JPS59182271A - Solid electrolyte and manufacture - Google Patents

Solid electrolyte and manufacture

Info

Publication number
JPS59182271A
JPS59182271A JP58056224A JP5622483A JPS59182271A JP S59182271 A JPS59182271 A JP S59182271A JP 58056224 A JP58056224 A JP 58056224A JP 5622483 A JP5622483 A JP 5622483A JP S59182271 A JPS59182271 A JP S59182271A
Authority
JP
Japan
Prior art keywords
stabilized
oxide
solid electrolyte
bismuth oxide
powdered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58056224A
Other languages
Japanese (ja)
Other versions
JPS6245191B2 (en
Inventor
哲夫 山口
福田 敬紀
柳田 博明
勝 宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP58056224A priority Critical patent/JPS59182271A/en
Publication of JPS59182271A publication Critical patent/JPS59182271A/en
Publication of JPS6245191B2 publication Critical patent/JPS6245191B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は酸素センサー、燃料電池等の構成材料として
有用な固体電解質に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid electrolyte useful as a constituent material of oxygen sensors, fuel cells, and the like.

従来、上記のような同体電解質として、種々のものが知
られているが、特に安定化酸化ビスマスと安定化重化ジ
ルコニウムが有力視されている。
Conventionally, various isoelectrolytes as described above have been known, but stabilized bismuth oxide and stabilized heavy zirconium are considered to be particularly promising.

上記安定化酸化ビスマスを構成する酸化ビスマス(Bi
203)の高温安定型のδ相(立方晶系)は、周知のよ
うに酸素イオン(02−)位置の%が空孔となった欠陥
蛍石型構造を持ち、この酸繁空孔の移動によって高いイ
オン導電性を示すものである。
Bismuth oxide (Bi) constituting the above stabilized bismuth oxide
As is well known, the high-temperature stable δ phase (cubic system) of 203) has a defective fluorite structure in which % of the oxygen ion (02-) positions are vacancies, and the movement of these acid vacancies It exhibits high ionic conductivity.

この立方晶系酸化ビスマス(δ−Bi20.)は、高温
では安定であるが、低温では不安定である。これはδ相
の酸素空孔濃度が低温で安定に存在するには高すぎるた
めと考えられていす。そで〕ため酸化カルシウム(Ca
O)、酸化ストロンチウム(sro)等の2価の金属酸
化物、酸化イツトリウム(Y2O2)、酸化イットリビ
ウム(Yb203)等の3価の金属酸化物を安定化剤と
してδ−B 120sに高温下の熱処理で固溶させて、
この金属酸化物によってδ相を低温度域まで安定化し、
実用に耐え得るようにしたものが、上記安定化酸化ビス
マスである。
This cubic bismuth oxide (δ-Bi20.) is stable at high temperatures but unstable at low temperatures. This is thought to be because the concentration of oxygen vacancies in the δ phase is too high for it to exist stably at low temperatures. Calcium oxide (Ca
Heat treatment at high temperature to δ-B 120s using divalent metal oxides such as O), strontium oxide (sro), and trivalent metal oxides such as yttrium oxide (Y2O2) and yttribium oxide (Yb203) as stabilizers. Make a solid solution with
This metal oxide stabilizes the δ phase down to a low temperature range,
The above-mentioned stabilized bismuth oxide has been made practical.

一方、酸化ジルコニウム(Z r 02)は、高融点物
質であるが、これに上記したCaO1Mg01Y、o蒔
の低原子価金属酸化物を安定化剤として所定量固溶させ
ると、その最高温和である蛍石型立方晶が低温度域まで
安定相となるとともに、その02−位置に多数の欠陥(
空孔)が生じて導電率(イオン輸率)が向上することが
判明し、それに基づいて構成されたのが、上記安定化Δ
ν化リジルコニウムある。
On the other hand, zirconium oxide (Z r 02) is a high melting point substance, but when a predetermined amount of the above-mentioned low-valent metal oxides such as CaO1Mg01Y and O are dissolved in solid solution as a stabilizer, the temperature reaches its maximum temperature. The fluorite cubic crystal becomes a stable phase up to a low temperature range, and there are many defects (
It was found that the electrical conductivity (ion transfer number) was improved by the formation of vacancies, and the above-mentioned stabilized Δ
There is lysirconium nitride.

ところで、上記した酸素センサー、燃料電池等の分野に
適用さね、る固体電解質に必要とされる特性の主なもの
としては、その使用目的および使用環境から考えて、(
イ)導電率(イオン輸率)が低温度域においても優れて
いること、(ロ)熱膨張係数が小さいこと、の2点があ
る。
By the way, considering the purpose and environment of use, the main characteristics required for solid electrolytes that are not applicable to the above-mentioned fields such as oxygen sensors and fuel cells are (
There are two points: b) the conductivity (ion transfer number) is excellent even in a low temperature range, and (b) the coefficient of thermal expansion is small.

ところが、上記従来の固体電解質においては、Y2O3
等の安定化剤の固溶量を変化させることによって、上記
各特性を個々別々にある程度満足させることができるも
のの、2つ同時に満足させることがむずかしい。また、
その特性値も実用上必ずしも満足すべきものでないのが
現状である。つまり、上記分野に適用する固体電解質に
おいては、低温度域まで電気特性が良く、かつ熱膨張係
数が小さいことが望まれている訳である。
However, in the conventional solid electrolyte mentioned above, Y2O3
Although it is possible to individually satisfy each of the above characteristics to some extent by changing the solid solution amount of stabilizers such as, it is difficult to satisfy both of them at the same time. Also,
At present, its characteristic values are not necessarily satisfactory in practice. In other words, solid electrolytes applied to the above fields are desired to have good electrical properties down to a low temperature range and a small coefficient of thermal expansion.

本発明者らは、上記のような緒特性をほぼ同時に満足す
るような固体電解質およびその製造方法を開発するため
に鋭意研究を重ねたところ下記のような知見を得るに至
った。
The present inventors have conducted intensive research to develop a solid electrolyte that satisfies the above-mentioned characteristics at the same time and a method for manufacturing the same, and have come to the following findings.

(a)  安定化剤が¥20.でその固溶量が約10m
o79%の時の安定化酸化ビスマス((B120s)0
,9(Y20s)0.1)および安定化酸化ジルコニウ
ム((Zr02) 0,9(Y20110,1)におい
て最も高い導電率を得ることができる。
(a) Stabilizer costs ¥20. The amount of solid solution is about 10m
Stabilized bismuth oxide ((B120s)0 at o79%
,9(Y20s)0.1) and stabilized zirconium oxide ((Zr02)0,9(Y20110,1)).

(b)  上記安定化酸化ビスマスと安定化酸化ジルコ
ニウムを粉末状態とし、これらを所定割合(安定化酸化
ビスマスが約60 ma1%以上)で混合し、成形焼成
すると、上記安定化酸化ビスマスおよび安定化酸化ジル
コニウム単体よりも導電率が優れている。特に低温度領
域でその差が順序である。
(b) The above-mentioned stabilized bismuth oxide and stabilized zirconium oxide are made into powders, mixed in a predetermined ratio (stabilized bismuth oxide is about 60 ma 1% or more), and when molded and fired, the above-mentioned stabilized bismuth oxide and stabilized zirconium oxide are mixed. It has better electrical conductivity than zirconium oxide alone. Especially in the low temperature range, the difference is significant.

本発明は上記知見に基づいてなされたものである。すな
わち本発明は、粉末状の酸化ビスマスに約5〜30 m
oe%の粉末状の安定化剤を混合し、これを焼成して安
定化酸化ビスマスを形成する第1の仮焼工程と、粉末状
の酸化ジルコニウムに約5〜30 moe%の粉末状の
安 定゛化゛i剤へを混合し、これを焼成して安定化酸
化ジルコニウムを形成する第2の仮焼工程と、これら安
定化酸化ビスマスと安定化酸化ジルコニウムとを粉末状
にし、その混合割合、を約60 mod%以上とする安
定化酸化ビスマスとその割合を約40 mo1%以下と
する安定化酸化ジルコニウムとを混合する粉末混合工程
と、この粉末混合物を成形し、これを焼成する本焼成工
程とからなる固体電解質の製造方法であり、それによっ
て得られる固体電解質である。
The present invention has been made based on the above findings. That is, in the present invention, about 5 to 30 m
A first calcination step in which a powdered stabilizer of oe% is mixed and fired to form a stabilized bismuth oxide; A second calcination step in which stabilized bismuth oxide and stabilized zirconium oxide are mixed into a stabilizing agent and fired to form stabilized zirconium oxide, and the stabilized bismuth oxide and stabilized zirconium oxide are powdered and their mixing ratio is determined. , a powder mixing step of mixing stabilized bismuth oxide with a proportion of about 60 mod% or more and stabilized zirconium oxide with a proportion of about 40 mo1% or less, and a main sintering step of molding this powder mixture and firing it. A solid electrolyte manufacturing method is a solid electrolyte obtained by the method.

次に本発明をその一実雄側番こ基づいて詳しく説明する
。この実施例においてT31203粉末、ZrO2粉末
およびY203粉末は、それぞれレアメタリック社製の
純度99.99%のものを使用した。
Next, the present invention will be explained in detail based on its one side. In this example, T31203 powder, ZrO2 powder, and Y203 powder were each manufactured by Rare Metallic Co., Ltd. and had a purity of 99.99%.

〔第1の仮焼工程〕 B:t203粉末に安定化剤としてY20s粉末を10
mo(5%添加し、これを広ロボリビン(250ml)
により50分分間式混合した。その後、アルミナ乳鉢に
より湿式混合(特級C2H50H使用、以後の湿式混合
および粉砕もC2H50H使用した)を30分間行ない
、これを赤外線ランプで乾燥した。
[First calcination step] B: Add 10% of Y20s powder as a stabilizer to t203 powder.
Add mo (5%) and add this to Hirobolibin (250ml)
The mixture was mixed for 50 minutes. Thereafter, wet mixing was carried out for 30 minutes in an alumina mortar (special grade C2H50H was used, C2H50H was also used for subsequent wet mixing and pulverization), and the mixture was dried with an infrared lamp.

出来上がった混合粉末を白金ルツボに入れ、1’1. 
i r in気においてマツフル炉により800℃5時
間焼成し、室温にて急冷した。この焼成物PX線粉末−
チヤード法により同定したところ、完全なδ相とはなっ
ておらず、β相が若干混在していた〇 上記焼成物を乳鉢により湿式粉砕(30分間)し、再び
マツフル炉により850℃、5時間(inair)焼成
し、室温にて急冷した。この焼成物をX線粉末−チャー
ド法により同定したところ、完全なδ−Bt、Q、とな
っていた。また、このδ−Bi2’s4゜ を熱市情測定(TG)および差熱分析(DTA )にか
けたところ、930°Cまで、相が安定であることが判
明した。
Put the finished mixed powder into a platinum crucible and heat it 1'1.
The product was fired at 800° C. for 5 hours in a Matsufuru furnace in an irritant atmosphere, and then rapidly cooled at room temperature. This fired product PX-ray powder -
When identified by the Chard method, it was found that the δ phase was not complete, but a slight amount of β phase was mixed in. The above baked product was wet-ground in a mortar (30 minutes), and then crushed again in a Matsufuru furnace at 850°C for 5 hours. (inair) and quenched at room temperature. When this fired product was identified by the X-ray powder-chard method, it was found to be completely δ-Bt,Q. Furthermore, when this δ-Bi2's4° was subjected to thermal measurement (TG) and differential thermal analysis (DTA), it was found that the phase was stable up to 930°C.

〔第2の仮焼工程〕 ZrO7粉末に安定化剤としてY2O3粉末ヲ10mo
1%添加し、これをボールミルにより湿式混合(6時間
)を行なった。この時の容器は8.5 cv lX11
.O−のポリ容器を用い、ボールは日本化学陶器製ジル
コニア・ボール全使用した。この混合物をビーカーに移
してホットプレート上(90’C)で適度にアルコール
を蒸発させ、その後赤外線ランプで乾燥した。この乾燥
混合物を白金ルツボに入れ、カンタルスーパー炉にて1
500”Cs 5時間(’in air)  焼成、炉
冷をT丁なった。この焼成物をX線粉末−チャード法に
より同定したところ、完全なCQ b 1c   Zr
(’)2  となっていた。
[Second calcination step] Add 10 mo of Y2O3 powder to ZrO7 powder as a stabilizer.
1% was added, and wet mixing (6 hours) was performed using a ball mill. The container at this time is 8.5 cv lX11
.. An O- plastic container was used, and all balls were zirconia balls manufactured by Nippon Kagaku Toki. The mixture was transferred to a beaker, the alcohol was evaporated moderately on a hot plate (90'C), and then dried with an infrared lamp. This dry mixture was placed in a platinum crucible and heated in a Kanthal super furnace for 1
500"Cs 5 hours ('in air) firing and furnace cooling. When this fired product was identified by the X-ray powder-chard method, it was found to be a complete CQ b 1c Zr.
(') It was 2.

〔粉末混合工程〕[Powder mixing process]

上記δ−Bi203および(’ubic  Z r 0
2 をそれぞれアルミナ乳鉢にて粉砕(30分間)シ、
それらを200 me−助ふるいにかけて200mes
h以上のものを次の本焼成用の材料とした。これらの材
料を充分乾燥した後、δ−Bi203を86 ma1%
、Cubic   zro2を14+r+o(9%で混
合し、これをめのう乳鉢のライカイ器を用いて湿式混合
(15分間)を行った。その後、これを1.31fty
n、/6.rlの圧力で5X15X5mmの直方体に成
形し、マツフル炉内の白金板上に置き、930°C11
2時間焼成し、炉冷を行ない、目的とする固体電解質を
得た。これをX線粉末−チャード法により同定したとこ
ろ、δ−Bi203とCubic   ZrO2の固溶
体が形成されていることが確認できた。
The above δ-Bi203 and ('ubic Z r 0
2 in an alumina mortar (for 30 minutes),
Put them through a 200 me-suke sieve.
The material of h or more was used as the material for the next main firing. After sufficiently drying these materials, 86 ma1% of δ-Bi203
, Cubic zro2 was mixed at 14+r+o (9%) and wet mixed (15 minutes) using an agate mortar.
n, /6. Formed into a rectangular parallelepiped of 5 x 15 x 5 mm at a pressure of RL, placed on a platinum plate in a Matsufuru furnace, and heated at 930°C.
The product was fired for 2 hours and cooled in a furnace to obtain the desired solid electrolyte. When this was identified by the X-ray powder-chard method, it was confirmed that a solid solution of δ-Bi203 and Cubic ZrO2 was formed.

FJ ラ1h タ固体電解質、((Bi2O3) (1
q (Y20s ) 0.1)0.86C(Zr02)
 0.9 (Y2O3) (11) 0.14の導電率
を500°C〜700°Cにおいて下記の比較例ととも
にff1l+定した。
FJ La1h solid electrolyte, ((Bi2O3) (1
q (Y20s) 0.1) 0.86C (Zr02)
The electrical conductivity of 0.9 (Y2O3) (11) 0.14 was determined at 500°C to 700°C along with the following comparative example.

・比較例1.−− (Bi203) 0.9 (Y20
s ) (11・比較例2−− ((Bi2O3) 0
.9 (Y20s ) 。4) 0.5((ZrO2)
B9(Y2O3) o、1)(15・比較例3・・・・
・・((B 1203 )。9(Y2O3)。1〕。、
2((zro2 )0.9’ Y2O3)0.1) (
3,6比較例4 ・−・・(Zr02) 0,9 (Y
2O3) o、i上記実施例は、それぞれ本発明品のも
のと同様に1.31 伽/cr&の圧力で5×15×5
imの直方体に成形した。
・Comparative example 1. -- (Bi203) 0.9 (Y20
s ) (11・Comparative example 2 -- ((Bi2O3) 0
.. 9 (Y20s). 4) 0.5((ZrO2)
B9(Y2O3) o, 1) (15・Comparative example 3...
...((B 1203).9(Y2O3).1).,
2((zro2)0.9' Y2O3)0.1) (
3,6 Comparative example 4 --- (Zr02) 0,9 (Y
2O3) o, i The above examples are 5 x 15 x 5 at a pressure of 1.31 C/cr&, similar to the product of the present invention.
It was molded into an im rectangular parallelepiped.

これら本発明品および各比較例をエメリー紙の#400
〜#1500までを用いて表面を研磨し、両端に白金を
スパッタし、これを電極とした。これを白金板に挟み、
ゴールド・ファーネス中で昇温しながら、600°Cか
ら700°Cまでl:mpedanceAnalgze
r(Yl(R4192A、 LF)を用いてインピーダ
ンスの周波数依存性について10MHzから1011z
までの範囲で測定した。なお、この測定では所定の温度
が一定になったら、1時間アニールした後、次の測定を
行なった。このインピーダンス測定により得た各試料の
導電率の温度依存性について調べた。その結果を示した
のが第1図のグラフである。
These products of the present invention and each comparative example were coated with #400 emery paper.
The surface was polished using #1500 and platinum was sputtered on both ends, and this was used as an electrode. Sandwich this between platinum plates,
l:mpedanceAnalgze from 600°C to 700°C with increasing temperature in a gold furnace.
r(Yl(R4192A, LF) for frequency dependence of impedance from 10MHz to 1011z
It was measured in the range up to In this measurement, once the predetermined temperature became constant, annealing was performed for 1 hour, and then the next measurement was performed. The temperature dependence of the electrical conductivity of each sample obtained through this impedance measurement was investigated. The graph in FIG. 1 shows the results.

このグラフから判るように、本発明品のものは、単体の
Cub i c−Z rQ2 (比較例4)に比べ2ケ
タ以上の高い導電率を示しており、単体のト弔1203
(比較例1)に比べると、550°C以上の高温度域で
はほぼ等しい導電率となっているが、約550℃以下の
低温度域では3〜4倍程度大きくなっている。また、他
のモル比で混合して焼成した混合焼結体(比較例2.3
)に比べると平均して1ケタ程度高い導電率を示してい
る。
As can be seen from this graph, the product of the present invention has a conductivity that is more than two orders of magnitude higher than that of the single Cubic-Z rQ2 (Comparative Example 4).
Compared to (Comparative Example 1), the conductivity is approximately the same in the high temperature range of 550°C or higher, but is about 3 to 4 times higher in the low temperature range of about 550°C or lower. In addition, mixed sintered bodies mixed and fired at other molar ratios (Comparative Example 2.3
) shows an average conductivity that is about one order of magnitude higher than that of

また、上記測定とは別途に((Bi20.)。q (Y
20g )。、1X((Zr02 ) 。、q (Yt
Os ) 。、1) 1−xの組成においてXが1.O
o〜0.86の焼結体を作成し、その格子定数をケイ素
(レアメタリック社製、純度9999%)を内部標準と
して、X線粉末−チャード法により求めたと、ころ第2
図のようになり、Cubic−Z r 02の固溶量の
増加に伴なって格子定数が増加し約x=0.86にて最
大値を示すことが判明した。
In addition, separately from the above measurement, ((Bi20.).q (Y
20g). , 1X ((Zr02) ., q (Yt
Os). , 1) In the composition 1-x, X is 1. O
A sintered body with a diameter of 0.0 to 0.86 was prepared, and its lattice constant was determined by the X-ray powder-chard method using silicon (manufactured by Rare Metallic Co., Ltd., purity 9999%) as an internal standard.
As shown in the figure, it was found that as the solid solution amount of Cubic-Z r 02 increased, the lattice constant increased and reached a maximum value at about x=0.86.

但し、Xが0.86以下ではほぼ一定である。そして、
同時にそれらの導電率を測定したところ、上記格子定数
の増加に伴なって導電率も増加して同様に約x = 0
.86で最大値を示すことが確められた。またXが0.
86以上では一相領域でありδ−Bi203と立方晶−
ZrO,が完全に固溶していることがわかった。
However, when X is 0.86 or less, it is almost constant. and,
When we measured their electrical conductivity at the same time, we found that as the lattice constant increased, the electrical conductivity also increased, and similarly reached approximately x = 0.
.. It was confirmed that the maximum value was shown at 86. Also, X is 0.
86 or more, it is a single phase region and δ-Bi203 and cubic crystal-
It was found that ZrO was completely dissolved in solid solution.

従って、本発明品が従来のδ−B i20.およびCu
bic  Zr0z各単体より導電率が大きくなってい
るのは、δ−B 120sに固溶したCubic Zr
O2により相位格子長が増大し、酸素イオンの移動が容
易になることにその原因があるものと思われる。
Therefore, the product of the present invention is different from the conventional δ-B i20. and Cu
Cubic Zr dissolved in δ-B 120s has a higher conductivity than each individual bic Zr0z.
The reason for this is thought to be that O2 increases the phase lattice length and facilitates the movement of oxygen ions.

また純いて各温度における粒子十粒界抵抗の組織依存性
を7111定したところ第3図に示すようになり、−約
550°C以下の低温でXが約06以上においては(B
 i20.] [1,9(Y2O2)(11単体よりも
導電率が勝っていた。
In addition, when the structure dependence of the ten-grain boundary resistance at each temperature is determined, it is shown in Figure 3. At a low temperature of -550°C or less and when
i20. ] [1,9(Y2O2) (The electrical conductivity was superior to that of 11 alone.)

一方、熱膨張係数については、上記本発明品のものから
エメリー紙の#400から#1500で研磨した直方体
試イζFを作製し、真空理工社製ディライトメーク16
00を用いて、その両端を適当な圧力で押して淫■度変
化に対する伸び縮みを差動トランスでポl定することに
より調べた。
On the other hand, regarding the coefficient of thermal expansion, a rectangular parallelepiped sample ζF was prepared by polishing with #400 to #1500 emery paper from the above-mentioned product of the present invention, and Delight Make 16 manufactured by Shinku Riko Co., Ltd.
00 was used, both ends were pressed with appropriate pressure, and the expansion and contraction with respect to changes in lewdness was determined using a differential transformer.

その結果、960°C付近での体積変化は、昇温過程に
おいて【ま→−017%の体格膨張が起こり、降温過程
においては−0,10%の体積収縮がみらね3た。
As a result, the volume change at around 960°C was as follows: -0.17% physique expansion occurred during the heating process, and -0.10% volume contraction during the cooling process.

これに対し、purθはB ]2o3の多形転移による
体積変化は、(α」目→δ相)では+6.9%、(δ相
→β相)では−21%、(δ相→γ相)では−45%で
あることが報告されており、これらの変化より上記本発
明品の体積変化は、1ケタ以上小さくなっていることが
判明した。こね、は本発明品において、δ相、Cubi
c構造以外の他の構造がみられなかったことから、系内
の画素空孔が低温側において規則化さねていたのが高温
側では不規則化する、いわゆる規則−不規則転移が生じ
ていることによるものと思わねる。
On the other hand, the volume change due to the polymorphic transition of [purθ]2o3 is +6.9% for (α'th → δ phase), -21% for (δ phase → β phase), and -21% for (δ phase → γ phase). ) was reported to be -45%, and these changes revealed that the volume change of the above-mentioned product of the present invention was smaller by one order of magnitude or more. In the product of the present invention, kneading is the δ phase, Cubi
Since no other structures other than the c-structure were observed, the pixel pores in the system were not regularized at low temperatures, but became disordered at high temperatures, indicating that a so-called regular-disorder transition occurred. I don't think this is due to the presence of

以上の結果から上記本発明に係る固体電解質は、従来の
単体の固体電解質以上の実用的価値があることが蹄かで
ある。また本実施例Oこあっては、ZrO2、B1□0
.の安定化剤としてY20sを用いたがこのかわりに他
の公知の安定化剤を使用して−も実施可能なことは言う
までない。
From the above results, it is clear that the solid electrolyte according to the present invention has more practical value than conventional single solid electrolytes. In addition, in this embodiment O, ZrO2, B1□0
.. Although Y20s was used as the stabilizer, it goes without saying that other known stabilizers may be used instead.

さらにまた、安定化剤の組成比10 moe%について
の実線例を示しているが約5〜3 D mo1%の範囲
内であれば優れた効果を得ることができるものである。
Furthermore, although a solid line example is shown for a stabilizer composition ratio of 10 moe%, excellent effects can be obtained if the composition ratio is within the range of about 5 to 3 Dmo1%.

以上説明したように、本発明は粉末状の酸化ビスマスに
約5〜30 mo1%の粉末状の安定化剤を混合し、こ
ね、を焼成して安定化酸化ビスマスを形成する第1の仮
焼工程と、粉末状の酸化ジルコニウム、に約5〜3o 
mad%の粉末状の安定化剤を混合17、こi]、を焼
成して安定化酸化ジルコニウムを形成する第2の仮焼工
程と、こhら安定化酸化ビスマスと安定化酸化ジルコニ
ウムとを粉末状にし、その混合割合を約60 mo1%
以上とする安定化酸化ビスマスとその混合割合を約40
 mo1%以下とする安定化酸化ジルコニウムを混合す
る粉末混合工程と、この粉末混合物を成形し、これを焼
成する本焼成工程とからなる方法であり、この方法によ
って得られる固体電解質なので、導電率が高く、熱膨張
率が小さい固体電解質を和ることかでき、酸メソセンサ
ー、燃料電池等の分野において大きな実用性を持つもの
である。
As explained above, the present invention involves mixing powdered bismuth oxide with about 5 to 30 mo1% of a powdered stabilizer, kneading, and baking the mixture to form stabilized bismuth oxide. process, powdered zirconium oxide, about 5 to 3 o
A second calcination step in which stabilized bismuth oxide and stabilized zirconium oxide are mixed and calcined to form stabilized zirconium oxide. Make it into a powder and mix it at a mixing ratio of about 60 mo1%.
The stabilized bismuth oxide and the mixing ratio of about 40
This method consists of a powder mixing step in which stabilized zirconium oxide is mixed with a mo of 1% or less, and a main firing step in which this powder mixture is molded and fired.Since the solid electrolyte obtained by this method has a low conductivity. It can be used to soften solid electrolytes that have a high coefficient of thermal expansion and a small coefficient of thermal expansion, and has great practical utility in fields such as acid mesosensors and fuel cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る固体電解質と比較例の固体電解質
のそれぞね、の導電率を湿度依存性についてプロットし
たグラフ、第21スはδ−BizOsとCubic −
zr02との組成変化に伴なう格子定数の変化をプロッ
トしたグラフ、第3図は粒子十粒界抵抗の組織依存性を
示すグラフである。 出願人 ルf倉電線株式会社 手続補正書(自発〕 特許庁長官殿 1、事件の表示 昭和58年特許駒1第56224号 2、発明の名称 固体電解質とその一卑造方法 3、 補正をする者 待針出νtlj人 (stg)  藤介’t4ε線イ十式会7J:(はが1
名)4、代理人 明、dll−ドの1待針Ml’i >1<の範囲」、1
−発明のI’lミ、+41tlな説明J、I−図而のr
面n単な説明」の各回。 (1)  明ill WVの「特B’F 1tri求の
範υ、11」第一項に別組:のMuり訂正する。 12)第6頁11行目に「airJ トあ6のThr’
7気」とKJ’正″f/−)〇 (3)  第6fi/7〜/g行目、第7Fj/1l−
(j’目に「1nairJとあるのを「突気中」と、I
T正する〇(4)第7貞16行目、同@lざ9行目、第
g頁3行目、同貞lO行目、第9頁/q千丁目、第io
貞12行目・第t t′gi3行目、同頁q行目、第7
.2 m:l 1行、目、第1g頁ψ行目にそれぞれ「
eu b i clとあるのをUV方晶」と訂rF:、
する。 (5)第を肩コ行[1に「上記実か11例Get、それ
ぞれ本発明品のものと」とあるの全「上記比較f!lI
U G2、それぞれ上記本発明品の実1&+1例と」と
9負1・1−ろ。 (6)  第9頁5行目、「これら本発明品、tqよび
各比戟例を」とあるのを「これらの各比較例および本発
明の上記実施例である固体゛亀暗質を」と訂正する。 (7)  第q y q 〜to行目にrl+npe、
dance AnalgzerJとあるの全「インピー
ダンス アナライザー」とJIF、する。 (8)第tomg−9行目に「xfOJ″−too〜C
,86の焼結体2作成し」とあるのを削除する。 (9)第it貞7〜ざf]′目に「粒子十粒界抵抗の組
織依存性」とあるの?「結晶粒バルク+結晶粒界面抵抗
の組成依存性」と訂正する。 0(1析s t t Bl t tt、〜t3行目に「
ディライトメータjとあるの?「ディライトメータ」と
訂正する〇(1υ 對’S/2頁コイテ目に「pure
′は」とあるの?「純粋な」と力°止する。 (I21  第1φ貢5〜6行目に「粒子十粒界抵抗の
組楯依イr性」とあるの全「結晶粒バルク+結晶粒界1
ai抵抗の組成依存性」とi4J’ jE jろ。 特許請求の範囲 il+  安定化j′iヴ化ビスマス及び安定化11′
9化ジルコニウムよりなりかつ1111記安定化[1(
化ビスマスが約60mo 73%以上含甲れていること
を特徴とする固体71解官。 (2)粉末状の6ン化ヒスマスに約5〜30用O1%の
粉末状の7;′定化剤?混合し、これをかと成して安定
化t′投化ビスマス?形成″′rろ第1の仮つ髪工稈と
、λ3r末状の6ゾ化ジルコニウムに約5〜30mo7
%の粉末状の安定化剤全7i2合し、これを焼成して安
定化酸化ジルコニウムを形成する第2の仮+if’7:
 r哩と・上記安定化r″シ化ビスマスと安定化n々化
ジルコニウムを粉末状にし、その混合′請合を約60 
mai1%pJ上とする安定化國化ビスマスとその混合
汗1合を約401noハ山下とする安定化1ツ化ジルコ
ニウムとと混合する粉末混合1目と、この粉末混合物全
成形し、己れを焼成する本グ!ε成X[:程とからなろ
11・、1体m)′α竹の製造方法。
Fig. 1 is a graph plotting the conductivity of the solid electrolyte according to the present invention and the solid electrolyte of the comparative example with respect to humidity dependence, and the 21st graph is a graph plotting the conductivity of the solid electrolyte according to the present invention and the solid electrolyte of the comparative example.
FIG. 3 is a graph plotting changes in lattice constant due to changes in composition with zr02, and FIG. 3 is a graph showing the dependence of ten-grain boundary resistance on structure. Applicant Lefkura Electric Cable Co., Ltd. Procedural Amendment (Voluntary) Commissioner of the Japan Patent Office 1, Indication of the case 1982 Patent Koma 1 No. 56224 2, Name of the invention Solid electrolyte and its unique manufacturing method 3, Make amendments. person waiting for the meeting νtlj person (stg) Fujisuke't4ε line ijushikikai 7J: (haga 1
Name) 4, Agent Akira, dll-do's 1st hand Ml'i > 1 <range'', 1
-I'lmi of the invention, +41tl explanation J, I-illustration r
Each episode of ``Side n simple explanation''. (1) Correct the ``Separate set:'' in the first paragraph of ``Special B'F 1tri search range υ, 11'' of Aiill WV. 12) On page 6, line 11, “airJ Toa 6 no Thr’
7 Ki” and KJ’correct”f/-)〇(3) 6th fi/7~/g line, 7th Fj/1l-
(When it says "1nairJ" on the j'th line, I
T Correct 〇 (4) 7th Tei line 16, @lza line 9, page g, line 3, Dosei lO line, page 9/q 100th street, io
Tei line 12, t'gi line 3, same page line q, 7th
.. 2 m:l 1st line, 1st page ψ line, ``
The text that says “eu bi cl” has been corrected to “UV square crystal”.
do. (5) Row 1 with "Get 11 examples of the above fruits, each with the product of the present invention", all "Compare the above f!lI
U G2, respectively 1&+1 examples of the above-mentioned products of the present invention and 9 negative 1.1-ro. (6) On page 9, line 5, ``these products of the present invention, tq, and each comparative example'' has been replaced with ``these comparative examples and the solid ``black matter'' which is the above-mentioned example of the present invention''. I am corrected. (7) rl+npe in the q y q to to rows,
dance AnalgzerJ and a certain "impedance analyzer" and JIF. (8) "xfOJ"-too~C on the tomg-9th line
, 86 sintered body 2 was created" was deleted. (9) Does it say "structure dependence of grain boundary resistance of ten grains" in sections 7 to 5]'? Corrected to "composition dependence of grain bulk + grain interface resistance." 0(1 analysis s t t Bl t tt, ~t3rd line is “
Is there a Delight Meter J? Correct it as "delight meter"〇(1υ 對'S/Page 2, correct it as "pure")
Does it say 'wa'? “Pure” stops me. (I21 In the 5th and 6th lines of the first
"Composition dependence of ai resistance" and i4J' jE jro. Claims il+ Stabilized bismuth and stabilized 11'
Consisting of zirconium 9ide and stabilized in 1111 [1(
A solid 71 chloride characterized by containing about 60 mo 73% or more of bismuth chloride. (2) Powdered 7' stabilizer with 1% O for about 5~30 to powdered hismuth hexanide? Mix this with stabilized t′-added bismuth? Approximately 5 to 30 mo7 is formed on the first hair culm and the λ3r powdered hexazo zirconium.
% of the powdered stabilizer is combined and fired to form stabilized zirconium oxide.
The above-mentioned stabilized bismuth silicide and stabilized zirconium nitride were powdered and mixed for about 60 minutes.
A powder mixture of 1 cup of stabilized bismuth with a concentration of 1% pJ or above and a stabilized zirconium nitride with a concentration of about 401 mm was added, and this powder mixture was completely molded and made by itself. Book to be fired! ε Sei

Claims (2)

【特許請求の範囲】[Claims] (1)安定化酸化ビ%珈び安定化酸化ジル・=ラムより
なりかつ前記安定化酸化ビスマスが約60 moe%以
上含まれていることを特徴とする固体電解質。
(1) A solid electrolyte comprising stabilized bismuth oxide and stabilized zyl-lam oxide, and containing about 60 moe% or more of the stabilized bismuth oxide.
(2)粉末状の酸化ビスマスに約5〜6oの粉末状の安
定化剤を混合し、これを焼成して安定化酸化ビスマスを
形成する第1の仮焼工程と、粉末状の酸化ジルコニウム
に約5〜30 ma1%の粉末状の安定化剤を混合し、
これを焼成して安定化酸化ジルコニウムを形成する第2
の仮焼工程と、上記安定化酸化ビスマスと安定化酸化ジ
ルコニウムを粉末状にし、その混合割合を約60 mo
1%以上とする安定化酸化ビスマスとその混合割合を約
40 mo1%以下とする安定化酸化ジルコニウムとを
混合する粉末混合工程と、この粉末混合物を成形し、こ
れを焼成する本焼成工程とからなる固体電解質の製造方
法。
(2) A first calcination step in which about 5 to 6 degrees of powdered stabilizer is mixed with powdered bismuth oxide and the mixture is fired to form stabilized bismuth oxide; Mix about 5-30 ma1% of powdered stabilizer,
The second step is to sinter this to form stabilized zirconium oxide.
The above-mentioned stabilized bismuth oxide and stabilized zirconium oxide are powdered, and the mixing ratio is about 60 mo.
A powder mixing step of mixing stabilized bismuth oxide with a mixing ratio of 1% or more and stabilized zirconium oxide with a mixing ratio of about 40 mo1% or less, and a main firing step of molding this powder mixture and firing it. A method for producing a solid electrolyte.
JP58056224A 1983-03-31 1983-03-31 Solid electrolyte and manufacture Granted JPS59182271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58056224A JPS59182271A (en) 1983-03-31 1983-03-31 Solid electrolyte and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58056224A JPS59182271A (en) 1983-03-31 1983-03-31 Solid electrolyte and manufacture

Publications (2)

Publication Number Publication Date
JPS59182271A true JPS59182271A (en) 1984-10-17
JPS6245191B2 JPS6245191B2 (en) 1987-09-25

Family

ID=13021131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58056224A Granted JPS59182271A (en) 1983-03-31 1983-03-31 Solid electrolyte and manufacture

Country Status (1)

Country Link
JP (1) JPS59182271A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69939061D1 (en) * 1998-06-12 2008-08-21 Aep Invest Inc CERAMIC FUEL CELLS

Also Published As

Publication number Publication date
JPS6245191B2 (en) 1987-09-25

Similar Documents

Publication Publication Date Title
JPS5833190B2 (en) Stabilized zirconia for oxygen ion conductive solid electrolyte
JPH08208333A (en) Conductive material for oxygen ion and its production
JPS59182271A (en) Solid electrolyte and manufacture
JPS6051664A (en) Manufacture of lead zirconate titanate ceramic
JPH04175224A (en) Oxide superconductor and production thereof
JP3088039B2 (en) Thermoelectric semiconductor element
Omori et al. Thermal and dielectric properties of zirconyl phosphate compact
JPH0199279A (en) Manufacture of superconducting ceramic substrate
JPH0333055A (en) Oxide superconducting material and its production
JPH01115859A (en) Superconductor
JPH01133924A (en) Perovskite type oxide superconductor having silver-containing oxygen-defective triple structure
JP2751230B2 (en) Method for producing Bi-based superconducting oxide sintered body containing lead
JP2637617B2 (en) Manufacturing method of superconducting material
JPH01115860A (en) Superconductor
JPH01212225A (en) Oxide superconducting material
JP2000286104A (en) Manufacture of positive temperature coefficient thermistor
JPH01115861A (en) Superconductor
JPH0465342A (en) Superconductor and its production
JPS5920907A (en) Dielectric porcelain composition
JPS61253812A (en) Ceramic composition for semiconductor capacitor
JPH01115862A (en) Superconductor
JPH02164759A (en) Superconducting ceramics
JPH03290319A (en) Oxide superconductor and production thereof
JPH02116615A (en) Oxide superconducting material
JPH0477316A (en) Oxide superconductor and its production