JPH0561994B2 - - Google Patents

Info

Publication number
JPH0561994B2
JPH0561994B2 JP9542389A JP9542389A JPH0561994B2 JP H0561994 B2 JPH0561994 B2 JP H0561994B2 JP 9542389 A JP9542389 A JP 9542389A JP 9542389 A JP9542389 A JP 9542389A JP H0561994 B2 JPH0561994 B2 JP H0561994B2
Authority
JP
Japan
Prior art keywords
sludge
tank
sewage
solubilization
biological treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9542389A
Other languages
Japanese (ja)
Other versions
JPH02277597A (en
Inventor
Katsuyuki Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP1095423A priority Critical patent/JPH02277597A/en
Publication of JPH02277597A publication Critical patent/JPH02277597A/en
Publication of JPH0561994B2 publication Critical patent/JPH0561994B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Sludge (AREA)
  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機性汚水の処理方法に係り、特
に、下水、し尿、各種産業排水などの有機性汚水
の好気性生物処理と発生する汚泥の処理方法に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for treating organic sewage, and particularly to aerobic biological treatment of organic sewage such as sewage, human waste, and various industrial wastewater, and the sludge generated. Regarding the processing method.

〔従来の技術〕[Conventional technology]

従来、有機性汚水の好気性生物処理(活性汚泥
法、硝化脱窒法など)の最大の問題点は、余剰汚
泥発生量が多い点にあり、これらの汚泥は脱水、
乾燥、焼却、処分などの汚泥処理によつて処分さ
れていたが、その処分には多大の経費と設備費が
かかる。従来の活性汚泥法の余剰汚泥の発生量
は、除去されたBOD当り、0.6〜0.8Kgss/除去
BODであり、非常に多量の余剰汚泥が発生する
ことがよく知られている。しかも、余剰汚泥は質
的にも、離脱水性であるため、ますます汚泥処理
が困難になつている。
The biggest problem with conventional aerobic biological treatment of organic sewage (activated sludge method, nitrification-denitrification method, etc.) is that a large amount of surplus sludge is generated, and this sludge is dehydrated,
Previously, it was disposed of through sludge treatment such as drying, incineration, and disposal, but such disposal requires a large amount of expense and equipment costs. The amount of surplus sludge generated by the conventional activated sludge method is 0.6 to 0.8 Kgss/removed per BOD removed.
BOD, and it is well known that a very large amount of surplus sludge is generated. Moreover, since the surplus sludge is water-based in quality, it is becoming increasingly difficult to treat the sludge.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、前記のような従来技術の問題点を解
消し、生物処理に伴つて発生する余剰汚泥の発生
量を著しく減少させることが可能な新規な方法を
提供することを目的とする。
An object of the present invention is to provide a new method that can solve the problems of the prior art as described above and significantly reduce the amount of surplus sludge generated in biological treatment.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明では、し
尿、下水などの有機性汚水を、生物学的硝化脱窒
法などの好気性生物処理したのち、固液分離し、
該固液分離された汚泥の一部を、前記生物処理槽
に返送する一方、汚泥の他部を濃縮し、該濃縮汚
泥に鉱酸を添加し、PH2.5以下、温度50℃以上の
加温条件で滞留せしめて、汚泥中の有機物を可溶
化したのち、中和することなく前記生物処理槽に
供給することを特徴とする有機性汚水の処理方法
としたものである。
In order to achieve the above object, the present invention subjects organic wastewater such as human waste and sewage to aerobic biological treatment such as biological nitrification and denitrification, and then performs solid-liquid separation.
A part of the solid-liquid separated sludge is returned to the biological treatment tank, while the other part of the sludge is concentrated, mineral acid is added to the concentrated sludge, and the sludge is heated at a pH of 2.5 or lower and a temperature of 50°C or higher. This is a method for treating organic wastewater, characterized in that the organic matter in the sludge is solubilized by retaining the sludge under warm conditions, and then supplied to the biological treatment tank without neutralization.

次に、本発明を第1図を参照にして詳しく説明
する。以下は下水処理を例に挙げて説明してい
る。
Next, the present invention will be explained in detail with reference to FIG. The following explanation uses sewage treatment as an example.

第1図は、本発明の有機性汚水の処理方法を示
す工程図である。流入下水1は、曝気槽2に流入
し、BOD資化活性汚泥の共存下で所定時間曝気
されたのち、沈殿層3に流入し、活性汚泥が沈降
され、清澄な処理水4となる。5は散水装置であ
る。
FIG. 1 is a process diagram showing the method for treating organic wastewater of the present invention. The inflowing sewage 1 flows into the aeration tank 2 and is aerated for a predetermined time in the coexistence of BOD assimilation activated sludge, and then flows into the settling layer 3 where the activated sludge settles and becomes clear treated water 4. 5 is a water sprinkler device.

沈殿槽のかわりに他の固液分離手段、例えば遠
心分離、浮上分離、UF膜又はMF膜の膜分離で
もかまわない。また、沈降分離汚泥を、さらに遠
心分離機等で濃縮して、次の処理工程に供給する
ことができる。
Instead of the sedimentation tank, other solid-liquid separation means such as centrifugation, flotation, UF membrane or MF membrane separation may be used. In addition, the settled sludge can be further concentrated using a centrifuge or the like and then supplied to the next treatment step.

沈降分離汚泥6の大部分は、返送汚泥管7から
曝気槽2にリサイクルされ、曝気槽2内のMLSS
を所定濃度に維持する。一方、沈降分離汚泥6の
他部8は、汚泥濃縮工程9(遠心分離機が、汚泥
濃縮度を最も高くできるので最適である)に供給
され、固形物濃度5〜8%程度に濃縮されたの
ち、濃縮汚泥10の一部が汚泥脱水工程15に導か
れ、他部が汚泥可溶化槽11(汚泥の加水分解槽
と呼ぶこともある)に供給される。そしてHCl、
H2SO4などの鉱酸12を汚泥可溶化槽11に添
加し、PH2.5以下(好ましくはPH1〜2)として、
所要時間(通常4〜24hrで、所要時間は汚泥の質
によつて変化する)滞留させる。汚泥の可溶化槽
11の温度は、可溶化(加水分解)速度を速める
ため、50℃以上に加温(50〜100℃が好適)する
のが重要である。また、ここで超音波を作用させ
るとより効果的に化溶化できる。
Most of the settled and separated sludge 6 is recycled from the return sludge pipe 7 to the aeration tank 2, and the MLSS in the aeration tank 2 is recycled.
is maintained at a predetermined concentration. On the other hand, the other part 8 of the settled and separated sludge 6 is supplied to a sludge concentration step 9 (a centrifugal separator is optimal because it can achieve the highest sludge concentration), and is concentrated to a solids concentration of about 5 to 8%. Afterwards, a part of the concentrated sludge 10 is led to a sludge dewatering step 15, and the other part is supplied to a sludge solubilization tank 11 (sometimes referred to as a sludge hydrolysis tank). and HCl,
A mineral acid 12 such as H 2 SO 4 is added to the sludge solubilization tank 11 to adjust the pH to 2.5 or less (preferably PH 1 to 2).
Remain for the required time (usually 4 to 24 hours, the required time varies depending on the quality of the sludge). It is important to raise the temperature of the sludge solubilization tank 11 to 50° C. or higher (preferably 50 to 100° C.) in order to accelerate the solubilization (hydrolysis) rate. In addition, if ultrasonic waves are applied here, more effective dissolution can be achieved.

可溶化槽11においては、活性汚泥を構成する
種々の微生物の細胞構成成分(ポリサツカライ
ド、プロテイン、脂質など)が、強酸性条件下で
加水分解されて低分子化され、分子量数千〜数万
の分子コロイド領域状態にまで可溶化されること
が、ゲルクロマトグラフイーによる分析によつて
見出された。可溶化された汚泥は高濃度のBOD
成分を含むことも認められた。また、汚泥の一部
は可溶化されずに、SS状のままで残る現象も認
められた。17は加熱器であり、13は濃縮工程
分離水である。
In the solubilization tank 11, the cellular constituent components (polysaccharides, proteins, lipids, etc.) of various microorganisms constituting the activated sludge are hydrolyzed under strongly acidic conditions and reduced to molecular weights ranging from several thousand to several thousand. It was found by gel chromatography analysis that it was solubilized to a colloidal state of about 10,000 molecules. Solubilized sludge has a high concentration of BOD
It was also found that it contained ingredients. It was also observed that some of the sludge was not solubilized and remained in the form of SS. 17 is a heater, and 13 is water separated from the concentration process.

なお、汚泥濃縮工程9を設けるのは、汚泥可溶
化槽11に供給するHCl、H2SO4などの鉱酸の所
要量が、汚泥濃縮度に反比例して増加するので、
可能な限り、固形物濃度の高い汚泥を可溶化槽1
1に供給することが、薬品コスト的に望ましいか
らである。
The sludge concentration step 9 is provided because the required amount of mineral acids such as HCl and H 2 SO 4 to be supplied to the sludge solubilization tank 11 increases in inverse proportion to the degree of sludge concentration.
As much as possible, remove sludge with a high solids concentration from solubilization tank 1.
This is because it is desirable in terms of chemical costs to supply the drug to 1.

酸により加水分解された低分子性のBODを含
む可溶化汚泥14は、中和することなく、そのま
ま曝気槽2あるいは汚泥返送ライン7に供給さ
れ、曝気槽2に存在する活性汚泥によつて、CO2
とH2Oに生物学的に分解される。もちろん、曝
気槽2へのBOD負荷は、流入下水のBODと可溶
化汚泥のBODの合計量に基づいて、設計し、処
理水質の悪化をあらかじめ防止するようにしてお
くことが重要である。
The solubilized sludge 14 containing low-molecular BOD hydrolyzed by acid is supplied as it is to the aeration tank 2 or sludge return line 7 without being neutralized, and by the activated sludge present in the aeration tank 2, CO2
and H 2 O. Of course, it is important to design the BOD load to the aeration tank 2 based on the total amount of BOD of inflowing sewage and BOD of solubilized sludge in order to prevent deterioration of treated water quality in advance.

なお、既設の活性汚泥プロセスに本発明を適用
しようとする場合は、既設の曝気槽2の容量を増
加することは困難な場合が多いので、曝気槽の
MLSS濃度を高めることによつて対応したほうが
好ましい。
Note that when applying the present invention to an existing activated sludge process, it is often difficult to increase the capacity of the existing aeration tank 2.
It is preferable to respond by increasing the MLSS concentration.

以上が本発明の処理工程であり、本発明者の6
ケ月間に渡るロングランテストにより、余剰汚泥
の発生量が、従来の活性汚泥法に比較して、1/3
〜1/4に減少することが確認された。また、下水、
し尿などには粘土分などの無機性のSSあるいは
紙などの繊維分なども含まれているので、余剰汚
泥発生量がゼロになることは、あり得ないので、
余剰汚泥排出管10′を設け、汚泥脱水機15に
よつて、脱水するようにしておく。16は汚泥脱
水ケーキである。
The above are the processing steps of the present invention, and the inventor's 6
A long run test over several months revealed that the amount of surplus sludge generated was reduced to 1/3 compared to the conventional activated sludge method.
It was confirmed that it decreased to ~1/4. Also, sewage,
Human waste also contains inorganic SS such as clay and fibers such as paper, so it is impossible for the amount of surplus sludge generated to be zero.
An excess sludge discharge pipe 10' is provided, and a sludge dehydrator 15 is used to dewater the sludge. 16 is a sludge dewatering cake.

〔実施例〕〔Example〕

以下、実施例により本発明をより詳しく説明す
るが、本発明はこれらの実施例に限定されない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例 1 初沈越流下水(BOD120〜180mg/、SS100
〜155mg/)を曝気時間8hr、活性汚泥
MLSS1800〜2500mg/の曝気槽(BOD−
MLSS負荷0.18〜0.25(KgBOD/Kg)MLSS・日)
に供給したのち、水面積負荷12m3/m2・日の沈殿
槽において、活性汚泥を沈降分離し、固形物濃度
1〜1.5%の沈汚泥を得た。
Example 1 Initial settling overflow sewage (BOD120-180mg/, SS100
~155mg/) for 8hr aeration time, activated sludge
Aeration tank (BOD-
MLSS load 0.18-0.25 (KgBOD/Kg) MLSS/day)
The activated sludge was then separated by sedimentation in a settling tank with a water area load of 12 m 3 /m 2 ·day to obtain settled sludge with a solids concentration of 1 to 1.5%.

下水処理量をQm3/日とするとき、沈殿汚泥の
0.01Qm3/日を遠心分離機による汚泥濃縮工程に
供給し、残りの沈殿汚泥は曝気槽に返送した。
When the amount of sewage treatment is Qm 3 /day, the amount of settled sludge is
0.01Qm 3 /day was supplied to the sludge concentration process using a centrifuge, and the remaining settled sludge was returned to the aeration tank.

遠心分離機(巴工業製、シヤープレスBD型ス
ーパデカンター)により、沈汚泥を濃縮したとこ
ろ、固形物濃度平均5.5%の濃縮汚泥を得た。
When the settled sludge was concentrated using a centrifugal separator (Tomoe Kogyo Co., Ltd., Shear Press BD model super decanter), concentrated sludge with an average solid content of 5.5% was obtained.

次にこの濃縮汚泥を、滞留時間15時間の回分処
理タイプの汚泥可溶化槽に導きスチームを吹きこ
んで、温度70〜75℃に加温しつつ、硫酸を汚泥可
溶化槽内液に対し、PH1〜2.5になるように添加
して、撹拌しながら汚泥の可溶化(加水分解)を
行つた。しかるのに、可溶化汚泥(SS5600〜
6700mg/、BOD7500〜9200mg/)を、前記
の曝気槽に添加して、好気性、生物処理を行つ
た。
Next, this thickened sludge was introduced into a batch treatment type sludge solubilization tank with a residence time of 15 hours, and steam was blown into it, and while heating it to a temperature of 70 to 75°C, sulfuric acid was added to the liquid in the sludge solubilization tank. It was added to adjust the pH to 1 to 2.5, and the sludge was solubilized (hydrolyzed) while stirring. However, solubilized sludge (SS5600~
6700 mg/, BOD 7500 to 9200 mg/) was added to the aeration tank to perform aerobic and biological treatment.

6ケ月、上記の条件に従つて運転を続けた結
果、沈殿池流出水の水質はBOD15〜18、SS20〜
25mg/であつた。また、余剰汚泥、発生量の6
ケ月間の変動範囲は下水処理量1m3あたり、
0.038〜0.045Kgssであつた。また沈澱槽に流入す
る活性汚泥のSVI値は150〜200であつた。
As a result of continuing operation according to the above conditions for 6 months, the water quality of the sedimentation tank effluent was BOD15~18, SS20~
It was 25mg/. In addition, surplus sludge, generated amount
The monthly fluctuation range is per 1m3 of sewage treatment volume.
It was 0.038-0.045Kgss. Furthermore, the SVI value of activated sludge flowing into the settling tank was 150-200.

実施例 2 可溶化槽のPHと汚泥可溶化率の関係を第2図に
示す。第2図において、原汚泥は固形物濃度4.8
%の下水の余剰活性汚泥を用いた。処理条件は温
度80℃、滞留時間:24hr一定とした。
Example 2 The relationship between the pH of the solubilization tank and the sludge solubilization rate is shown in Figure 2. In Figure 2, the solids concentration of raw sludge is 4.8.
% of sewage surplus activated sludge was used. The processing conditions were a temperature of 80°C and a constant residence time of 24 hours.

汚泥可溶化率は、回分遠心分離機で10分間遠心
分離し、上澄液をすて、残りの汚泥の重量を測定
し、次式で計算した値である。
The sludge solubilization rate is a value calculated using the following formula after centrifuging the sludge in a batch centrifuge for 10 minutes, discarding the supernatant, and measuring the weight of the remaining sludge.

可溶化率=(1−可溶化処理汚泥/原汚泥重量)×100
(%) 実施例 3 次に、可溶化槽の温度と可溶化率との関係を調
べた結果を第3図に示す。PHは1.5一定、滞留時
間は24hr一定とした。原汚泥の種類と濃度は実施
例2と同一である。
Solubilization rate = (1 - solubilized sludge/raw sludge weight) x 100
(%) Example 3 Next, FIG. 3 shows the results of investigating the relationship between the temperature of the solubilization tank and the solubilization rate. The pH was constant at 1.5 and the residence time was constant at 24 hours. The type and concentration of raw sludge are the same as in Example 2.

第2図及び第3図の結果より、PHは2.5以下、
温度50℃以上が酸による汚泥の可溶化に好適な条
件であることが認められた。
From the results in Figures 2 and 3, the PH is 2.5 or less.
It was found that a temperature of 50°C or higher is a suitable condition for solubilizing sludge with acid.

比較例 第1図の本発明フローの、汚泥可溶化槽、硫酸
の添加を省略した以外は、同一条件(下水処理
量、流入下水水質、曝気槽滞留時間、BOD−SS
負荷を同一にした)のテストを同一期間平行して
行つた結果、沈殿槽に流入するため活性汚泥スラ
リーのSVIは180〜270、沈殿流出水のBOD12〜
20、SS28〜35mg/であり、余剰汚泥発生量は
下水処理量1m3あたり0.11〜0.14Kgssであつた。
この値は本発明に比べ約3〜4倍も多量であり、
本発明効果が大きいことが確認された。
Comparative Example The same conditions (sewage treatment amount, inflow sewage water quality, aeration tank residence time, BOD-SS
As a result, the SVI of the activated sludge slurry flowing into the settling tank was 180 to 270, and the BOD of the sedimentation effluent was 12 to 12.
20, SS was 28 to 35 mg/, and the amount of surplus sludge generated was 0.11 to 0.14 Kgss per 1 m3 of sewage treatment.
This value is about 3 to 4 times larger than that of the present invention,
It was confirmed that the effect of the present invention is large.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、次のような効果が得られた。 According to the present invention, the following effects were obtained.

a 簡単な操作、設備により、余剰汚泥の発生量
を大幅に減少できる。また汚泥の脱水、乾燥、
焼却処分または埋立処分が大幅に合理化でき、
汚泥処理、処分工程の設備費、経費も数分の1
に節減できる。
a. With simple operation and equipment, the amount of surplus sludge generated can be significantly reduced. In addition, sludge dewatering, drying,
Incineration or landfill disposal can be significantly streamlined,
Equipment costs and expenses for sludge treatment and disposal processes are reduced to a fraction of the cost.
savings can be achieved.

b 沈殿槽に流入する活性汚泥の沈降性が、向上
する。
b. The settling ability of activated sludge flowing into the settling tank is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の処理方法を示す工程図、第
2図は、PHと汚泥の可溶化率の関係を示すグラ
フ、第3図は温度と汚泥の可溶化率の関係を示す
グラフである。 1……流入下水、2……曝気槽、3……沈殿
槽、4……清澄な処理水、5……散気装置、6…
…沈降分離汚泥、7……返送汚泥、8……処理用
混泥、9……汚泥濃縮工程、10……濃縮汚泥、
11……汚泥可溶化槽、12……鉱酸、13……
濃縮工程分離水、14……可溶化汚泥。
Figure 1 is a process diagram showing the treatment method of the present invention, Figure 2 is a graph showing the relationship between pH and sludge solubilization rate, and Figure 3 is a graph showing the relationship between temperature and sludge solubilization rate. be. 1... Inflow sewage, 2... Aeration tank, 3... Sedimentation tank, 4... Clear treated water, 5... Aeration device, 6...
... Sedimentation separation sludge, 7 ... Return sludge, 8 ... Mixed sludge for treatment, 9 ... Sludge concentration process, 10 ... Thickened sludge,
11...Sludge solubilization tank, 12...Mineral acid, 13...
Concentration step separated water, 14... Solubilized sludge.

Claims (1)

【特許請求の範囲】[Claims] 1 有機性汚水を好気性生物処理したのち、固液
分離し、該固液分離された汚泥の一部を前記好気
性生物処理工程に返送する一方、汚泥の他部を濃
縮し、該濃縮汚泥に鉱酸を添加し、PH2.5以下に
維持し、温度50℃以上の条件で滞留せしめて、汚
泥中の有機物を可溶化したのち、中和することな
く前記好気性生物処理工程に供給することを特徴
とする有機性汚水の処理方法。
1 After subjecting organic sewage to aerobic biological treatment, solid-liquid separation is carried out, and a part of the solid-liquid separated sludge is returned to the aerobic biological treatment process, while the other part of the sludge is concentrated and the concentrated sludge is Mineral acid is added to the sludge, the pH is maintained below 2.5, and the organic matter in the sludge is solubilized by being allowed to stagnate at a temperature of 50°C or above, and then fed to the aerobic biological treatment process without neutralization. A method for treating organic sewage characterized by the following.
JP1095423A 1989-04-17 1989-04-17 Treatment of organic sewage Granted JPH02277597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1095423A JPH02277597A (en) 1989-04-17 1989-04-17 Treatment of organic sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1095423A JPH02277597A (en) 1989-04-17 1989-04-17 Treatment of organic sewage

Publications (2)

Publication Number Publication Date
JPH02277597A JPH02277597A (en) 1990-11-14
JPH0561994B2 true JPH0561994B2 (en) 1993-09-07

Family

ID=14137288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1095423A Granted JPH02277597A (en) 1989-04-17 1989-04-17 Treatment of organic sewage

Country Status (1)

Country Link
JP (1) JPH02277597A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608057B2 (en) * 2000-07-26 2011-01-05 オルガノ株式会社 Sludge treatment apparatus and sludge treatment method
JP2002361278A (en) * 2001-06-12 2002-12-17 Hitachi Kiden Kogyo Ltd Method for removing phosphorus in sludge
JP4495051B2 (en) * 2005-08-23 2010-06-30 株式会社神鋼環境ソリューション Activated sludge treatment method and activated sludge treatment apparatus therefor
JP2010089023A (en) * 2008-10-09 2010-04-22 Suiwa:Kk Method for volume-reducing waste sludge
CN102718316A (en) * 2012-06-01 2012-10-10 天津大学 Biological denitrification promotion method using carbon source supplemented by carrying out low-intensity ultrasonic sludge disintegration and hydrolytic acidification on disintegrated sludge and straws and application of method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911813A (en) * 1972-04-12 1974-02-01
JPS5157955A (en) * 1974-11-15 1976-05-20 Eisai Co Ltd Yojoodeino shorihoho
JPS5719719A (en) * 1980-07-10 1982-02-02 Canon Inc Electric power source holding device of camera

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911813A (en) * 1972-04-12 1974-02-01
JPS5157955A (en) * 1974-11-15 1976-05-20 Eisai Co Ltd Yojoodeino shorihoho
JPS5719719A (en) * 1980-07-10 1982-02-02 Canon Inc Electric power source holding device of camera

Also Published As

Publication number Publication date
JPH02277597A (en) 1990-11-14

Similar Documents

Publication Publication Date Title
US7291275B1 (en) Method for clarifying industrial wastewater while minimizing sludge
US7160470B2 (en) Method of clarifying industrial laundry wastewater using cationic dispersion polymers and anionic flocculent polymers
US3806448A (en) Biological waste treatment process
JPH0561994B2 (en)
US5075015A (en) Method for color removal from thermally conditioned sludge liquors
JPS5895593A (en) Solid-liquid separation in activated sludge treating method
JPH0661550B2 (en) Organic wastewater treatment method
CA2175128C (en) Color removal from effluent waters
US4735729A (en) Ash concentration and disposal method
JP2655284B2 (en) Treatment method of human wastewater
Wang et al. Separation of nitrocellulose fine particles from industrial effluent with organic polymers
US3300401A (en) Process for dewatering organic sludge which has been separated during treatment of waste water
JPH02293095A (en) Treatment of organic sewage
JP2534336B2 (en) Sludge treatment equipment
KR0123211B1 (en) High speed sedimentation method of sludge
JPS61188000A (en) Dehydration treatment of organic sewage
JPH01168399A (en) Sludge treatment
JPH0230320B2 (en)
JPH038496A (en) Treatment of septic tank sludge
JPH03157196A (en) Treatment of organic sewage
JPH0483596A (en) Treatment of organic sewage
JPH0321398A (en) Treatment of organic sludge
JPS637840B2 (en)
JPH05123700A (en) Method for treating sludge from organic waste water and apparatus therefor
JPH0440800Y2 (en)