JPS59183899A - Method for controlling addition ratio of ionic organic high-molecular flocculant - Google Patents
Method for controlling addition ratio of ionic organic high-molecular flocculantInfo
- Publication number
- JPS59183899A JPS59183899A JP58056939A JP5693983A JPS59183899A JP S59183899 A JPS59183899 A JP S59183899A JP 58056939 A JP58056939 A JP 58056939A JP 5693983 A JP5693983 A JP 5693983A JP S59183899 A JPS59183899 A JP S59183899A
- Authority
- JP
- Japan
- Prior art keywords
- flocculant
- sludge
- addition rate
- amount
- addition ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000010802 sludge Substances 0.000 claims abstract description 39
- 239000000084 colloidal system Substances 0.000 claims abstract description 18
- 239000007788 liquid Substances 0.000 claims abstract description 11
- 229920000620 organic polymer Polymers 0.000 claims description 13
- 239000008394 flocculating agent Substances 0.000 claims description 6
- 238000007796 conventional method Methods 0.000 abstract description 8
- 230000008569 process Effects 0.000 abstract description 3
- 239000013043 chemical agent Substances 0.000 abstract 2
- 230000018044 dehydration Effects 0.000 description 7
- 238000006297 dehydration reaction Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 6
- 239000000701 coagulant Substances 0.000 description 5
- 125000002091 cationic group Chemical group 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000003311 flocculating effect Effects 0.000 description 2
- 241001061127 Thione Species 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010800 human waste Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Treatment Of Sludge (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、イオン性有機高分子凝集剤を用いる汚泥の脱
水処理における凝集剤添加率の制御方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the flocculant addition rate in sludge dewatering treatment using an ionic organic polymer flocculant.
近年、汚泥の脱水処理に無機凝集剤に代わって、イオン
性有機高分子凝集剤が広く用いられているが、該凝集剤
には脱水処理に好ましい添加率領域があシ、過少添加の
みならず過剰添加もさけねばならず、常に伺らかの方法
で薬品添加率を適正範囲内に保たねばならないという保
守管理面でのわずられしさがあった。In recent years, ionic organic polymer flocculants have been widely used in place of inorganic flocculants for sludge dewatering treatment, but these flocculants have a preferable addition rate range for dewatering treatment, and are not limited to under-addition. Excessive addition must also be avoided, and the chemical addition rate must always be kept within an appropriate range using a certain method, which is a hassle in terms of maintenance and management.
本発明は、かかる現状に対し、汚泥の質的、濃度的変動
に十分対撚できるイオン性有機高分子凝集剤添加率の制
御方法を提供し、上記欠点を克服し、薬品費用の節減、
自動化による人件費の大幅低減等を可能とし、汚泥処理
全体のコストを低下させることを目的とするものである
。In view of the current situation, the present invention provides a method for controlling the addition rate of an ionic organic polymer flocculant that can sufficiently cope with fluctuations in quality and concentration of sludge, overcomes the above-mentioned drawbacks, reduces chemical costs, and
The aim is to make it possible to significantly reduce labor costs through automation, and to reduce the overall cost of sludge treatment.
本発明は、汚泥へイオン性有機高分子凝集剤を添加混合
して脱水する方法において、凝集剤添加後の液中のコロ
イド荷電量がOmeq / tとなるように凝集剤添加
率を制御することを特徴とする。The present invention is a method of dewatering sludge by adding and mixing an ionic organic polymer flocculant to sludge, and the method involves controlling the flocculant addition rate so that the amount of colloid charge in the liquid after adding the flocculant becomes Omeq/t. It is characterized by
本発明はイオン性有機高分子凝集剤の添加率と汚泥の凝
集性及び脱水性との関係を、液中のコロイド荷電量の変
化に着目しつつ検討して到達したものである。凝集剤添
加率と液中のコロイド荷電量との関係を、有機性汚泥A
陽イオン性有機高分子凝集剤の組合せを例にして模式的
に示すと、第1図のようになる。すなわち、凝集剤添加
率の極めて少ない領域では、コロイド荷電量は負で、1
1、呆集剤添゛加重の増加にともなってゼロに近づき、
a点(添加率A)にてゼロとなる。その後、一定の区間
ゼロを続けたのち、b点(添加率B)を越えると正の+
[’にとり、添加した凝集剤が液中に残留するようにな
シ、その後添加率の増大とともにコロイド荷電量が増加
する。一方、凝集剤が添加された汚泥の凝集性を凝集体
の太ぎさで判別すると、b点付近、とジわけb点を若干
越える添加率付近に極太値が存在し、しかもその極大値
付近でベルトプレス等の脱水機の能力が最高となる。The present invention was achieved by studying the relationship between the addition rate of an ionic organic polymer flocculant and the flocculating and dewatering properties of sludge, paying attention to changes in the amount of colloid charge in the liquid. The relationship between the flocculant addition rate and the amount of colloid charge in the liquid was determined for organic sludge A.
An example of a combination of cationic organic polymer flocculants is schematically shown in FIG. 1. That is, in the region where the coagulant addition rate is extremely low, the colloid charge amount is negative and 1
1. Approaches zero as the loading of the septic agent increases,
It becomes zero at point a (addition rate A). After that, after continuing to be zero for a certain period, when it exceeds point b (addition rate B), it becomes positive +
[', the added flocculant remains in the liquid, and the amount of colloid charge increases as the addition rate increases. On the other hand, when the flocculating property of sludge to which a flocculant has been added is determined by the thickness of the flocculates, there is a very thick value near point b, and in particular around the addition rate that slightly exceeds point b, and furthermore, near the maximum value. The performance of dehydrators such as belt presses is maximized.
このような関係は、汚泥や凝集剤脱水方法等が変化して
も基本的には保たれるので、コロイド荷電量+b点をこ
えた値でコントロールすれば、汚泥の質的、濃度的変動
に影響されずに脱水機の最良の状態を保つことができる
ことになる。したがって極めて凝集体径の大きな、脱水
しゃすい凝集体が安定して得られケーキ含水率が低下し
処理量も太きい等のメリットが得られる。しかしながら
、脱水ケーキを埋立処分する場合のようにその処分方法
によっては、必ずしも脱水性全最高の状態に保つ必要は
なく、むしろ脱水工程及び処分工程自動化による省力化
を保てる範囲内で、凝集剤添加率を低減し薬品費を削減
する方法が望まれる場合も多い。そのような観点から、
第1図の関係を、さらに追求したところ、コロイド荷電
量がゼロであることが汚泥脱水の上記条件であることが
わかった。This kind of relationship is basically maintained even if the sludge, flocculant dewatering method, etc. change, so if the colloid charge amount is controlled at a value exceeding the + b point, changes in the quality and concentration of the sludge can be avoided. This means that the dehydrator can be kept in its best condition without being affected. Therefore, it is possible to stably obtain dehydrated aggregates having an extremely large aggregate diameter, and to obtain advantages such as a reduction in cake moisture content and a large throughput. However, depending on the disposal method, such as when disposing of dehydrated cake in a landfill, it is not necessarily necessary to maintain the highest dewatering performance. Rather, it is necessary to add a flocculant to the extent that labor savings can be maintained by automating the dewatering and disposal processes. It is often desirable to find a way to reduce drug costs by reducing drug rates. From such a point of view,
When the relationship shown in FIG. 1 was further investigated, it was found that the above condition for sludge dewatering is that the amount of colloid charge is zero.
第1図と同じ関係を、脱水機種をかえて調べたのが第2
図である。いずれの機種においても、b点を若干越える
添加率付近で脱水性は最良となるが、添加率を少なくし
た場合の脱水性悪化の程度は異なることがわかる。遠心
分離機やスクリュープレス等ではその度合が太きいが、
ベルトプレス、スクリーン天日乾燥等では小さく、少く
ともコロイド荷電量がゼロでありさえすれば、何らかの
脱水性向上が認められた。また、凝集剤の分子量やイオ
ン強度をかえれば、相対的なフロック径は変化し、上記
脱水機の性能悪化の程度をやわらげることもできる。ま
た汚泥によっては、第3図に示すようにコロイド荷電量
がゼロを示す添加率の幅(a=b)が小さいものもあり
、この場合には、通常の脱水機は本発明で十分使用でき
る。以上のような知見は、陰イオン性有機高分子凝集剤
を用いる場合でも、符号が異なるのみである。The second study investigated the same relationship as in Figure 1 by changing the type of dehydration machine.
It is a diagram. It can be seen that in all models, the dehydration properties are best near the addition rate slightly exceeding point b, but the degree of dehydration deterioration when the addition rate is reduced is different. In centrifuges, screw presses, etc., the degree of
In belt press, screen sun drying, etc., some improvement in dehydration was observed, as long as the amount of colloidal charge was at least zero. Further, by changing the molecular weight and ionic strength of the flocculant, the relative diameter of the flocs can be changed, and the degree of deterioration in the performance of the dehydrator can be alleviated. In addition, depending on the sludge, as shown in Figure 3, there are some sludges in which the width of the addition rate (a = b) in which the amount of colloid charge is zero is small, and in this case, a normal dehydrator can be used satisfactorily with the present invention. . The above findings differ only in sign even when an anionic organic polymer flocculant is used.
本発明は、凝集剤添加後のコロイド荷電量をゼロとする
ように凝集剤添加率を制御することを特徴とするもので
あるが、その具体的方法としては、凝集剤の添加量を調
整してもよいし、脱水工程に問題がなければ汚泥流量を
調整してもよい。1だ、2種類のイオン性を持つ凝集剤
を順次添加する脱水方法の場合にも、2番目に用いる凝
集剤の添加率制御のみならず、最初に添加する凝集剤の
添加率制御にも本発明を用いることができる。この場合
には、最適添加率を2種の組合せで求めなければならな
いため従来数多くの予伽笑験を要していた手間が大幅に
緩和され、第1.第2の凝集剤の相方の浪費が無くなる
ので薬品費削減の効果も太きい。The present invention is characterized by controlling the flocculant addition rate so that the amount of colloid charge after the flocculant is added is zero, and a specific method for this is to adjust the amount of flocculant added. Alternatively, if there is no problem with the dewatering process, the sludge flow rate may be adjusted. 1. Even in the case of a dehydration method in which two types of ionic flocculants are sequentially added, it is important not only to control the addition rate of the second flocculant, but also to control the addition rate of the first flocculant. The invention can be used. In this case, since the optimum addition rate must be determined by a combination of two types, the time and effort that conventionally required numerous preliminary experiments is greatly alleviated. Since the waste of the second coagulant partner is eliminated, the effect of reducing chemical costs is also significant.
以上述べたように、本発明は、汚泥の質的、濃度的変動
に十分対撚できる凝集剤添加後の制御方法であり、汚泥
処理の゛自動化、省力化を促進するばかりでなく、従来
法より薬品費を削減できるメリットが存在する。As described above, the present invention is a control method after the addition of flocculant that can sufficiently cope with fluctuations in the quality and concentration of sludge, which not only promotes automation and labor saving in sludge treatment but also improves the efficiency of conventional methods. It has the advantage of further reducing drug costs.
以下若干の実施例を述べる。Some examples will be described below.
実施例1
梁下水処理場混合生汚泥を、陽イオン性有機高分子凝集
剤を用いて遠心分離機にて脱水した。本発明では、遠心
分離液中のコロイド荷電量を自動測定し、薬注ボンデ流
量を自動制御して所定の添加率、コロイド荷電量とした
。従来法では、運転開始時にのみ汚泥濃度を測定し、従
来から経験的に求めた濃度変動による脱水性の悪化が生
じない添加率になるように薬注ボンデ流量を固定した。Example 1 Liang sewage treatment plant mixed raw sludge was dehydrated using a cationic organic polymer flocculant in a centrifuge. In the present invention, the amount of colloid charge in the centrifuged liquid is automatically measured, and the flow rate of the chemical injection bonder is automatically controlled to obtain a predetermined addition rate and amount of colloid charge. In the conventional method, the sludge concentration was measured only at the start of operation, and the chemical injection bonding flow rate was fixed so that the addition rate would not deteriorate dewatering performance due to concentration fluctuations, which had been determined empirically.
結果を表1に示す。The results are shown in Table 1.
表 1
ここに、
汚泥濃度 2.0〜3.0
汚泥pH,6,5〜6.8
*
添加率A 1.2チ
1/ B*1.5”
凝集剤:
エバグロースC−164(荏原インフィルコ社商品名)
、(弱カチオン系)
*前記した第1図のA、Bである。Table 1 Here, Sludge concentration 2.0-3.0 Sludge pH, 6.5-6.8 *Addition rate A 1.2chi1/B*1.5" Coagulant: Evagrowth C-164 (Ebara Infilco) company product name)
, (weak cation system) *These are A and B in FIG. 1 described above.
本汚泥は、前記添加率A及びBが各々1.2゜1.5
%でおジゴロイド荷電量をゼロとする凝集剤添加中が小
さいものである。また汚泥濃度が変動し、上記ふ加重1
.2%を低下することがちると、大幅に脱水性が悪化し
遠心脱水機の運転が不能となるために、従来法では安全
サイドの添加率としている。This sludge has the addition rates A and B of 1.2° and 1.5, respectively.
The percentage of coagulant added that makes the digoloid charge amount zero is small. In addition, the sludge concentration fluctuates, and the sludge load 1
.. If the content drops below 2%, the dewatering performance will deteriorate significantly and the centrifugal dehydrator will no longer be able to operate, so in the conventional method, the addition rate is set on the safe side.
本発明によれば、従来法より添加率、含水率とも大幅に
低下させることができた。According to the present invention, both the addition rate and the water content can be significantly reduced compared to the conventional method.
実施例2
某し尿処理場で発生する汚泥は、陽イオン性凝集剤を用
いてベルトプレス型脱水機で脱水処理している。本処理
場汚泥の前記添加率Aは1.0%、添加率Bは2.5
t16であった。本処理場はこのような汚泥の質的変動
があるため、従来法としては、実施例1と同様で安全サ
イドの添加率で運転していた。結果を表2に示す。Example 2 Sludge generated at a certain human waste treatment plant is dehydrated using a belt press type dehydrator using a cationic flocculant. The addition rate A of this treatment plant sludge is 1.0%, and the addition rate B is 2.5.
It was t16. Since this treatment plant has such qualitative variations in sludge, the conventional method was to operate at a safe addition rate as in Example 1. The results are shown in Table 2.
表 2
ここに、
汚泥濃度 2.0〜2.1係
凝集 剤 エバグロースC104G(荏原インフィル
コ社商品名) (強力チオン)
実施例3
某浄水場では汚泥を陰イオン性有機高分子凝集剤を添加
して傾斜スクリーンにて脱水し、以後天日乾燥している
。天候等による汚泥の質的、濃度的変動が漱しいために
、従来法では凝集剤の添加量を多めにして強大フロック
を形成させ脱水処理していた。本発明法では、スクリー
ン分離液のコロイド荷電量を自動測定し、薬注ポンプを
制御した。表3に結果を示す。Table 2 Here, sludge concentration 2.0-2.1 flocculant Evagrowth C104G (trade name of Ebara Infilco) (Strong thione) Example 3 At a certain water treatment plant, an anionic organic polymer flocculant was added to the sludge. The water was dehydrated using an inclined screen and then dried in the sun. Because the quality and concentration of sludge fluctuates due to weather and other factors, conventional methods add a large amount of flocculant to form strong flocs for dewatering. In the method of the present invention, the amount of colloid charge in the screen separation liquid was automatically measured and the chemical injection pump was controlled. Table 3 shows the results.
表 3
汚泥濃度 3〜5.5%
、H6,5
添加率A O,0,2%
1/ B ’0.03
凝集剤
エバグロースA−152(荏原インフイルコ社商品名)
(弱アニオン)
本発明によれば、従来法と同等の脱水性をより低い凝集
剤添加率で実現している。Table 3 Sludge concentration 3-5.5%, H6.5 Addition rate A O, 0.2% 1/B '0.03 Coagulant Evagrowth A-152 (Ebara Infilco Co., Ltd. product name)
(Weak Anion) According to the present invention, dehydration performance equivalent to that of the conventional method is achieved at a lower flocculant addition rate.
第1図はイオン性有機高分子凝集剤の添加率と液中のコ
ロイド荷電量との関係を示す。第2図は第1図と同じく
イオン性有機高分子凝集剤の添加率と液中のコロイド荷
電量との関係を脱水機種を変えて求めた結果を示す。第
3図は凝集剤の添加率と液中のコロイド荷電量との関係
を汚泥の種類を変えた場合に求めた結果を示す。
代理人
弁理士 塩 崎 正 広
か 1 図
弗 2 e
Cdf:mattrコ4イi1−+LI−i;テミ1角
[鯖 ろ l
虱係利#、俳轡→FIG. 1 shows the relationship between the addition rate of the ionic organic polymer flocculant and the amount of colloid charge in the liquid. FIG. 2, like FIG. 1, shows the relationship between the addition rate of the ionic organic polymer flocculant and the amount of colloid charge in the liquid, obtained by changing the type of dehydration machine. FIG. 3 shows the relationship between the addition rate of the flocculant and the amount of colloid charge in the liquid when the type of sludge was changed. Agent Patent Attorney Tadashi Shiozaki Hiroka 1 Figure 2 e Cdf: mattrko4ii1-+LI-i;
Claims (1)
る方法において、凝集剤添加後の液中のコロイド荷電量
がOmeq / Lとなるように凝集剤添加率を制御す
ることを特徴とするイオン性有機高分子凝集剤の添加率
制御方法。A method for dewatering sludge by adding and mixing an ionic organic polymer flocculant to sludge, characterized by controlling the flocculant addition rate so that the amount of colloid charge in the liquid after adding the flocculant becomes Omeq/L. Method for controlling the addition rate of ionic organic polymer flocculants.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58056939A JPS59183899A (en) | 1983-04-01 | 1983-04-01 | Method for controlling addition ratio of ionic organic high-molecular flocculant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58056939A JPS59183899A (en) | 1983-04-01 | 1983-04-01 | Method for controlling addition ratio of ionic organic high-molecular flocculant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59183899A true JPS59183899A (en) | 1984-10-19 |
Family
ID=13041499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58056939A Pending JPS59183899A (en) | 1983-04-01 | 1983-04-01 | Method for controlling addition ratio of ionic organic high-molecular flocculant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59183899A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0483600A (en) * | 1990-07-24 | 1992-03-17 | Nippon Gesuidou Jigyodan | Dehydration of sludge |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5856937A (en) * | 1981-10-01 | 1983-04-04 | Morita Tokushu Kiko Kk | Vacuum car |
-
1983
- 1983-04-01 JP JP58056939A patent/JPS59183899A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5856937A (en) * | 1981-10-01 | 1983-04-04 | Morita Tokushu Kiko Kk | Vacuum car |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0483600A (en) * | 1990-07-24 | 1992-03-17 | Nippon Gesuidou Jigyodan | Dehydration of sludge |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU733771B2 (en) | Dewatering of sewage sludge | |
JP5256261B2 (en) | Method and apparatus for dewatering organic sludge | |
JP3680994B2 (en) | Sewage sludge treatment method | |
JPS61257300A (en) | Dehydrating method for sludge | |
JPS59183899A (en) | Method for controlling addition ratio of ionic organic high-molecular flocculant | |
JP6633943B2 (en) | Sludge treatment system and sludge treatment method | |
JPH0731999A (en) | Dehydrating method of sludge | |
KR960000313B1 (en) | Sludge dehydration method | |
JP5723916B2 (en) | Method and apparatus for dewatering organic sludge | |
JPH0122840B2 (en) | ||
JPS61259800A (en) | System for dehydration treatment of sludge | |
JPS61293600A (en) | Dewatering method for sludge by screw press | |
JPS6097012A (en) | Dehydration treatment system of sludge | |
JP3194848B2 (en) | Sludge dewatering method | |
JP3405421B2 (en) | Dehydration method of highly alkaline slurry | |
JPS6125700A (en) | Dehydrating method of organic sludge | |
CN217127133U (en) | Calcium fluoride effluent disposal system | |
JPH0561994B2 (en) | ||
JPH08323400A (en) | Method for dehydrating sludge | |
JPH0321398A (en) | Treatment of organic sludge | |
JPH01168399A (en) | Sludge treatment | |
JPH11347599A (en) | Flocculant injection amount determining apparatus | |
JPH05123700A (en) | Method for treating sludge from organic waste water and apparatus therefor | |
JPS58143899A (en) | Dehydration of sludge | |
JPH09141300A (en) | Dehydrating method of liquid-containing solid material and dehydrating device |