JPH02259803A - Plant controller - Google Patents

Plant controller

Info

Publication number
JPH02259803A
JPH02259803A JP1078138A JP7813889A JPH02259803A JP H02259803 A JPH02259803 A JP H02259803A JP 1078138 A JP1078138 A JP 1078138A JP 7813889 A JP7813889 A JP 7813889A JP H02259803 A JPH02259803 A JP H02259803A
Authority
JP
Japan
Prior art keywords
plant
knowledge
state
control
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1078138A
Other languages
Japanese (ja)
Other versions
JP2507892B2 (en
Inventor
Yasuo Goshima
安生 五嶋
Akimoto Kamiya
昭基 神谷
Naomichi Sueda
末田 直道
Takeshi Kono
河野 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1078138A priority Critical patent/JP2507892B2/en
Publication of JPH02259803A publication Critical patent/JPH02259803A/en
Application granted granted Critical
Publication of JP2507892B2 publication Critical patent/JP2507892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing And Monitoring For Control Systems (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To perform the optimum control operation even when an unexpected state occurs by utilizing profound knowledge that is a base to decide the structure of a plant, the characteristic of equipment, experimental knowledge, and related regulations, etc. CONSTITUTION:A state monitoring function 3 recognizes the state of the plant 1, and sends change data to a counter plan setting function 7 when the plant falls in an unexpected abnormal state. The counter plan setting function 7 is comprised of a profound control knowledge base 10 which stores the profound knowledge that is the base to decide control operations of the structural model of the plant, the dynamic characteristic model of the equipment, the experimental knowledge, and the related regulations, etc., in a normal state, and an inference part 9, and predicts the future state of the plant by starting up a predictive simulation function 8, and generates a control target and the control operation required for recovery by utilizing the profound knowledge. In such a way, it is possible to cope with the state of the plant flexibly, and to safely and stably perform the optimum control operation.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はプラントの自動運転装置に関し、特に制御エキ
スパートシステムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an automatic operation device for a plant, and particularly to a control expert system.

(従来の技術) 近年、計X機技術の発展に伴ない火力発電プラントの自
動運転に知識工学が導入され、火力発電プラントの制御
エキスパートシステムも提案され(特公昭56−356
1号公報)、既に実用化されている。(東芝しヴ、L 
+、 Vol、29. No、10 、 P、845〜
850 、1974> 火力発電プラント(以下単にプラントと略記する)は、
ボイラ、タービン、発電機、変圧器、しゃ断器等の主要
機器の外に多数の補機から構成されている。したがって
、これらプラントの運転状態を最適に保つためには、夫
々のプラント構成機器を、その特性、運転操作基準など
をもとにして、時々刻々に変換するプラントの運転状態
に対応させるようにしなければならない、このことから
、予めプラント構成機器の特性、運転操作基準などをも
とに、その時、その時のプラントの状態とタイミングに
より最適の操作を決めておく、この操作の決定法は、プ
ラントの構造や機器の特性、更には、永年蓄積された経
験的知識及び関連法規等の知識に基づき、仕様決定、設
計されている。以下、第3図を引用して従来技術を説明
する。火力力発電プラント制御装置は、状態監視機能3
と制御アクション機能4より構成され、火力発電プラン
ト1からプラントデータを受けとり、そのプラントデー
タに応じて制御指令を発し、プラント1を最適な状態に
制御する。
(Prior art) In recent years, with the development of machine technology, knowledge engineering has been introduced to automatic operation of thermal power plants, and an expert system for controlling thermal power plants has been proposed (Japanese Patent Publication No. 56-356).
Publication No. 1) has already been put into practical use. (Toshiba Shiv, L
+, Vol, 29. No. 10, P. 845~
850, 1974> A thermal power plant (hereinafter simply abbreviated as a plant) is
In addition to main equipment such as boilers, turbines, generators, transformers, and circuit breakers, it consists of a large number of auxiliary equipment. Therefore, in order to maintain the optimal operating conditions of these plants, each plant component must be adapted to the constantly changing operating conditions of the plant, based on its characteristics, operational standards, etc. For this reason, the optimal operation is determined in advance based on the characteristics of the plant component equipment, operational standards, etc., depending on the plant status and timing at that time. Specifications are determined and designed based on the characteristics of the structure and equipment, as well as empirical knowledge accumulated over many years and knowledge of related laws and regulations. The prior art will be explained below with reference to FIG. The thermal power plant control device has status monitoring function 3
and a control action function 4, which receives plant data from the thermal power plant 1, issues control commands in accordance with the plant data, and controls the plant 1 in an optimal state.

状態監視機能3は、プラント1からのプラントデータを
取り込み、プラントの状態を監視し変化データを検知し
て、制御アクション機能4に引き渡す。制御アクション
機能4は、推論部5と制御知識ベース6より構成される
。制御知識ベース6は、前記したプラントの構造、i器
の特性、経験的知識、関連法規等の知識に基づいて仕様
決定し、設計された制御知識が記憶されている。推論部
5は状態監視機能3からの変化データを取り込んでプラ
ント1の状態を認識し、制御知識ベース6に予め格納さ
れている制御知識に基づき、知識指令を決定してプラン
ト1に出力し、必要な機器の操作を行なう0機器の操作
あるいは入力指令等の外部要因の変化に伴ない、プラン
トの状態はまた変化していくが、上記したように状態監
視機能3でプラントの状態を監視して変化データを検知
、制御アクション機能4で予め制御知識ベース6に格納
されている制御知識に基づき制御指令を決定し、出力の
サイクルを繰り返す。従って、このような発電プラント
制御エキスパートシステムは、時々刻々変化するプラン
トの状態に応じて、最適の操作が可能となる。又、異常
事態に立ち至った場合でも、その時のプラント状態に応
じた操作さえ決定しておけば、復旧或いは停止等の最適
な操作もできる。又、異常事態時に操作が予め決定され
てない場合は、制御を中断(ロック)して、運転員の判
断に委ねるようにしである。
The condition monitoring function 3 takes in plant data from the plant 1, monitors the plant condition, detects change data, and transfers the data to the control action function 4. The control action function 4 is composed of an inference section 5 and a control knowledge base 6. The control knowledge base 6 stores control knowledge whose specifications are determined and designed based on knowledge of the above-mentioned plant structure, i-equipment characteristics, empirical knowledge, related regulations, and the like. The reasoning unit 5 takes in change data from the status monitoring function 3, recognizes the status of the plant 1, determines a knowledge command based on the control knowledge stored in advance in the control knowledge base 6, and outputs it to the plant 1. The state of the plant changes as external factors such as equipment operations or input commands change, but as mentioned above, the state monitoring function 3 monitors the plant state. The control action function 4 determines a control command based on the control knowledge stored in the control knowledge base 6 in advance, and repeats the output cycle. Therefore, such a power generation plant control expert system can perform optimal operation according to the ever-changing plant conditions. Furthermore, even if an abnormal situation occurs, as long as the operation is determined in accordance with the plant status at that time, optimal operations such as recovery or shutdown can be performed. Furthermore, if the operation has not been determined in advance in an abnormal situation, the control is suspended (locked) and left to the operator's discretion.

(発明が解決しようとする課題) 上記従来の発電プラント制御エキスパートぢステムでは
、操作はプラントの構造、WA器の特性。
(Problems to be Solved by the Invention) In the conventional power plant control expert system described above, the operation is based on the structure of the plant and the characteristics of the WA device.

経験的知識、関連法規等の知識に基づいて、予め決定さ
れたものに限られる。従って、不測の事態に立ち至った
場合は、停止或いは中断(ロック)といった安全サイド
の制御方策が採用され、必ずしも最適な制御操作とは限
らない。
Limited to those determined in advance based on empirical knowledge and knowledge of related laws and regulations. Therefore, in the event of an unexpected situation, safety control measures such as stopping or suspending (locking) are adopted, which may not necessarily be the optimal control operation.

本発明は、上記事情に鑑みてなされたものであり、プラ
ントの構造1機器の特性、経験的知識。
The present invention has been made in view of the above circumstances, and is based on plant structure 1, characteristics of equipment, and empirical knowledge.

関連法規等の操作を決定する基となっている深い知識を
利用することにより、不測の事態に立ち至った場合にも
、最適な制御操作を可能とするプラント制御装置を提供
することを目的としている。
Our goal is to provide plant control equipment that enables optimal control operations even in unforeseen situations by utilizing in-depth knowledge of related laws and regulations that form the basis for determining operations. .

[発明の構成] (課題を解決するための手段) 上記目的を達成するため、本発明ではプラントの状態を
検知する状態監視機能と、前記プラント状態に応じて経
験的知識に基づき制御操作を行なう制御アクション機能
を備えたプラント制御装置において、プラントの将来の
状態を予測する予測シミュレーション機能と、現在及び
将来のプラント状態を入力し不測の事態に際して復旧に
必要な制御目標と制御操作を、深い知識に基づいて生成
する対策立案機能を付加するよう構成した。
[Structure of the Invention] (Means for Solving the Problem) In order to achieve the above object, the present invention includes a state monitoring function that detects the state of the plant, and a control operation that is performed based on experiential knowledge according to the plant state. In plant control equipment equipped with control action functions, we have deep knowledge of the predictive simulation function that predicts the future state of the plant, and the control objectives and control operations necessary for recovery in the event of an unexpected situation by inputting the current and future plant states. It has been configured to add a countermeasure planning function that generates based on.

(作 用) 不測異常状態が発生した場合は対策立案機能に変化デー
タを送り込む。ここではプラントの構造モデル、機器の
動特性モデル、経験的知識、関連法規等の制御操作を決
定する基となった深い知識の格納された深い制御知識ベ
ースがある。よって対策立案機能にてプラントの状態を
認識し予測シミュレーション機能を起動して将来のプラ
ント状態を予測し、復旧に必要な制御目標、制fn掻作
を深い知識を利用して生成する。
(Function) When an unexpected abnormal condition occurs, change data is sent to the countermeasure planning function. Here, there is a deep control knowledge base that stores deep knowledge such as plant structural models, equipment dynamic characteristic models, empirical knowledge, and related laws and regulations on which control operations are determined. Therefore, the countermeasure planning function recognizes the state of the plant, activates the predictive simulation function to predict the future state of the plant, and generates control targets and fn scraping necessary for recovery using deep knowledge.

(実施例) 以下図面を参照して実施例を説明する。(Example) Examples will be described below with reference to the drawings.

第1図は本発明によるプラント制御装置の一実施例の構
成図である。第1図において、第3図と同一部分につい
ては、同一符号を付して説明を省略する。
FIG. 1 is a block diagram of an embodiment of a plant control device according to the present invention. In FIG. 1, parts that are the same as those in FIG. 3 are given the same reference numerals and explanations are omitted.

7は対策立案機能であって推論部9と深い制御知識ベー
ス10とからなり、ここで深い制御知識ベース10はプ
ラントの構造モデル、Il器の動特性モデル、経験的知
識及び関連法規等の制御操作を決定する基となる深い制
御知識を格納する。8は予測シミュレーション機能であ
り、ここではプラントの将来の状態を予測する。その他
の構成は第3図と同様である。
7 is a countermeasure planning function, which is composed of an inference section 9 and a deep control knowledge base 10, where the deep control knowledge base 10 includes control information such as a structural model of a plant, a dynamic characteristic model of an Il, experiential knowledge, and related laws and regulations. Stores deep control knowledge that is the basis for determining operations. 8 is a predictive simulation function, which predicts the future state of the plant. The other configurations are the same as in FIG. 3.

第1図において、状態監視機能3はプラントの状態を認
識し、プラント状態の異常が検出されたかどうかを判断
し、異常が検出された場合、それが緊急停止又は中断に
移行するような不測状態であるのか、又はその対策が予
め決定されているような単純異常状態であるのかを区別
する。その結果プラントが正常又は単純異常状態の場合
は、変化データを制御アクション機能4に送り込む。
In Fig. 1, the condition monitoring function 3 recognizes the condition of the plant, determines whether an abnormality in the plant condition is detected, and if an abnormality is detected, it is an unexpected state that causes an emergency stop or interruption. or whether it is a simple abnormal state for which countermeasures have been determined in advance. As a result, if the plant is in a normal or simply abnormal state, change data is sent to the control action function 4.

方、不測異常状態の場合は、対策立案機能7に変化デー
タを送り込む。対策立案機能7は、プラントの構造モデ
ル、機器の動特性モデル、経験的知識、関連法規等の正
常時の制御操作を決定する基となった深い知識を格納し
た深い制御知識ベース10と推論部9より構成される。
On the other hand, in the case of an unexpected abnormal state, change data is sent to the countermeasure planning function 7. The countermeasure planning function 7 includes a deep control knowledge base 10 that stores deep knowledge such as plant structural models, equipment dynamic characteristic models, empirical knowledge, and related laws and regulations that are the basis for determining control operations during normal times, and an inference unit. Consists of 9.

第2図は推論過程を示すフローチャートであり、これに
よって推論部9の処理を説明する。推論部9は821に
おいて状態監視機能3からの変化データに基づきプラン
ト1の故障個所を同定する。
FIG. 2 is a flowchart showing the inference process, and the processing of the inference section 9 will be explained using this flowchart. In 821, the inference unit 9 identifies the location of the failure in the plant 1 based on the change data from the condition monitoring function 3.

S22ではプラントの運転原則(プラントの「運転スゲ
ジュールを達成する」あるいは「現状保持」等のプラン
トの運転状態についての優先度を決めた原則)に基づい
て、プラント1に対して「どういう状態にしたいか」と
いう要求生成を行なう。
In S22, based on the plant operating principles (principles that determine the priority of the plant operating status, such as ``achieving the operating schedule'' or ``maintaining the status quo''), the plant 1 is asked ``What state do you want it to be in?'' A request is generated.

S23では生成された要求を満たすべく、機器の結合関
係や機器の特性等の深い知識から操作を同定する。即ち
、深い知識には機器の結合関係操作と状態どの関係等が
記述されているため、S22で求めたあプラントの状態
をゴールにして、ある機器がある状態になるためには、
結合関係にある機器がどのような状態になっていなけれ
ばならないか(サブゴール)を生成し、その影響を関連
ある機操作を同定する。323においては機器の静的な
関係から、ある要求を満足する操作が同定できた。
In S23, in order to satisfy the generated request, an operation is identified based on deep knowledge of the connection relationship of devices, characteristics of the devices, and the like. In other words, since deep knowledge describes the connection operations and state relationships of devices, in order to achieve a certain state of a certain device with the goal of the plant state determined in S22,
Generate what state the devices in the connection relationship should be in (subgoal), and identify the related machine operations that will affect it. In 323, an operation that satisfies a certain requirement could be identified from the static relationship of devices.

しかし実際にそのままアクションするには動的な器に伝
播しながら試行銘誤的に行なって各機器の状態での検証
が必要になる。S24では、一連の操作を行なった場合
、状態がどのように遷移し、最終的にゴールの状態にな
るかをチエツクするため、予測シミュレーション機能8
に操作パラメータを入力することにより、その状態遷移
をシミュレートする。S25では動的なシミュレーショ
ン結果と要求状態をチエツクする。ここで満足すると制
御アクション機能4に対して同定した操作シーケンスを
渡すことにより、不測事態への対応を行なう。
However, in order to actually take action as is, it is necessary to propagate it to a dynamic device, perform trial and error, and verify the state of each device. In S24, the predictive simulation function 8 is used to check how the state will change and finally reach the goal state when a series of operations are performed.
By inputting operating parameters to , its state transition is simulated. In S25, the dynamic simulation results and the required state are checked. If this is satisfied, the identified operation sequence is passed to the control action function 4 to deal with the unexpected situation.

又、満足せずに矛盾が出た場合にはS22の処理に戻り
、再度、別の操作同定をする。
If the process is not satisfied and a contradiction occurs, the process returns to S22 and another operation identification is performed again.

推論部5は制御知識ベース6に新たに格納された制御知
識に基づき、不側め事態にも柔軟に対応した最適な制御
指令をプラントに発する。
Based on the control knowledge newly stored in the control knowledge base 6, the inference unit 5 issues an optimal control command to the plant that flexibly responds to situations of disgrace.

上記実施例では火力発電プラントについて説明したが、
これに限定されるものではなく、一般のプラント制御に
も適用できることは明らかである。
In the above example, a thermal power plant was explained, but
It is clear that the present invention is not limited to this, and can also be applied to general plant control.

ス、予測シミュレーション機能で利用されるシミュレー
トは、その適用分野により数値シミュレーション、定性
シミュレーション(定性推論)等が適用できる。更に操
作同定(S23 )において、そのシーケンスが重要な
適用分野においては、その機能にシーケンス生成(操作
タイミング生成)を具備する機構も考えられる。
The simulations used in the predictive simulation function can be numerical simulations, qualitative simulations (qualitative reasoning), etc. depending on the field of application. Furthermore, in operation identification (S23), in application fields where the sequence is important, a mechanism having sequence generation (operation timing generation) as its function may be considered.

[発明の効果コ 以上説明したように、本発明によればプラント状態を入
力して制御アクションを決定する単純な制御装置に対し
て、制御知識生成の基となった深い知識を格納した知識
ベースを備え、不測の事態に立ち至った場合に、この深
い知識に基づき新たな制御知識を生成して対応するよう
に構成したので、プラントの状態に柔軟に対応でき、最
適な制御操作を安全かつ安定に行なうことの可能なプラ
ント制御装置を提−供できる。
[Effects of the Invention] As explained above, according to the present invention, in contrast to a simple control device that inputs plant status and determines control actions, a knowledge base that stores deep knowledge that is the basis of control knowledge generation is used. The structure is configured to generate new control knowledge based on this deep knowledge and respond when an unexpected situation occurs, so it can respond flexibly to plant conditions and perform optimal control operations safely and stably. It is possible to provide a plant control device that can perform the following operations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるプラント制御装置の−実雄側の構
成図、第2図は推論部9の処理内容を示すフローチャー
ト、第3図は従来技術を説明する図である。 1・・・火力発電プラント 2・・・発電プラント制御装置 3・・・状態監視機能 4・・・制御アクション機能 5.9・・・推論部    6・・・制御知識ベース7
・・・対策立案機能 8・・・予測シミュレーション機能 10・・・深い制御知識ベース
FIG. 1 is a block diagram of the real side of the plant control system according to the present invention, FIG. 2 is a flowchart showing the processing contents of the inference section 9, and FIG. 3 is a diagram explaining the prior art. 1...Thermal power plant 2...Power plant control device 3...Status monitoring function 4...Control action function 5.9...Inference section 6...Control knowledge base 7
... Countermeasure planning function 8 ... Predictive simulation function 10 ... Deep control knowledge base

Claims (3)

【特許請求の範囲】[Claims] (1)プラントの状態を検知する状態監視機能と、前記
プラント状態に応じて経験的知識に基づき制御操作を行
なう制御アクション機能を備えたプラント制御装置にお
いて、プラントの将来の状態を予測する予測シミュレー
ション機能と、現在及び、将来のプラント状態を入力し
不測の事態に際して復旧に必要な制御目標と制御操作を
、深い知識に基づいて生成する対策立案機能を設けたこ
とを特徴とするプラント制御装置。
(1) Predictive simulation that predicts the future state of a plant in a plant control device equipped with a state monitoring function that detects the state of the plant and a control action function that performs control operations based on experiential knowledge according to the plant state. 1. A plant control device characterized by having a countermeasure planning function that inputs current and future plant conditions and generates control targets and control operations necessary for recovery in the event of an unexpected situation based on deep knowledge.
(2)深い知識としてプラントの構造モデルに基づく深
い知識を採用することを特徴とする請求項1項記載のプ
ラント制御装置。
(2) The plant control device according to claim 1, wherein deep knowledge based on a structural model of the plant is employed as the deep knowledge.
(3)深い知識としてプラントの動特性モデルに基づく
深い知識を採用することを特徴とする請求項1項記載の
プラント制御装置。
(3) The plant control device according to claim 1, wherein deep knowledge based on a dynamic characteristic model of the plant is employed as the deep knowledge.
JP1078138A 1989-03-31 1989-03-31 Plant control equipment Expired - Lifetime JP2507892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1078138A JP2507892B2 (en) 1989-03-31 1989-03-31 Plant control equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1078138A JP2507892B2 (en) 1989-03-31 1989-03-31 Plant control equipment

Publications (2)

Publication Number Publication Date
JPH02259803A true JPH02259803A (en) 1990-10-22
JP2507892B2 JP2507892B2 (en) 1996-06-19

Family

ID=13653520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1078138A Expired - Lifetime JP2507892B2 (en) 1989-03-31 1989-03-31 Plant control equipment

Country Status (1)

Country Link
JP (1) JP2507892B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054164A1 (en) * 2018-09-12 2020-03-19 日本電気株式会社 Operation assistance system and method, automatic planner, and computer readable medium
CN113568379A (en) * 2020-04-28 2021-10-29 横河电机株式会社 Control assistance device, control assistance method, computer-readable medium, and control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186002A (en) * 1983-04-08 1984-10-22 Hitachi Ltd Plant controlling device
JPS61228501A (en) * 1985-04-01 1986-10-11 Nippon Atom Ind Group Co Ltd Method for deciding treatment of plant abnormality

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186002A (en) * 1983-04-08 1984-10-22 Hitachi Ltd Plant controlling device
JPS61228501A (en) * 1985-04-01 1986-10-11 Nippon Atom Ind Group Co Ltd Method for deciding treatment of plant abnormality

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054164A1 (en) * 2018-09-12 2020-03-19 日本電気株式会社 Operation assistance system and method, automatic planner, and computer readable medium
JPWO2020054164A1 (en) * 2018-09-12 2021-09-24 日本電気株式会社 Driver assistance systems and methods, automated planners, and programs
CN113568379A (en) * 2020-04-28 2021-10-29 横河电机株式会社 Control assistance device, control assistance method, computer-readable medium, and control system
JP2021174397A (en) * 2020-04-28 2021-11-01 横河電機株式会社 Control support device, control support method, control support program, and control system

Also Published As

Publication number Publication date
JP2507892B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
Ji et al. Prognostics enabled resilient control for model-based building automation systems
Escudero et al. Process-aware model based IDSs for industrial control systems cybersecurity: approaches, limits and further research
Garcia et al. A reconfigurable hybrid system and its application to power plant control
Combacau et al. Supervision and monitoring of production systems
JPH0259901A (en) Fault diagnosing system
Iung et al. Proactive maintenance strategy for harbour crane operation improvement
Berkan et al. Advanced automation concepts for large-scale systems
Lopez-Mellado et al. A failure recovery scheme for assembly workcells
Dui et al. Cost-based preventive maintenance of industrial robot system
JPH02259803A (en) Plant controller
CN106462113A (en) Monitoring of failure tolerance for an automation installation
Bau et al. Model-based diagnosis of power-station control systems
US7636915B1 (en) Multi-level multi-variable control process program execution scheme for distributed process control systems
Sabatucci et al. Shipboard power system reconfiguration: a self-adaptation exemplar
Labib et al. Maintenance strategies for changeable manufacturing
Henningsen et al. Intelligent alarm handling in cement plants
Williams Recent developments in the application of plant-wide computer control
Tittus et al. Fast restart of manufacturing cells using restart points
Knudsen et al. An exact penalty-function approach to proactive fault-tolerant economic MPC
Berruet et al. Toward an implementation of Recovery procedures for FMS Supervision
Bayart Smart devices for manufacturing equipment
Mitrishkin et al. Hierarchical control system for complex dynamical plants
Shiner et al. DISCRETE EVENT DYNAMIC SYSTEM MODELS AND THEIR APPLICATION TO CELL CONTROL
Forouzanfar et al. Integrated Model-Based Control Allocation Strategies Oriented to Predictive Maintenance of Saturated Actuators
Alberto et al. Supervisor system for detection and treatment of failures in manufacturing systems using distributed Petri nets

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term