JPS59186002A - Plant controlling device - Google Patents

Plant controlling device

Info

Publication number
JPS59186002A
JPS59186002A JP6082083A JP6082083A JPS59186002A JP S59186002 A JPS59186002 A JP S59186002A JP 6082083 A JP6082083 A JP 6082083A JP 6082083 A JP6082083 A JP 6082083A JP S59186002 A JPS59186002 A JP S59186002A
Authority
JP
Japan
Prior art keywords
plant
control
section
characteristic
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6082083A
Other languages
Japanese (ja)
Inventor
Yutaka Wada
裕 和田
Hiroshi Motoda
浩 元田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6082083A priority Critical patent/JPS59186002A/en
Publication of JPS59186002A publication Critical patent/JPS59186002A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To make stable plant control coping with time change of plant characteristic by providing a control inference section that receives information from a plant characteristic change detecting section and determines controlling method by inference basing on knowledge on plant control. CONSTITUTION:A difference signal calculating section 1 sends a difference signal (b) between set value (a) of reactor water level and measured value (d) of reactor water level to a controlling section 2. The controlling section 2 operates the signal (b) and outputs controller output (c) that determines number of rotation of a water supply pump in the reactor water supply system 3. A plant characteristic change detecting section 4 takes in output (c) and measured value (d) successively while the system 3 is in operation and appraises with plant operation status quantity (e) such as reactor water supply flow rate etc. from the system 3, and compares model with actual dynamic characteristic. When there is large discrepancy, the model is determined again. A control inference section 5 receives dynamic characteristic information (f), continues simulation until stable time transition of reactor water level is obtained, and rewrites rule for control. Numerical values of rewritten control rule are sent to the controlling section 2 as controlling section revised information (g).

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、プラント制御部#に関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a plant control unit #.

〔従来技術〕[Prior art]

プラントが多入力多出力の系となると、その制釘装戦を
従来のPID等の演算fffU醐j方式で最適な構成?
実現することは困難となるが、プラント状態に応じて操
作は茫推論により決定する制御方式は効果的であるっ プラント制御f11にあたシ、制御部@の制御特性r固
定して用いると、プラント特性に変動がおる場合、制御
特性が悪化する。この事態?さけるために、PID等の
演算制御方式では時間的に変化するプラント特性に追従
して側輪I装置のパラメータケ調節する適応制御が提案
されている。この方式が容易に適用可能な対象は線型系
で単−人出力、多入力多出力のものに限られ、多入力多
出力系の場合には制御装債の構成が複雑となシ実時間で
適応動作を実現することが困難である。一方、多入出力
系の側脚装置に、プラント連転・制御に関して経験的に
得た知R勿もとにプラント状態から操作量ケ推論により
決定する制御方式を深川することでその構成?簡牢にす
ることができるが、この推論によるI(I斜方式によシ
適応制御を実現する場合でも従来のパラメータ調節方法
は適用できないので、多入力、多出力系の適応制御nk
実現する手段がなかった。
When a plant becomes a multi-input, multi-output system, is it best to use the conventional PID and other arithmetic methods for its nailing system?
Although it is difficult to realize, a control method in which operations are determined by inference according to the plant state is effective.If the control characteristic r of the control unit @ is fixed and used for plant control f11, If there are fluctuations in plant characteristics, control characteristics will deteriorate. This situation? In order to avoid this, adaptive control has been proposed in arithmetic control methods such as PID, which adjusts parameters of the side wheel I device in accordance with temporally changing plant characteristics. The objects to which this method can be easily applied are limited to linear systems with single-input and multiple-input multiple-output systems; in the case of multiple-input and multiple-output systems, the configuration of the control device is complex and the real-time It is difficult to realize adaptive behavior. On the other hand, for the multi-input/output system side landing gear system, Fukagawa developed a control method that is determined by inference of manipulated variables from the plant state, based on the knowledge gained from experience regarding plant interlocking and control. However, even when implementing adaptive control using the I (I oblique method) based on this inference, conventional parameter adjustment methods cannot be applied, so adaptive control of multi-input, multi-output systems cannot be applied.
There was no way to make it happen.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、プラントti+lJ向においてプラン
ト特性の時間変化[対応し、安定した制御特性の来状に
好適なプラント側脚装置?提供することにある。
The purpose of the present invention is to provide a plant side leg device suitable for the change in plant characteristics over time in the direction of plant ti+lJ [corresponding to the current state of stable control characteristics]. It is about providing.

〔発明の概要〕[Summary of the invention]

上記の目的?達成するために、本発明の装置では、プラ
ント特性に変化がある毎に、同定されたプラント動特性
モデルを駆動しながら制御要素の再構成と適用のくシか
えし学習?推論によシ高速夾行し最適な制御要素の構成
?決定する機能七有する。
The purpose of the above? In order to achieve this, the device of the present invention performs repeated learning to reconfigure and apply control elements while driving the identified plant dynamic characteristic model every time there is a change in plant characteristics. Optimal configuration of control elements with high speed inference? It has seven functions of determining.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例上第1図によシ説明する。 Hereinafter, an embodiment of the present invention will be explained with reference to FIG.

第1図は、本発明のプラント制却装置kBWR原子炉給
水制御系に適用した一例の概要図である。
FIG. 1 is a schematic diagram of an example of the plant control system of the present invention applied to a KBWR reactor feed water control system.

原子炉給水系統3は制御部2から、給水弁開度?決定す
る側脚益出力Ct受け、差信号計算部lは、原子炉水位
設定111t a 、原子炉給水系統3からの原子炉水
位夷測唾d2受けそtしらの差信号bヶ制御部2に送る
。また制御部2は、差信号b?f:演算処理することに
よシ原子炉給水系統3での給水ポンプ回転数を決定する
制御器出力ci出力する。本発明の特徴は、上の閉ルー
プ制御系のi構成に次の2つの構成要素ケ付加したこと
VCある。
The reactor water supply system 3 receives information from the control unit 2 regarding the opening degree of the water supply valve? In response to the side leg gain output Ct to be determined, the difference signal calculation unit 1 outputs a difference signal b between the reactor water level setting 111t a and the reactor water level measurement d2 received from the reactor water supply system 3 to the control unit 2. send. The control unit 2 also controls the difference signal b? f: Outputs the controller output ci which determines the rotation speed of the feed water pump in the reactor water supply system 3 through arithmetic processing. A feature of the present invention is that the following two components are added to the i configuration of the closed loop control system above.

(1)  プラント特性変化検出部4 (2)制御推論部5 以下、本実施例におけるプラント特性変fヒ検出部4と
制御推論部5の処理手順の例について説明する。
(1) Plant characteristic change detection section 4 (2) Control inference section 5 An example of the processing procedure of the plant characteristic change detection section 4 and control inference section 5 in this embodiment will be described below.

プラント特性変化検出部4における処理手順を流れ図に
より示す−と第2図のようKなる。プラント特性変化検
出部4は、原子炉給水系統3が動作中に逐時、制御器出
力C5原子炉水位実測値d2取シ込み、更に原子炉給水
系統3がら、原子炉給水流線、原子炉再循環流量、原子
炉主蒸気流を等のプラント運転状態敏eと合わせて評価
し、原子炉給水系統モデルの動特性と実際の原子炉給水
系統の動特性を比較しながら、そのくいちがいの程度?
見ながらたとえば原子炉水位実測値とモデルによる原子
炉水位設定唾の差が相対籠で5%以上になった時に、原
子炉給水系統モデル?塊状の実測値、プラント運転状態
量ケ用いて同定しなおす。
The processing procedure in the plant characteristic change detection unit 4 is shown in a flowchart as shown in FIG. The plant characteristic change detection unit 4 receives the controller output C5 and the actual reactor water level value d2 from time to time while the reactor water supply system 3 is in operation. Evaluate the recirculation flow rate, reactor main steam flow, etc. together with the plant operating state sensitivity, and compare the dynamic characteristics of the reactor water supply system model with the actual reactor water system dynamic characteristics to determine the degree of discrepancy. ?
For example, when the difference between the measured reactor water level and the model's reactor water level setting becomes 5% or more in the relative cage, the reactor water supply system model? Re-identify using actual measured values and plant operating state variables.

同定手法には、 (1)  プラント動特性全物理的モデルに従って有限
個のパラメータ倉吉む微分方程式によシ記述し、そのパ
ラメータを同定する方法、 (2)線型自己回帰モデルによシ、モデルパラメータ勿
同定する方法、 などが適用できるが、本実施例に上記(2)の手法を用
いて原子炉給水系統3の動特性を記述すると下記のよう
になる。
Identification methods include (1) a method of describing plant dynamic characteristics using a Kurayoshi differential equation with a finite number of parameters according to an all-physical model, and identifying the parameters; (2) a method of identifying model parameters using a linear autoregressive model; Of course, the method of identifying, etc. can be applied, but if the method (2) above is used in this embodiment, the dynamic characteristics of the reactor water supply system 3 are described as follows.

+ WFS  WM   ”・−−(2)ここで、tは
原子炉水位、Wyは給水流量、WrsVi俗水シ14定
洛値、WRは原子炉朽循環流前、WR8は原子炉再循環
流i、定格値、WMは原子炉主蒸気K ハ、m ’d 
iigすHa出力、”I * a2+ a3+゛τM、
τFはモデルパラメータである。モデルパラメータは、
原子炉水位央fAtI値の時間推移に上記式(1)より
求まる原子炉水位の時間推移がフィツトする椋に9出す
る。特性変化後の原子炉給水系統に同定さくまたff1
c子炉給水系統モデルのモデルパラメータは、プラント
特性変化検出部4で(lノモデル同矩処理終r毎に原子
炉給水系統動特性情報fとして制両推論部5VC送られ
同時に制御推論部5の処理を起動する。
+ WFS WM ”・−(2) Here, t is the reactor water level, Wy is the water supply flow rate, WrsVi is the water supply flow rate, WR is the reactor decay circulation flow before, and WR8 is the reactor recirculation flow i. , rated value, WM is reactor main steam K, m'd
iigs Ha output, “I * a2+ a3+゛τM,
τF is a model parameter. The model parameters are
9 is selected for the case where the time course of the reactor water level determined by the above equation (1) fits the time course of the reactor water level central fAtI value. Identification of the reactor water supply system after characteristics change ff1
The model parameters of the reactor water supply system model are sent to the control inference unit 5VC as reactor water supply system dynamic characteristic information f every time the plant characteristic change detection unit 4 finishes processing the same model. Start the process.

次に朋j@推論部5の処理手頃の実施例を以下にて説明
する。制御推論部5は、本発明の目的を達成させるため
の中枢部であり、制御部2r制呻する機能ケ゛有する。
Next, an exemplary embodiment of the processing of the inference unit 5 will be described below. The control inference section 5 is a central section for achieving the object of the present invention, and has the function of controlling the control section 2r.

プラント特注変化検出部4から原子炉給水系統動特性情
報fに受けると、制御推論部5は以下の処(,1を笑゛
施する。
Upon receiving the reactor water supply system dynamic characteristic information f from the plant custom-made change detection unit 4, the control reasoning unit 5 performs the following steps (, 1).

(1)原子炉給水系統一特性情報fに含まれパラメータ
?f:側脚推論部内で原子炉水位ケ計算する原子炉水位
時間推移計算部に代入する。
(1) Reactor water supply system - parameters included in characteristic information f? f: Assigned to the reactor water level time transition calculation unit that calculates the reactor water level in the side landing gear inference unit.

(2)  プラント特性変化以前に使用していた制御部
2 (/J qjll呻則ケ知識表現して用意する。
(2) Prepare the control unit 2 that was used before the change in plant characteristics by expressing the knowledge.

(3)  (2)で川辺しだ制研則を、(1)で作成し
た原子炉水(i時間推移計算部によるシミュレーション
の人力(制仰器出力m)決定に用い、次の処哩全ルール
の検索(推論処理)で行なう。
(3) The Kawabe Shida Seiken rules in (2) are used to determine the human power (controller output m) in the simulation using the reactor water (i time transition calculation unit) created in (1), and the following process is performed. This is done by searching for rules (inference processing).

(a)  原子炉水位が不安定な挙動4示すまでノミュ
レーション?続ける。
(a) Nomulation until the reactor water level shows unstable behavior 4? continue.

(b)  不安定な挙動I7J種類と、その原因となっ
た制御則を推論する。
(b) Infer the type of unstable behavior I7J and the control law that caused it.

(C)  (b)の結果得られた1−正すべき制却則の
部分ケどのように修正するか紮推論する。
(C) 1- Make a simplistic inference on how to correct the part of the control law that should be corrected as a result of (b).

(d)  シミュレーションを原子炉水位が不安定な挙
i4v、 ’<示す前の時刻と夏L(値にもどし修正さ
れた1ltlJ 8則でンミュレーション勿αける。
(d) When the reactor water level is unstable, the simulation can be carried out using the corrected 1ltlJ8 rule and return to the previous time and summer L (values shown above).

(e)  母ひ不安定挙動が現われれば上の修正作業の
くりかえしr1安定な原子炉水位時間推移が伯、られる
まで何なう。
(e) If unstable behavior appears, repeat the above correction work until a stable reactor water level change over time is achieved.

具体的l上記の推論処理(Il−駆動するルール及び7
、旧)′に表現の実姉例ケ、原子炉水位rステップ状に
オ比させる時に、原子炉給水系統における給水j′L恒
A Hjに用いるバルブ開度調・恰1栽前(機械安水)
の−次おくれ特性及びおくれ−1間の符性伐化があった
場合、1IIIJ(財)則σ)目切4じ正が行なわれる
こと?対象にして以下に示す。
Concrete l The above inference processing (Il-driving rules and 7
, old)' is an example of the expression, when the reactor water level r is compared stepwise, the valve opening adjustment used for the water supply j'L constant A Hj in the reactor water supply system. )
If there is a characteristic of - next delay and a sign reduction between delay - 1, 1IIIJ (goods) rule σ) 4th correction is performed? The targets are shown below.

シミュレーションk hs 4n f ルルール(If
  (AND  (Vxsxst)(■u$u$t) (=$ tt (−1−6t time))(simu
la、tor $X 8u gxx))(y x sx
x  5tt)) 二時間$tで、水位が$Xである時に、単位時間あたシ
の制御卸詣出力$ur入力すれば、時間$ttでは、水
位はg xx  となる。
Simulation k hs 4n f rule (If
(AND (Vxsxst) (■u$u$t) (=$tt (-1-6t time)) (simu
la, tor $X 8u gxx)) (y x sx
x 5tt)) When the water level is $X for two hours, if the control wholesale output $ur per unit time is input, the water level will be g xx at time $tt.

(I f −(AND  (Ve 5eea sad 
5tt)(VX$XX @tt ) (VX $X St ) (=$ t (−1−$ t t t in+e ) 
)(二$ e(−1,o 5x)) (=$d (/(−1e 5ee) tin】e))(
check @e gd St $C))(Ve $e
 a scJ 5t)) 、シミュレーションケ時刻$tまで進めて、次の制6り
則を検索する前に、水位$Xと水位設定値との差$eと
その時間変fヒ$dから、不テ定挙動ヶ検索し、安定な
らば、$e gd 2制御則倹索の条件とする。不安定
ならは、不安定挙動の種類による制御則修正処理に移る
、ルール検索全開始する。
(I f −(AND (Ve 5eea sad
5tt) (VX $XX @tt ) (VX $X St ) (=$ t (-1-$ t t t t in+e )
)(2$ e(-1, o 5x)) (=$d (/(-1e 5ee) tin]e))(
check @e gd St $C)) (Ve $e
a scJ 5t)), advance the simulation to time $t, and before searching for the next constraint, calculate the difference from the difference $e between the water level $ If the behavior is stable, use it as a condition for the $e gd 2 control law search. If it is unstable, control law modification processing is performed depending on the type of unstable behavior, and a complete rule search is started.

(If’  +AND  (Ve$e  dad  I
t)fVL1$u、(e gel Be2) (d s
ai sd2)(> se 5ei)<<se 5ez
)(>sd 5a1)(<sd sd2)(Vu$LI
$t)) ;側脚則検索?時刻$tの時のBeとsdの条件から、
知識として蓄え、られている側脚則忙用い行ない、時刻
$tでO単位時間当シの利岬詣出力$u?決定する。な
お、側脚部2における制御話出力の決定も、Beとsd
の直から推論し行なう。
(If' +AND (Ve$e dad I
t) fVL1$u, (e gel Be2) (d s
ai sd2) (> se 5ei) <<se 5ez
)(>sd 5a1)(<sd sd2)(Vu$LI
$t)) ; Lateral leg rule search? From the conditions of Be and sd at time $t,
The side leg law busy behavior stored as knowledge, the output $u of O units of time at time $t? decide. Note that the determination of the control talk output in the side leg section 2 is also based on Be and sd.
Infer directly from this.

知識として替えられている制御則の例 ’ (’V u PBl (eo、s畳) (do、1
 畳) );o、s<seで0、l<sdの時には、単
位時間あたシの側脚詣出カケPBIとする。PBxVc
は、数(直2.0ケ代入しておく。
An example of a control law that has been replaced as knowledge'('V u PBl (eo, s tatami) (do, 1
(tatami)); When o, s<se and 0, l<sd, it is assumed to be the side leg protrusion break PBI per unit time. PBxVc
is a number (directly substitute 2.0).

’(Vu NM(eO,20,8)(d4$−0、l)
):0.2<Be<σ、8でsd<−Q、l (7J時
には、単位時間めたシの制#器出力kNM(−1)とす
る。
'(Vu NM(eO,20,8)(d4$-0,l)
): 0.2<Be<σ, 8 and sd<-Q, l (At 7J, the controller output kNM(-1) for each unit time.

原子炉水位不安定挙動検出ルールの例 (If  (AND  (Ve 5eed $dd$t
t)(=−8t (−14tt  time) )(>
Be O,0) (>sd  O,0) (<$dd 0.0> ) (checJ<  Be  sd 6t  cl)ン;
原子炉水位が上昇しながら設定値に近づいた後下降忙た
どる不・安定挙動の種類は、C1と名づける。
Example of reactor water level unstable behavior detection rule (If (AND (Ve 5eed $dd$t
t) (=-8t (-14tt time) )(>
Be O,0) (>sd O,0) (<$dd 0.0>) (checJ< Be sd 6t cl)n;
The type of unstable/unstable behavior in which the reactor water level rises, approaches the set value, and then continues to fall is named C1.

制御則゛修正部分 推論のためのルール(I f  (
AND  H) u 8u、st @c)(V  j 
ump su ($V  $W $X)))(V mo
diby su ($v $w$x)It $c );
良好な水位上昇時間推移tもたらす制御則と、不安定挙
動を導いた制御則とを比較して、不安定挙動の種類$C
Kよって、$W v)#i、2修正する。
Control law “modification part” Rules for inference (I f (
AND H) u 8u, st @c) (V j
ump su ($V $W $X)) (V mo
diby su ($v $w$x)It $c);
The type of unstable behavior $C is determined by comparing the control law that resulted in a favorable water level rise time transition t and the control law that led to unstable behavior.
K, therefore, $W v) #i, 2 amended.

良好な水位上昇時間推移?もたらす制御則知識の例 ′(VjumpNM(eO12d)) ;suがNMkとった後は、Beが0.2テあル境界値
ゲはさんでeが減少する方向へ原子炉水位が推移する。
Good water level rise time transition? Example of control law knowledge to be provided (VjumpNM(eO12d)): After su reaches NMk, the reactor water level moves in the direction in which e decreases with Be at the boundary value of 0.2 Te.

制御則修正実施のルールの例 (If   (AND   (Vmodjby  su
(e$wd7$t  C1)(V u su Ie $
W Be2) (d $dl sd2))(<su  
o) (=$tt (−It time)) (1)e Be d $(1It C1)(V e $
ee d $dd It t)(= 、$W f/(+
$e 5ee) 2.L))))(AND(St (V
u su (esww$e2)(cl  5ctisc
tz)ン(del (vusu (e se 15ez
) (d $dl 1Bd2) )(rewind I
t)) :不安定挙動の種類がclで、suが負である時、Be
の1紅の切侯えをよシ早くするためにBeとその前の時
刻の$eeの間に、しきい値I関がくるように、制御則
?書き換え、以前の知識は消去する。
Example of rule for implementing control law modification (If (AND (Vmodjby su
(e$wd7$t C1) (V u su Ie $
W Be2) (d $dl sd2)) (<su
o) (= $tt (-It time)) (1) e Be d $ (1 It C1) (V e $
ee d $dd It t) (= , $W f/(+
$e 5ee) 2. L))))(AND(St (V
u su (esww$e2) (cl 5ctisc
tz)n(del (vusu (e se 15ez)
) (d $dl 1Bd2) ) (rewind I
t)): When the type of unstable behavior is cl and su is negative, Be
1. In order to speed up the red line, the control law is set so that the threshold value I comes between Be and $ee at the previous time? Rewrite and erase previous knowledge.

再び時刻tもどし、シミュレーションヲ続ける。Go back to time t again and continue the simulation.

シミュレーションの結果、良好な応答が得られ、制御則
の付き換えの必要がもはやなくなった時には、原子炉水
位不安定挙動検出ルールの内(If  (AND  (
Vu$LI It)(= $01.0) (>$ee、) (<ge e、) (>Bdao) (<$d−do) ) (chec、k Be sd It 5table))
?倹紫し、推論処理r終了する。書き換えられた1DI
J呻則c/J数側は、制仰部2へ側脚部疹正情報gとし
て送られf17Il岬邪のパラメータに代入される。
As a result of the simulation, when a good response is obtained and there is no longer a need to change the control law, the reactor water level unstable behavior detection rule (If (AND (
Vu$LI It) (= $01.0) (>$ee,) (<ge e,) (>Bdao) (<$d-do) ) (chec, k Be sd It 5table))
? Then, the inference process ends. Rewritten 1DI
The J number law c/J number side is sent to the control unit 2 as side leg eruption positive information g and substituted into the parameter of f17Il Misakija.

本実施例による数呟例全第3図及び第4図にて示す。A number of examples according to this embodiment are shown in FIGS. 3 and 4.

第3図は、原子炉水位系統が20%の水位上昇外乱に良
好に応答した?1を示す。
Figure 3 shows that the reactor water level system responded well to a 20% water level rise disturbance? 1 is shown.

第4図は、第3図において良好な応答特性を与えた制御
則を、特性変化後の系に適用すると、破餘の示す不安定
挙動を示すところ?、シミュレーション後24秒附近で
不安定挙動ヲ検知し、前出の不安定挙動の種類c1と結
論し、制御則知識の’(Vu NM (e O,20,
8)  (d’−−0,1) )の0.2の部分上0.
3に修正することKより、実線(1)示す安定な応答r
与えるに至る、推論処理の結果ケ示すものである。
In Figure 4, when the control law that gave the good response characteristics in Figure 3 is applied to the system after the characteristics have changed, it shows unstable behavior as indicated by failure. , the unstable behavior was detected around 24 seconds after the simulation, and it was concluded that the unstable behavior was the type c1, and the control law knowledge'(Vu NM (e O, 20,
8) 0.2 on the 0.2 part of (d'--0,1) ).
By modifying K to 3, the stable response r shown by the solid line (1)
This shows the results of the inference processing that led to the given result.

以上の芙励θりかられかるように、制(財)推論部5の
し能lこより柔軟にプラント時性の変化に対応できる効
果がある。
As can be seen from the above calculation, the ability of the control reasoning section 5 has the effect of being able to respond more flexibly to changes in plant timing.

史に、適l−1J可能な対象フリントは、原子炉給水系
kに限られず、原子炉再循坂流址桐萌J系統に適J1−
1することができる。流体ろ杯手の回転枝に依存し/こ
非線型特注のため、原子炉出力の異なると″ころで出力
変更4行なう時、一方で、艮好な応答紫与えた161J
酬1則茫他の出力レベルの出力変更V?X通用すると応
答が悪くなることがあるが本発明の装置では’+l1l
J呻]IL論部の俵能により、良好’lx fIIIJ
仰特性を与える制御開側への自動修正が行なえるという
効果がある。
Historically, the target flint that can be used is not limited to the reactor water supply system, but also suitable for the reactor recirculation slope flow site Kirimoe J system.
1 can be done. Due to the non-linear customization, which depends on the rotating branch of the fluid flow control hand, when changing the output at different reactor outputs, on the other hand, the 161J gave a nice response.
Output change of other output level V? If X is used, the response may deteriorate, but with the device of the present invention, '+l1l
J groan] Good 'lx fIIIJ by Noh Tawara of IL theory department
The effect is that automatic correction to the control opening side that gives the vertical characteristics can be performed.

〔発明の幼果〕[The young fruits of invention]

本発明は、−汎L1」のプラント制叫j装竹であり、プ
ラントの特性が変化する毎に制(財)部の側脚則會推論
VC!るくシかえし学習で修正するようにしたものであ
るから、プラントの特性変化の程度・種類のすべてにわ
たり変化後でも安定した制御特性が得られるという効果
がある。更に、本発明によシ多入力多出力を゛もつプラ
ント制御の適応動作が実現できるという効果がある。
The present invention is a plant control system for "-General L1", and the control department's side leg rule inference VC! whenever the characteristics of the plant change. Since the correction is made by recursive learning, stable control characteristics can be obtained over all degrees and types of changes in plant characteristics even after changes have been made. Furthermore, the present invention has the advantage that adaptive operation of plant control having multiple inputs and multiple outputs can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のプラント制御装置r用いたプラント制
御系の一例の概要イ)へ成因、第2(凶はプラント特性
変化恢出部f<J−レリの処理手順流れ図、第3図1′
i本発明短よるプラント制御装置の一例による制御II
′iI例を示す図、第4図は本発明によるプラント側脚
装置直の一例による制御例ケ示す図である。 l・・・差旧号計算部、2・・・側脚部、3・・・原子
炉給水系統、4・・・プラント特性変化検出部、5・・
・制@]推粥1図
Fig. 1 shows an overview of an example of a plant control system using the plant control device r of the present invention. ′
i Control by an example of a plant control device according to the present invention II
FIG. 4 is a diagram showing an example of control by an example of the plant-side leg device according to the present invention. l...Difference old name calculation section, 2...Side leg section, 3...Reactor water supply system, 4...Plant characteristic change detection section, 5...
・System @] 1 picture of rice porridge

Claims (1)

【特許請求の範囲】 1、 プラントの出力と出力設定唾の差信号計算部と、
計偉さえた差信号を受はプラントへの操作量r決定する
制御部よシ成る制御装置において、プラントの入出力関
係からプラント特性変化を倹叶するプラント特性変化検
出部と、プラント特性変化検出部からプラント特性変化
rプラント制御特性情報として受けこの情報から、1ラ
ント制御に関する知識に基づき制御部の制御方法を推論
にニジ決定する制呻推論部?設けたことケ特徴とするプ
ラント制御装置。 2、上記プラント制御装置のプラント特性変化検出部に
おいて、プラント状態tv用いプラント動特性を同定す
′るプラント動特性同定部と、同定されたプラント動特
性に基づき模擬計算tするプラント動特性模擬線?具備
し、プラント出力とプラン)f7U特性模擬部からのプ
ラント模擬出力の差信号倉プラント特性変化検出信号と
し、この大きさ全判別してプラント動特性同定部上起動
し新たに同定されたダラント動特性?プラント制御特性
情報として制御推論部に出力すること?特徴とする特許
請求の範囲第1項記載のプラント制御装置。 3、上記プラント制御装置のfijU御部において、入
力である差信号とその時間変化の値から操作量?決定す
る制御則をデータとして蓄える記憶部葡具備し、推論処
理によシ制御則を参照する機能を備えたことt特徴とす
る特許請求の範囲第1項記載のプラント制御装置。 4、上記プラント制御装置の制御推論部にお^て、プラ
ント特性変化検出部からの制御特性情報r受け、制御部
からの操作量tプラントに入力し、つつプラント動特性
模擬部に独立した制御部からの操作量?導く切換機能?
備えたこと?特徴とする特許請求の範囲第1項記載のプ
ラント制御装置。 5、プラント制御装置の制御推論部において独立した制
御部からの操作量?用いたプラント動特性模擬部からの
プラント模擬出力より制御部の制御則修正処理完了を判
定し制御部の独立?解除する機能r備えたことを特徴と
する特許請求の範囲第1項記戦のプラント制呻装置。
[Claims] 1. A difference signal calculation unit between the output of the plant and the output setting;
In a control device consisting of a control unit that receives the calculated difference signal and determines the manipulated variable r to the plant, it includes a plant characteristic change detection unit that detects changes in plant characteristics from the input/output relationship of the plant, and a plant characteristic change detection unit. A control inference section that receives plant characteristic changes as plant control characteristic information from the control section and inferentially determines a control method for the control section based on knowledge about runt control from this information. A plant control device with the following features: 2. In the plant characteristic change detection section of the plant control device, a plant dynamic characteristic identification section that identifies plant dynamic characteristics using the plant state tv, and a plant dynamic characteristic simulation line that performs simulation calculations based on the identified plant dynamic characteristics. ? The difference signal between the plant output and the plant simulation output from the f7U characteristic simulation unit (plan) is used as a plant characteristic change detection signal, and the magnitude of this difference is completely determined and activated on the plant dynamic characteristic identification unit to detect the newly identified durant movement. Characteristic? Should it be output to the control inference unit as plant control characteristic information? A plant control device according to claim 1, characterized in that: 3. In the fijU control section of the plant control device, the manipulated variable is determined from the input difference signal and its time change value. 2. The plant control device according to claim 1, further comprising a storage unit for storing the determined control law as data, and a function of referencing the control law in inference processing. 4. The control inference section of the plant control device receives the control characteristic information r from the plant characteristic change detection section, inputs the manipulated variable t from the control section to the plant, and performs independent control in the plant dynamic characteristic simulation section. Amount of operation from the department? Switching function to guide?
Have you prepared? A plant control device according to claim 1, characterized in that: 5. Operation amount from an independent control section in the control inference section of the plant control device? Based on the plant simulation output from the plant dynamic characteristics simulation unit used, it is determined whether the control law correction processing of the control unit is complete and the independence of the control unit is determined. The plant groan control device as set forth in claim 1, characterized in that it is provided with a function of releasing.
JP6082083A 1983-04-08 1983-04-08 Plant controlling device Pending JPS59186002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6082083A JPS59186002A (en) 1983-04-08 1983-04-08 Plant controlling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6082083A JPS59186002A (en) 1983-04-08 1983-04-08 Plant controlling device

Publications (1)

Publication Number Publication Date
JPS59186002A true JPS59186002A (en) 1984-10-22

Family

ID=13153365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6082083A Pending JPS59186002A (en) 1983-04-08 1983-04-08 Plant controlling device

Country Status (1)

Country Link
JP (1) JPS59186002A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149729A (en) * 1986-12-15 1988-06-22 Hitachi Ltd Device for supporting formation of knowledge base
JPH02257302A (en) * 1989-03-30 1990-10-18 Akio Watanabe Monitor and control equipment for rain water and sewage pump plant
JPH02259803A (en) * 1989-03-31 1990-10-22 Agency Of Ind Science & Technol Plant controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149729A (en) * 1986-12-15 1988-06-22 Hitachi Ltd Device for supporting formation of knowledge base
JPH02257302A (en) * 1989-03-30 1990-10-18 Akio Watanabe Monitor and control equipment for rain water and sewage pump plant
JPH02259803A (en) * 1989-03-31 1990-10-22 Agency Of Ind Science & Technol Plant controller

Similar Documents

Publication Publication Date Title
US5327355A (en) Voltage or reactive power control method and control device therefor
US6205439B1 (en) Optimization of simulation run-times based on fuzzy-controlled input values
US4478783A (en) Nuclear power plant feedwater controller design
JPS59186002A (en) Plant controlling device
DE3228996A1 (en) METHOD AND DEVICE FOR CONTROLLING THE POWER ON A POWER PLANT
Lee The dynamics of trust in a supervisory control simulation
CN111796510A (en) Application method of PID controller in primary control system PLC
JP3223303B2 (en) System voltage control method and device
JPH0293904A (en) Fuzzy control device
JPH06149576A (en) Precision maintaining system for inference device
JPS6250901A (en) Process control device
DE10055166C2 (en) Process for controlling the power and speed of a turbine
US20230062235A1 (en) Procedure to generate a control vector and adex system applying the same
DE19510342C2 (en) Procedure for controlling the output size of a power plant park
Chevalier et al. Hybrid manufacturing line supervision and diagnosis by means of fuzzy rules connected with a causal graph
Cauvin Dynamic application of action plans in the Alexip knowledge-based system
JPH0293905A (en) Controller considering history of manipulated variable
JPH07117046B2 (en) Pump controller
JPH0721723B2 (en) Fuzzy controller
JP2000259202A (en) Method for automatically adjusting control parameter for cascade loop
JPH06208402A (en) Target value follow-up control method
JP2877563B2 (en) Automatic load distribution device
JPH02140802A (en) Self correction type fuzzy control method
JPH01251211A (en) Controller for water distribution pipe network
SU1640667A1 (en) On-off pulsed controller