/L(但し、Lは基準座標Oから集光点まで
の距離)で表わされる。OPとX軸のなす角をφとすれ
ば、常光Poと異常光Peは、
PG”aQIIωtIIthφ
pm=aasωt”amφ
となり1複屈折結晶板16を通過した後の両光Po。Next, the effect will be explained. In both the first and second embodiments described above, the returned light incident on the birefringent crystal plates 16 and 19 is polarized light in the y direction perpendicular to the plane of the paper. If the coordinates are determined as shown in FIG. 10 when the polarizing beam splitter 12 is viewed from the photodetector 21 side, the polarization in the y direction is E = (0 + a cos ωt)
It is expressed as This polarized light is birefringent crystal plate 1'6.19
For example, in the case of an axial crystal, there is polarized light in the plane that includes the traveling direction and convergence axis, called ordinary light, and polarized light that oscillates perpendicularly to this (extraordinary light). The difference in refractive index causes a phase difference after passing through the crystal. Now, the incident polarized light P (PJ * Py) becomes polarized light p I (p, I, p, I) by passing through the crystal.
In the present invention, the polarization splitting plate t7%2
Using G and photodetector 18.21, birefringent crystal plate 11
1.1! IIc S (=<P's>t-<
In the first embodiment, as shown in the sixth factor, the incident angle i of the ray passing through the point P(g, y) and entering the birefringent crystal plate 16r is , mi =
It is expressed as (r)v)/L (where L is the distance from the reference coordinate O to the focal point). If the angle between OP and the X-axis is φ, the ordinary light Po and the extraordinary light Pe are PG"aQIIωtIIthφ pm=aasωt"amφ, and the two lights Po after passing through one birefringent crystal plate 16.
Peの位相差δは1
δe= (NX−No” ) ・tm (2r/λ)・
1/(2Ne No)
となる。但し、t:結晶厚、λ:入射光の波長、No=
常光の屈折率1.Ne:異常光の屈折率である。The phase difference δ of Pe is 1 δe= (NX-No”) ・tm (2r/λ)・
1/(2Ne No). However, t: crystal thickness, λ: wavelength of incident light, No=
Refractive index of ordinary light 1. Ne: Refractive index of extraordinary light.
よつて〜複屈折性結晶板16通過後の常光Po’、異常
光Pe’は、
Po’=a自φ槙(ωt+δ)
Pe’MaaII$―ωt
と表わすことができる。従って、X方向およびy方向の
偏光Pg’ 、 Py’は島
Pg’ m Po’ amφ+Pe’cm(φ十π/2
)腐a画φ・房φ11幅(ωt+δ)−a血φ−(2)
φ・面ωt
Py’ m Po’ dnφ+Pe’m(φ十に/2>
。Therefore, the ordinary light Po' and the extraordinary light Pe' after passing through the birefringent crystal plate 16 can be expressed as: Po'=aselfφ(ωt+δ) Pe'MaaII$−ωt. Therefore, the polarized light Pg', Py' in the X direction and the y direction is the island Pg' m Po' amφ + Pe'cm (φ
) Rot a drawing φ・tassel φ11 width (ωt+δ) − a blood φ − (2)
φ・plane ωt Py' m Po'dnφ+Pe'm(φ10/2>
.
madnφ#備(ωt+δ)+aaIIφ11co!ω
tとなり、
Δ5− (P J’ソt−<py’メt−ご(−2φ十
dn”2φ・−)
となって、光検知器18で検出される電気信号S(ツP
ム−PB)は、
となる。但し、W:偏光分離板1Tの扇形の半径、C=
C(Ne −No )/(2Ne No):]―(
2fJ’/λ〕であり、また焦点ずれの量をDとすれば
、距離りはDの関数として求められる。madnφ#bi(ωt+δ)+aaIIφ11co! ω
t, and Δ5- (P
Mu-PB) becomes . However, W: radius of the fan shape of the polarization splitting plate 1T, C=
C(Ne-No)/(2Ne No): ]-(
2fJ'/λ], and if the amount of defocus is D, then the distance can be found as a function of D.
いま、例えばレンズ14の焦点距離を4.3s+m。Now, for example, the focal length of the lens 14 is 4.3s+m.
レンズ15の焦点距離を7!IIL両レンズ14と15
の間を5+i+、 レンズ140口径を43s+m。The focal length of lens 15 is 7! IIL both lenses 14 and 15
Between 5+i+ and lens 140 aperture 43s+m.
レンズ15から複屈折性結晶板16までの距離を041
1、その結晶板16の厚みを5tgとし、光検知器18
の直径を4鰭とすると、第12図に示すようなフォーカ
スエラー信号が得られる。The distance from the lens 15 to the birefringent crystal plate 16 is 041
1. The thickness of the crystal plate 16 is 5tg, and the photodetector 18
If the diameter of the fin is four fins, a focus error signal as shown in FIG. 12 will be obtained.
一方、第2実施例においては、複屈折結晶板19に入射
する入射角および位相差δが異って表現されるだけで、
第14施例と同様である。複屈折性結晶板1Sの結晶軸
22が結晶−の医繊方向であるとすると、その法線の光
−ziこ対する傾ぎがθとなるので、座(η、ξ)を通
った光線の入射角l′は、
C1)l l ’ = (ξ虐θ+L’ rxsl )
/ %’e” + ’7” +L”を満たす鋭角である
。但し L/は座標中心から焦光点までの距離である。On the other hand, in the second embodiment, only the incident angle and the phase difference δ of the birefringent crystal plate 19 are expressed differently.
This is the same as the 14th example. Assuming that the crystal axis 22 of the birefringent crystal plate 1S is in the direction of the medical fiber of the crystal, the inclination of its normal line with respect to the light -zi is θ, so that the light ray passing through the locus (η, ξ) is The angle of incidence l' is C1)l l' = (ξ+θ+L'rxsl)
/ %'e'' + '7'' + L''. However, L/ is the distance from the coordinate center to the focal point.
また、結晶面の法線ベクトルnは、
n5=(0,gtIIθ、−(2)θ)(η−ξ−2座
標)2座標)
であり、x−y−z座標の点(2e y * 0 )に
入射し、点(0、O、L’ )に果光する光の常光の偏
光面は、x−x平面に対して傾斜し、この角度なβとす
ると、
と表わされる。結局複屈折性結晶板19通過後のX方向
およびy方向の偏光強度差△Sは、△S =<Px’>
1−<Py’>t
a!
=−(ax2β+5In2β−(2)β)となる。光検
知器21で検出する電気信号Sは、5=(Qムー〇B)
−(QD−QC)
久(f公s−4,ps)
として得られる。Also, the normal vector n of the crystal plane is n5=(0,gtIIθ,-(2)θ)(η-ξ-2 coordinate)2 coordinate), and the x-y-z coordinate point (2e y * The plane of polarization of the ordinary light incident on point (0, O, L') is inclined with respect to the x-x plane, and if this angle is β, then it is expressed as follows. After passing through the birefringent crystal plate 19, the polarization intensity difference △S in the X direction and the y direction is △S =<Px'>
1-<Py'>t a! =-(ax2β+5In2β-(2)β). The electrical signal S detected by the photodetector 21 is 5=(Qmu〇B)
-(QD-QC) kyu (f public s-4, ps) is obtained as follows.
いま、例えばレンズ14の焦点距離を43m。Now, for example, the focal length of the lens 14 is 43 m.
レンズ14から複屈折性結晶板19までの距離をT朋、
その結晶板19の厚さを311とし、また結晶@22は
結晶板190法線と一致しているとし、光軸2となす角
θ−0.48rad、光検知器21の直径を4flとし
た場合、第13図に示すようなフォーカスエラー信号が
得られる。The distance from the lens 14 to the birefringent crystal plate 19 is T,
It is assumed that the thickness of the crystal plate 19 is 311, that the crystal @22 is aligned with the normal line of the crystal plate 190, that the angle between it and the optical axis 2 is θ-0.48 rad, and that the diameter of the photodetector 21 is 4 fl. In this case, a focus error signal as shown in FIG. 13 is obtained.
以上説明したように発明によれば、結像点付近に光検知
器をおかなくても良いため、その位置調整が容易となり
外乱の影響を受けにくくなると共に光路長を短かくする
ことができ、更に結晶板、偏光分離板および光検知器を
一体で作りそれを組込むことができるため、部品点数が
減少すると共に量産性が良好となる。As explained above, according to the invention, there is no need to place a photodetector near the imaging point, so its position can be easily adjusted, it is less susceptible to disturbances, and the optical path length can be shortened. Furthermore, since the crystal plate, polarization splitting plate, and photodetector can be integrally made and incorporated, the number of parts can be reduced and mass productivity can be improved.
8g1図は従来のフォーカスサーボ信号検出のための光
学系の説明図、第2図は第1図において検出されるフォ
ーカスサーボ信号の特性図、第3図は本発明の第1実施
例のフォーカスサーボ信号検出のための光学系の説明図
、第4図は第3図における偏光分離板の平面wJS第5
図は第3図における光検知器のセンナ部分の平面図、第
6図は第3丙における複屈折性結晶板への光入射の説明
図、第7図は本発明の第2実施例のフォーカスサーボ信
号検出のための光学系の説明図、第8図は第1図におけ
る偏光分離板の平面図、第9図は第1図における光検知
器のセンサ部分の平面図、第10図は座標を決めるため
に第1図における光咲知器側から偏光ビームスプリッタ
を見た図、第11図は第1図における偏光ビームスプリ
ッタと複屈折性結晶板との関係の拡大斜視図、第12図
は上記第1実施例におけるフォーカスサーボ信号の特性
図、第13図は上記第2実施例におけるフォーカスサー
ボ信号の特性図である0
6・・・記録担体、10・・・光源、11・・・レンズ
、12・・・偏光ビームスプリッタ、13・・・λ/4
板、14・・・レンズ、15・・・レンズ、16・・・
捩屈折性績晶板、17・・・偏光分離板、1ト・・光検
知器、18・・・複屈折性結晶板、20・・・偏光分離
板、21・・・光検知器。
特許出願人 パイオニア株式会社
第7図
第9図
第12図
第13図8g1 is an explanatory diagram of a conventional optical system for detecting focus servo signals, FIG. 2 is a characteristic diagram of the focus servo signal detected in FIG. 1, and FIG. 3 is a focus servo according to the first embodiment of the present invention. An explanatory diagram of the optical system for signal detection.
The figure is a plan view of the senna portion of the photodetector in Fig. 3, Fig. 6 is an explanatory diagram of light incident on the birefringent crystal plate in Fig. 3C, and Fig. 7 is a focus of the second embodiment of the present invention. An explanatory diagram of the optical system for detecting servo signals, Fig. 8 is a plan view of the polarization separation plate in Fig. 1, Fig. 9 is a plan view of the sensor portion of the photodetector in Fig. 1, and Fig. 10 is a coordinate diagram. Figure 11 is an enlarged perspective view of the relationship between the polarizing beam splitter and the birefringent crystal plate in Figure 1. is a characteristic diagram of the focus servo signal in the first embodiment, and FIG. 13 is a characteristic diagram of the focus servo signal in the second embodiment. Lens, 12...Polarizing beam splitter, 13...λ/4
Plate, 14... Lens, 15... Lens, 16...
Torsional refractive crystal plate, 17... Polarization separation plate, 1... Photodetector, 18... Birefringence crystal plate, 20... Polarization separation plate, 21... Photodetector. Patent applicant: Pioneer Corporation Figure 7 Figure 9 Figure 12 Figure 13
Claims (1)
焦点レンーズな順に介して記録担体く導き、該記録担体
からの戻り光を上記焦点レンズ、上記λ/4板および上
記偏光ビームスプリッタを順に介して光検知器に導びく
ようにして成る光学式情報読取装置において、上記偏光
ビームスプリッタと上記光検知器との間に上記偏光ビー
ムスブリ・ツタ備から順に複屈折性結晶板および偏光分
離板を介在させ、骸複屈折性結晶板の結晶軸に非平行に
上記戻り洸を入射せしめ、該複屈折性績1板な通過した
光の特定方向の偏光成分を上記光検知器にて分離検出し
てフォーカスサーボ信号とするようにして成ることを特
徴とする光学式情報読取装置におけるフォーカスサーボ
信号検出装置。Light from a light source is guided to a record carrier through a polarizing beam splitter, a quarter plate, and a focusing lens in this order, and a return light from the record carrier is guided in order through the focusing lens, the λ/4 plate, and the polarizing beam splitter. In the optical information reading device, a birefringent crystal plate and a polarization separation plate are interposed between the polarization beam splitter and the photodetector in order from the polarization beam splitter to the photodetector. The returned light is incident non-parallel to the crystal axis of the birefringent crystal plate, and the polarized light component in a specific direction of the light that has passed through the birefringent crystal plate is separated and detected by the photodetector. 1. A focus servo signal detection device in an optical information reading device, characterized in that the device is configured to generate a focus servo signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13556181A JPS5837849A (en) | 1981-08-31 | 1981-08-31 | Detector of focus servo signal for optical information reader |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13556181A JPS5837849A (en) | 1981-08-31 | 1981-08-31 | Detector of focus servo signal for optical information reader |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5837849A true JPS5837849A (en) | 1983-03-05 |
Family
ID=15154683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13556181A Pending JPS5837849A (en) | 1981-08-31 | 1981-08-31 | Detector of focus servo signal for optical information reader |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5837849A (en) |
-
1981
- 1981-08-31 JP JP13556181A patent/JPS5837849A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6227456B2 (en) | ||
JP2798185B2 (en) | Optical head for magneto-optical information reproducing device | |
JPS6117103A (en) | Polarizing beam splitter | |
US4954702A (en) | Process for detecting a focal point in an optical head | |
JPS5837849A (en) | Detector of focus servo signal for optical information reader | |
JPH0534732B2 (en) | ||
JP2625738B2 (en) | Optical head | |
JP2581779B2 (en) | Device for detecting signal from magneto-optical recording medium | |
KR960000270B1 (en) | Optical pick-up apparatus | |
JP2704684B2 (en) | Light separation element and light receiving optical device using the same | |
JP2659239B2 (en) | Light head | |
KR0135859B1 (en) | Optical head | |
JP2578203B2 (en) | Light head | |
JPS61230633A (en) | Focus position detecting device | |
US5905254A (en) | Compact sized optical pickup system | |
JPH0120498B2 (en) | ||
JPH05142421A (en) | Multifunction type wollaston prism and optical pickup formed by utilizing this prism | |
JPH04351721A (en) | Optical pickup device | |
JPH0789415B2 (en) | Optical head | |
JPH04265528A (en) | Focus error signal detection device | |
JPS63187440A (en) | Optical head | |
JPH0391133A (en) | Optical information recording and reproducing device | |
JPS60234236A (en) | Optical pickup device | |
JPS6245612B2 (en) | ||
JPH01285046A (en) | Magneto-optical head for magneto-optical recording and reproducing device |