JPS59184921A - Method and device for controlling fluid pressure - Google Patents
Method and device for controlling fluid pressureInfo
- Publication number
- JPS59184921A JPS59184921A JP5964183A JP5964183A JPS59184921A JP S59184921 A JPS59184921 A JP S59184921A JP 5964183 A JP5964183 A JP 5964183A JP 5964183 A JP5964183 A JP 5964183A JP S59184921 A JPS59184921 A JP S59184921A
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- pressure
- flow rate
- signal
- base pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D7/00—Control of flow
- G05D7/06—Control of flow characterised by the use of electric means
- G05D7/0617—Control of flow characterised by the use of electric means specially adapted for fluid materials
- G05D7/0629—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
- G05D7/0635—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
- G05D7/0641—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
- G05D7/0664—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged for the control of a plurality of diverging flows from a single flow
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D16/00—Control of fluid pressure
- G05D16/20—Control of fluid pressure characterised by the use of electric means
- G05D16/2006—Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
- G05D16/2066—Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using controlling means acting on the pressure source
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Fluid Mechanics (AREA)
- Control Of Fluid Pressure (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、基管の下流側に複数の枝管が分岐接続され
、各枝管に流体の流れを遮断するための流体遮断弁を備
えtコ流体の送給システム、例えば加熱炉の燃焼用空気
送給システム等における流体圧力制御方法および装置に
関する。以下、加熱炉の燃焼用空気送給システムを例に
゛とり説明する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a t-fluid delivery system in which a plurality of branch pipes are branched and connected downstream of a base pipe, and each branch pipe is provided with a fluid cutoff valve for blocking the flow of fluid. The present invention relates to a method and apparatus for controlling fluid pressure in, for example, a combustion air supply system of a heating furnace. Hereinafter, a combustion air supply system for a heating furnace will be explained as an example.
加熱炉における各バーナーへの燃焼用空気の送給システ
ムは、−基の送風機に接続された一本の基管から分岐さ
れた複数の枝管によって各バーナに燃焼用空気を分配送
給する構成となっており、各枝管には燃焼用空気遮断弁
が設けられている。The combustion air supply system to each burner in the heating furnace has a configuration in which combustion air is distributed and distributed to each burner through a plurality of branch pipes branched from a single base pipe connected to a base blower. Each branch pipe is equipped with a combustion air cutoff valve.
このような送給システムにおける燃焼用空気の流量制御
は、基管部に設けられた流量調節弁にて行なわれている
が、基管部における燃焼用空気圧力が適正値より低い場
合には、流量調節弁が全開になっても所定の燃焼用空気
流量を確保することができず不完全燃焼を発生させるこ
とにタリ、まTこ、逆に燃焼用空気圧力が適正値よりも
高すぎると、圧力制御を送風機の回転数制御により行な
っている場合消費電力の増大を招くζ、とになる。また
、燃焼負荷の低下の際φ−ナフレーム長さを適正に確保
し燃焼の安定化をはかるためにバーナ間引きを行なう場
合、すなわち枝管の燃焼用空気遮断弁を全開にする場合
は特に配管圧損が増加するので、バーナに適正な燃焼用
空気量を送給するには遮断弁の閉動作前から燃焼用空気
圧力を高くする必要が生ずる。そのため、従来は前記燃
焼用空気量不足を発生させないよう全体の燃焼用空気圧
力を高めに設定し制御を行なっている。従って、送風機
の電力コストが高くついている。The flow rate of combustion air in such a feeding system is controlled by a flow control valve installed in the base pipe, but if the combustion air pressure in the base pipe is lower than the appropriate value, Even if the flow rate control valve is fully opened, the specified combustion air flow rate cannot be secured, resulting in incomplete combustion.On the other hand, if the combustion air pressure is too high than the appropriate value, , ζ, which causes an increase in power consumption if pressure control is performed by controlling the rotation speed of the blower. In addition, when thinning out the burners in order to secure an appropriate φ-nare flame length and stabilize combustion when the combustion load is reduced, in other words, when the combustion air cutoff valve of the branch pipe is fully opened, it is especially important to Since the pressure drop increases, it becomes necessary to increase the combustion air pressure before the shutoff valve closes in order to supply an appropriate amount of combustion air to the burner. Therefore, conventionally, control is performed by setting the overall combustion air pressure to be high so as not to cause the shortage of combustion air. Therefore, the electric power cost of the blower is high.
この発明は、従来の前記問題を解消するためになされた
もので、バーナ間引時すなわち各枝管の燃焼用空気遮断
弁の開閉時にも最適な圧力設定が可能な流体圧力制御方
法おまび装置を提案するものである。This invention has been made to solve the above-mentioned conventional problems, and is a fluid pressure control method and apparatus that allows optimal pressure setting even when thinning burners, that is, when opening and closing the combustion air cutoff valve of each branch pipe. This is what we propose.
この発明法は、−基の流体機械によって流体が送給され
る基管の下流側に複数の枝管が分岐接続され、各枝管に
は流体遮断弁が設置されている流体送給システムの流体
圧力制御方法において、基管部の流体流量値と設定流量
値との偏差に応じて基管部の流量調節弁を制御するとと
もに、予め求められた各枝管の流量−圧力特性により前
記基管部の流量値に対応する各枝管の設定圧力値を算出
し、各流体遮断弁の遮断数に応じて前記設定圧力値を選
択し、選択した設定圧力値と基管部の流体圧力値との偏
差に応じて流体機械の流体送給出力を制御することを特
徴とするものである。This invention method is applicable to - a fluid supply system in which a plurality of branch pipes are branched and connected downstream of a base pipe to which fluid is supplied by a base fluid machine, and a fluid cutoff valve is installed in each branch pipe; In the fluid pressure control method, the flow rate control valve of the base pipe section is controlled according to the deviation between the fluid flow rate value of the base pipe section and the set flow rate value, and the flow rate control valve of the base pipe section is controlled according to the flow rate-pressure characteristic of each branch pipe determined in advance. Calculate the set pressure value of each branch pipe corresponding to the flow rate value of the pipe section, select the set pressure value according to the number of shutoffs of each fluid cutoff valve, and calculate the selected set pressure value and the fluid pressure value of the base pipe section. The fluid feeding output of the fluid machine is controlled according to the deviation from the fluid machine.
すなわち、この発明法は、基管部の流体流量に対応する
設定圧力値を予め求められた流量−圧力特性により算出
し、各枝管の流体遮断弁の遮断数に応じて前記設定圧力
値を選択し、その設定圧力値と検出圧力値との偏差に応
じて流体圧力すなわち流体機械の流体送給出力を制御す
る方法である。That is, in this invention method, the set pressure value corresponding to the fluid flow rate of the base pipe is calculated based on the flow rate-pressure characteristic determined in advance, and the set pressure value is calculated according to the number of shutoffs of the fluid cutoff valve of each branch pipe. In this method, the fluid pressure, that is, the fluid feed output of the fluid machine, is controlled according to the deviation between the set pressure value and the detected pressure value.
この方法によれば、各枝管の流体遮断弁の遮断数に応じ
た圧力設定が可能となるので、全体の流体圧力を高めに
設定しなくても所定の流量を確保することができ、流体
機械を有効に利用することができる。According to this method, it is possible to set the pressure according to the number of shutoffs of the fluid cutoff valve of each branch pipe, so it is possible to secure a predetermined flow rate without having to set the overall fluid pressure high. Machines can be used effectively.
以下、この発明の一実施例を図面に基づいて説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.
なお、ここでは加熱炉の燃焼用空気送給システムに適用
し1こ場合について説明する。Here, a case will be described in which the present invention is applied to a combustion air supply system for a heating furnace.
図面は加熱炉の各バーナに燃焼用空気を供給する送給シ
ステムならびにその制御装置を示すブロック図であり、
(1)は送風機、(2)は送風機を駆動するモータ、(
3)は送風機から送られる燃焼用空気を予熱する予熱器
、(4)は後述する枝管に燃焼用空気を送給するための
基管、(6)は基管から分岐接続されtコ枝管、(B、
)〜(Bn)は各枝管の先端に取付けられたバーナ、(
V、)〜(Vn)はバーナに対応してそれぞれの枝管に
取付けられた燃焼用空気遮断弁である。The drawing is a block diagram showing the supply system that supplies combustion air to each burner of the heating furnace and its control device.
(1) is a blower, (2) is a motor that drives the blower, (
3) is a preheater that preheats the combustion air sent from the blower, (4) is a base pipe for supplying combustion air to branch pipes to be described later, and (6) is a t-branch connected to the base pipe. tube, (B,
) to (Bn) are burners attached to the tip of each branch pipe, (
V, ) to (Vn) are combustion air cutoff valves attached to respective branch pipes corresponding to the burners.
(6)は基管部の燃焼用空気圧力を検出し、かつ電気信
号に変換する圧力変換器、(7)は燃焼用空気圧力調節
器であり、後述する設定圧力信号P2と検出圧力信号P
、との偏差に所定の演算を行なって送風機駆動モータ(
2)の回転数信号Pを出力するものである。(8)は回
転数信号Pを入力し駆動モータ(2)を所定の回転数に
制御する回転数制御装置である。(6) is a pressure converter that detects the combustion air pressure in the base pipe section and converts it into an electric signal, and (7) is a combustion air pressure regulator, which includes a set pressure signal P2 and a detected pressure signal P, which will be described later.
, the blower drive motor (
2) outputs the rotational speed signal P. (8) is a rotation speed control device which inputs the rotation speed signal P and controls the drive motor (2) to a predetermined rotation speed.
(9)は送風機から送られた燃焼用空気量を検出し、か
つ電気信号に変換する流量変換器、(lO)は流量変換
器より出力された検出流量信号と設定流量との偏差に所
定の演算を行なって弁開度信号を出力する流量調節器、
(川は弁開度信号を人力し燃焼用空気流量を調節する流
量調節弁である。(9) is a flow rate converter that detects the amount of combustion air sent from the blower and converts it into an electrical signal, and (lO) is a flow rate converter that detects the amount of combustion air sent from the blower and converts it into an electrical signal. A flow controller that performs calculations and outputs a valve opening signal;
(The valve is a flow rate control valve that manually controls the valve opening signal to adjust the combustion air flow rate.
(12)は流量変換器(9)より出力された検出流量信
号を入力し、予め求められた流量−圧力特性により検出
流量信号に対応する設定圧力値を算出する圧力演算器で
あり、各枝管に設けられた燃焼用空気遮断弁の数に対応
して複数の流量−圧力特性(fl)〜(f n)を備え
ている。第2図は流量−圧力特性を例示した図表である
。(I3)は各燃焼用空気遮断弁(■)〜(vn)に対
する遮断指令(CMD、) 〜(CMD n)による遮
断数に応じて、圧力演算器θ2)から出力される設定圧
力信号を選択し、その選択された設定圧力信号P、を燃
焼用空気圧力調節器(7)に出力する信号選択器である
。(12) is a pressure calculator that inputs the detected flow rate signal output from the flow rate converter (9) and calculates a set pressure value corresponding to the detected flow rate signal based on the flow rate-pressure characteristic determined in advance. A plurality of flow rate-pressure characteristics (fl) to (fn) are provided corresponding to the number of combustion air cutoff valves provided in the pipe. FIG. 2 is a chart illustrating flow rate-pressure characteristics. (I3) selects the set pressure signal output from the pressure calculator θ2) according to the number of shutoffs by the shutoff commands (CMD, ) to (CMD n) for each combustion air cutoff valve (■) to (vn). This is a signal selector that outputs the selected set pressure signal P to the combustion air pressure regulator (7).
なお、圧力演算器(12)の流量−圧力特性(f、)〜
(fn)は、流量調節弁(11)の弁開度がどの流量域
でも全開付近、すなわち極力流量調節弁(用自身に圧損
を生じさせないように特性を定める。In addition, the flow rate-pressure characteristic (f,) of the pressure calculator (12) ~
(fn) is determined so that the valve opening degree of the flow rate control valve (11) is close to full open in any flow rate range, that is, the characteristic is determined so that the flow rate control valve (11) does not cause pressure loss in itself as much as possible.
次に、制御動作について説明する。Next, the control operation will be explained.
通常の燃焼用空気の流量制御は、設定流量信号に基づい
て流量調節器(lO)から流量調節弁(11)に弁開度
信号を与えて流量制御を行ない、誤差修正は流量変換器
(9)からの検出流量と設定流量との偏差に所定の演算
を行なって流量調節弁(11)を制御する。Normal combustion air flow rate control is performed by giving a valve opening signal from a flow rate regulator (lO) to a flow rate control valve (11) based on a set flow rate signal, and error correction is performed using a flow rate converter (9). ) A predetermined calculation is performed on the deviation between the detected flow rate and the set flow rate to control the flow rate control valve (11).
いま、加熱炉の燃焼負荷の低下により、バーナフレーム
の適正長さの確保と燃焼の安定化のためバーナ間引きが
実施され、燃焼用空気遮断弁(V、)〜(vn)の内所
定の本数を遮断したり、全開にしたりする状況が生じた
場合は、以下の方法により設定圧力信号を決定する。Currently, due to the reduction in the combustion load of the heating furnace, burners are being thinned out to ensure the appropriate length of the burner frame and to stabilize combustion, and a predetermined number of combustion air cutoff valves (V, ) to (vn) are being thinned out. If a situation arises in which the pressure is shut off or fully opened, the set pressure signal is determined by the following method.
すなわち、基管(4)に設けた流量変換器(9)で検出
された流量信号を圧力演算器02)に取込み、予め求め
られた流量−圧力特性(fυ〜(f、)によりその燃焼
空気流量に対応する設定圧力値を算出す4゜この場合、
(f、)は本数0の場合の特性、(f2)は本数1の場
合の特性、(f、)は本数n−4の場合の特性を定めて
おくことにより、各燃焼用空気遮断弁(Vυ〜(vl)
ニ対スル遮断指令(CMD、) 〜(CMD、)による
遮断数が例えばOの場合は(f、)の設定圧力信号が、
遮断数が1ならば(f2)の設定圧力信号P!がそれぞ
れ信号選択器(I:ilにより選択され、その設定圧力
信号P2が燃焼用空気圧力調節器(7)に出力される。That is, the flow rate signal detected by the flow rate converter (9) installed in the base pipe (4) is taken into the pressure calculator 02), and the combustion air is Calculate the set pressure value corresponding to the flow rate 4゜In this case,
(f,) is the characteristic when the number of valves is 0, (f2) is the characteristic when the number is 1, and (f,) is the characteristic when the number is n-4, so that each combustion air cutoff valve ( Vυ〜(vl)
For example, if the number of shutoffs due to double-through shutoff command (CMD, ) ~ (CMD, ) is O, the set pressure signal of (f,) is
If the number of interruptions is 1, the set pressure signal P of (f2)! are selected by the signal selector (I:il), and the set pressure signal P2 is output to the combustion air pressure regulator (7).
この圧力調節器(7)では基管部に設けた圧力変換器(
6)より出力される検出圧力信号P、との偏差に所定の
演算を施して回転数信号Pを出力し、回転数制御袋@(
8)により送風機(1)の駆動モータ(2)を制御する
。This pressure regulator (7) has a pressure transducer (
6) A predetermined calculation is performed on the deviation from the detected pressure signal P outputted from the rotation speed signal P, and the rotation speed control bag @(
8) controls the drive motor (2) of the blower (1).
ここで、注目すべきは、圧力演算器(12)の流i −
圧力特性(f、)〜(fn)は、流量調節弁(+I)の
弁開度がどの流量域でも全開付近、すなわち極力流量調
節弁自身に圧損を生じさせないように定められているの
で、従来のように予めかなりの余裕をみた圧力を加えて
おく必要はない。What should be noted here is that the flow i − of the pressure calculator (12)
The pressure characteristics (f,) to (fn) are determined so that the valve opening degree of the flow rate control valve (+I) is close to full open in any flow rate range, that is, so that pressure loss does not occur in the flow rate control valve itself as much as possible. There is no need to apply pressure with a considerable margin in advance.
以上説明したごとく、この発明によれば、バーナ間引き
を行なう場合など枝管の遮断指令に即応した圧力設定が
可能となり、燃焼用空気の流量不足がなく、かつ送風機
で消費される動力が最小になる燃焼用空気圧力制御を行
なうことができるので、加熱炉の燃焼用空気送給システ
ム等、基管に分岐接続された複数の枝管によって流体を
送給するようなシステムにおける流体送給の安定化およ
び経済性の向上をはかることができる。As explained above, according to the present invention, it is possible to set the pressure immediately in response to a command to shut off a branch pipe when thinning burners, etc., there is no shortage of combustion air flow rate, and the power consumed by the blower is minimized. Since it is possible to control the combustion air pressure, it is possible to stabilize the fluid supply in systems where fluid is supplied through multiple branch pipes connected to a base pipe, such as the combustion air supply system of a heating furnace. It is possible to improve economic efficiency and economic efficiency.
第1図はこの発明の一実施例を示すブロック図、第2図
は同上における圧力演算器の流量−圧力特性を示す図表
である。
1・・・送風機、2・・・駆動モータ、3・・・予熱器
、4・・・基管、5・・・枝管、6・・・圧力変換器、
7・・・燃焼用空気圧力調節器、8・・・回転数制御装
置、9・・・流量変換器、1o・・・流量調節器、11
・・・流量調節弁、12・・・圧力演算器、13・・・
信号選択器、B1〜Bn・・・バーナ、■〜Vし・・・
流体遮断弁、f、〜fn・・・流量−圧力特性、Pl・
・・検出圧力信号、P=・・・設定圧力信号、P・・・
回転数信号。
出願人 住友金属工業株式会社
代理人 ・押 1) 良 久、′’、::’:’i
・ 、BFIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a chart showing flow rate-pressure characteristics of the pressure calculator in the same. DESCRIPTION OF SYMBOLS 1... Blower, 2... Drive motor, 3... Preheater, 4... Base pipe, 5... Branch pipe, 6... Pressure transducer,
7... Combustion air pressure regulator, 8... Rotation speed control device, 9... Flow rate converter, 1o... Flow rate regulator, 11
...Flow control valve, 12...Pressure calculator, 13...
Signal selector, B1~Bn... Burner, ■~V...
Fluid cutoff valve, f, ~fn...Flow rate-pressure characteristics, Pl.
...Detected pressure signal, P=...Setting pressure signal, P...
Rotation speed signal. Applicant Sumitomo Metal Industries Co., Ltd. Agent ・Oshi 1) Yoshihisa,'', ::':'i
・ ,B
Claims (1)
側に複数の枝管が分岐接続され、各枝管には流体遮断弁
が設置されている流体送給システムの流体圧力制御方法
において、基管部の流体流量値と設定流量値との偏差に
応じて基管部p流量調節弁を制御するとともに、予め求
めら口た各枝管の流量−圧力特性により前記基管部の流
量値に対応する6各枝管の設定圧力値を算出し、各流体
遮断弁の遮断数に応じて前記設定圧力値を選択し、選択
した設定圧力値と基管部の流体圧力値゛との偏差に応じ
て流体機械の流体送給出力を制御することを特徴とする
流体圧力制御方法。 2−基の流体門械によって流体が送給される基管の下流
側に複数の枝管が接続され、各枝管には流体遮断弁が設
置されている流体送給システムにおいて、基管部の流体
圧力および流量を検出する圧力油出器および流量検出器
、流体遮断弁の遮断数に応じtコ流量−圧力特性を有す
る複数の圧力演算器、圧力演算器圧力信号を入力とし設
定圧力信号が流体遮断弁の遮断数に応じて選択される信
号選択器、基管部の検出流体圧力信号と前記設定圧力信
号の偏差に応じた回転数信号を発する流体圧力調節器を
備え、前記回転数信号により流体機械の流体送給出力を
制御するごとく構成してなる流体圧力制御装置。[Scope of Claims] 1 - A fluid supply system in which a plurality of branch pipes are branched and connected downstream of a base pipe to which fluid is supplied by one fluid machine, and a fluid cutoff valve is installed in each branch pipe. In the fluid pressure control method of the system, the base pipe part P flow control valve is controlled according to the deviation between the fluid flow rate value of the base pipe part and the set flow rate value, and the flow rate-pressure characteristic of each branch pipe is determined in advance. Calculate the set pressure value of each of the six branch pipes corresponding to the flow rate value of the base pipe part, select the set pressure value according to the number of shutoffs of each fluid cutoff valve, and combine the selected set pressure value and the base pipe part. 1. A fluid pressure control method comprising controlling a fluid feed output of a fluid machine according to a deviation from a fluid pressure value of . In a fluid delivery system in which a plurality of branch pipes are connected to the downstream side of a base pipe to which fluid is supplied by two fluid gateways, and each branch pipe is equipped with a fluid cutoff valve, the base pipe part A pressure oil extractor and a flow rate detector that detect the fluid pressure and flow rate, multiple pressure calculators that have flow rate-pressure characteristics according to the number of shutoffs of the fluid cutoff valve, and a pressure calculator that takes the pressure signal as input and sets the pressure signal. comprises a signal selector selected according to the number of shutoffs of the fluid cutoff valve, and a fluid pressure regulator that emits a rotation speed signal according to the deviation between the detected fluid pressure signal of the base pipe section and the set pressure signal, and the rotation speed A fluid pressure control device configured to control the fluid feed output of a fluid machine based on a signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5964183A JPS59184921A (en) | 1983-04-04 | 1983-04-04 | Method and device for controlling fluid pressure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5964183A JPS59184921A (en) | 1983-04-04 | 1983-04-04 | Method and device for controlling fluid pressure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59184921A true JPS59184921A (en) | 1984-10-20 |
Family
ID=13119043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5964183A Pending JPS59184921A (en) | 1983-04-04 | 1983-04-04 | Method and device for controlling fluid pressure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59184921A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014167728A (en) * | 2013-02-28 | 2014-09-11 | Ckd Corp | Liquid supply control device and liquid supply system |
EP4321959A1 (en) * | 2022-08-13 | 2024-02-14 | Advanced Digital Broadcast S.A. | A flow control system for a system of valves connected to a splitter |
-
1983
- 1983-04-04 JP JP5964183A patent/JPS59184921A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014167728A (en) * | 2013-02-28 | 2014-09-11 | Ckd Corp | Liquid supply control device and liquid supply system |
EP4321959A1 (en) * | 2022-08-13 | 2024-02-14 | Advanced Digital Broadcast S.A. | A flow control system for a system of valves connected to a splitter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0127242B2 (en) | ||
JPS6099958A (en) | Integral control of output and surge to dynamic compressor control system | |
CN109737090A (en) | Multi-machine parallel connection blower system and its control method | |
JPS59184921A (en) | Method and device for controlling fluid pressure | |
JP3411128B2 (en) | Variable speed water supply | |
JPS59136817A (en) | Speed control method for blower of combustion air in heating furnace | |
KR101958980B1 (en) | Apparatus for supply byproduct gas | |
JPH01241607A (en) | Device for mixing water and hot water | |
JPS6229706A (en) | Controlling method for output of back pressure turbine generator | |
JP4918436B2 (en) | Gas turbine fuel gas supply device | |
JP2003120580A (en) | Variable-speed water supply equipment | |
JP4877645B2 (en) | Parallel operation control method of exhaust gas treatment equipment in non-ferrous metal smelting | |
JP3817851B2 (en) | Fuel gas pressure control method and apparatus for gas fired boiler | |
JPH0324591B2 (en) | ||
JP3091810B2 (en) | Water heater | |
JPS5929207Y2 (en) | fluid flow control device | |
JPS6358005A (en) | Feedwater flow controller for boiler | |
JPH06138954A (en) | Pressure controller | |
JPS59113113A (en) | Method for controlling changeover of gas | |
JP2722058B2 (en) | Proportional valve controller | |
JP3670780B2 (en) | Pump flow control method | |
JP2002039550A (en) | Heating apparatus and its adjusting method | |
JPS6183824A (en) | Fuel control device | |
JP2554492Y2 (en) | Control device for pressurized fluidized bed boiler | |
JPH09269121A (en) | Combustion appliance |