JPH01115862A - Superconductor - Google Patents

Superconductor

Info

Publication number
JPH01115862A
JPH01115862A JP62272461A JP27246187A JPH01115862A JP H01115862 A JPH01115862 A JP H01115862A JP 62272461 A JP62272461 A JP 62272461A JP 27246187 A JP27246187 A JP 27246187A JP H01115862 A JPH01115862 A JP H01115862A
Authority
JP
Japan
Prior art keywords
bao
added
current density
critical current
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62272461A
Other languages
Japanese (ja)
Inventor
Masahiro Ito
昌宏 伊藤
Atsushi Iga
篤志 伊賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62272461A priority Critical patent/JPH01115862A/en
Publication of JPH01115862A publication Critical patent/JPH01115862A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To increase critical current density and moisture resistance by adding a specific amount of In2O3 to a sintering type superconductive material of Y2O3- BaO-CuO1-1.2. CONSTITUTION:For example, commercially available Y2O3, BaO and CuO powders are mixed at a molar ratio of 1/2:2:3, formed by pressing, kept at 930 deg.C in an oxidative atmosphere for 24hr, then cooled down at a rate of -50 deg.C/hr. The sintered product of (Y2O3)0.5.(BaO)2.(CuO1-1.2)3 is crushed into fine powder, than 0.3-8.0% of In2O3 at a weight ratio is mixed with the powder, then the mixture is formed by pressing and calcined at 880-950 deg.C for 4hr. The sintered product is subjected to oxidative treatment at 750 deg.C for 8hr to give the subject superconductor.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、液体チッ素温度より高い温度で超電導特性を
もつ超電導体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to superconductors having superconducting properties at temperatures above the temperature of liquid nitrogen.

従来の技術 近年、つぎつぎと臨界温度が高い超電導材料が発見され
て、ついに液体チッ素温度で超電導特性を有する材料が
発見されるにいたっている。そのうちでも、特にY2O
,−BaO−Cub、〜、+2系の超電導材料では焼結
型と薄膜型についてよく研究されティる。Y2O3−B
aO−Cub?、1.2系焼結型超電導体を焼結法で作
成する場合には、Y2O3゜BaO(又はB&C03)
及びauo (又はCu20)の粉体をよく混合し、加
圧成型して900°〜1000℃の温度で焼結し、徐冷
するか、あるいは低温の定点で長時間保持するなどの低
温酸化処理を施して特性の向上をはかっている。
BACKGROUND OF THE INVENTION In recent years, superconducting materials with high critical temperatures have been discovered one after another, and finally a material having superconducting properties at the temperature of liquid nitrogen has been discovered. Among them, especially Y2O
, -BaO-Cub, ~, +2 type superconducting materials have been well studied in terms of sintered type and thin film type. Y2O3-B
aO-Cub? , When creating a 1.2-based sintered superconductor by a sintering method, Y2O3゜BaO (or B&C03)
and auo (or Cu20) powder is thoroughly mixed, pressure molded, sintered at a temperature of 900° to 1000°C, and then slowly cooled or low-temperature oxidation treatment such as holding at a fixed point at a low temperature for a long time. is applied to improve the characteristics.

発明が解決しようとする問題点 しかしながら、上記の如き方法で製造した焼結型超電導
体では高い臨界電流密度を得ることがむつかしく、さら
に耐湿特性がきわめて悪く、大気中の水分と反応すると
超電導特性が劣化し、ついには焼結体の形状が崩壊する
現象さえ見ることが出来た。
Problems to be Solved by the Invention However, with the sintered superconductor manufactured by the method described above, it is difficult to obtain a high critical current density, and furthermore, the moisture resistance is extremely poor, and when it reacts with moisture in the atmosphere, the superconducting property is lost. We were able to see a phenomenon in which the sintered body deteriorated and eventually collapsed in shape.

本発明は、上記問題に鑑み、臨界電流密度が犬きく、耐
湿性に優れ、大気中に放置しても超電導特性の劣化が小
さいY2O,−13aO−CuO1〜1.2系酸化物の
超電導体を提供するものである。
In view of the above problems, the present invention provides a Y2O, -13aO-CuO1-1.2 based oxide superconductor with a high critical current density, excellent moisture resistance, and minimal deterioration of superconducting properties even when left in the atmosphere. It provides:

問題点を解決するための手段 上記問題点を解決するために本発明はY2O3−BIL
O−cuo1〜1.2系焼結型超電導材料は添加物とし
てIn2O3を重量比で0.3〜a、o %添加したも
のである。
Means for Solving the Problems In order to solve the above problems, the present invention provides Y2O3-BIL
The O-cuo1-1.2-based sintered superconducting material contains In2O3 as an additive in a weight ratio of 0.3 to a.o.

作用 上記焼結法を採用することによって、焼結体は緻密に焼
結され、低温における酸化処理が容易になって臨界電流
密度が向上し、耐湿特性が改善される。
Effect: By employing the above sintering method, the sintered body is densely sintered, oxidation treatment at low temperatures is facilitated, critical current density is improved, and moisture resistance is improved.

実施例 以下、本発明の第1の実施例について図面を参照しなが
ら説明する。
EXAMPLE Hereinafter, a first example of the present invention will be described with reference to the drawings.

市販の酸化イツトリウム(Y2O3)、酸化バリウム(
BaO)および酸化第2銅(Cub)のそれぞれの粉体
を、−mol : 2 mol、: 3 rnolの比
で混合し、加圧成型した後、酸化雰囲気中930’Cに
て24時間保持し、その後−60℃/時間の速度で冷却
して焼結体を得た。
Commercially available yttrium oxide (Y2O3), barium oxide (
Powders of BaO) and cupric oxide (Cub) were mixed in a ratio of -mol: 2 mol, : 3 rnol, pressure molded, and then held at 930'C in an oxidizing atmosphere for 24 hours. , and then cooled at a rate of -60°C/hour to obtain a sintered body.

かくして得た( Y2O3)(Ls ・(Had)2−
 (Cubl−,2)3の焼結体を微粉砕し、これに重
量比で0.30〜a、O%の市販の酸化インジウム(”
205 ) ヲffjz加して混合、加圧成型して88
00〜950 ’Cの温度で4時間の焼成をして焼結体
を得て、次いで760℃8時間の酸化処理を施した。次
にこれらの焼結体に低温で銀電極をやきつけた。なお、
かかる焼結体の焼結による収縮率は工n203を3重量
%添加したものでは、aao’cの焼成で3%。
Thus obtained (Y2O3)(Ls ・(Had)2-
The sintered body of (Cubl-, 2) 3 was finely ground, and a commercially available indium oxide ("
205) Add woffjz, mix, pressure mold and 88
A sintered body was obtained by firing at a temperature of 00 to 950'C for 4 hours, and then oxidized at 760C for 8 hours. Next, silver electrodes were burned onto these sintered bodies at low temperature. In addition,
The shrinkage rate of such a sintered body by sintering is 3% when sintered with aao'c when 3% by weight of en-n203 is added.

910℃の焼成で6%、950℃の焼成で10%であっ
た。このようにして作製した試料について臨界電流密度
、耐湿特性の測定を行なった。
It was 6% when fired at 910°C and 10% when fired at 950°C. The critical current density and moisture resistance properties of the samples thus prepared were measured.

第1図に本発明の第1の実施例における焼結型超電導体
の特性を評価するための素子を示す。
FIG. 1 shows an element for evaluating the characteristics of a sintered superconductor in a first embodiment of the present invention.

第1図において、11は焼結型超電導体、12は銀電極
を示す。超電導体11は、厚み約4 、OrKm )直
径が約13−0+oa&の円板状をしたものである。
In FIG. 1, 11 indicates a sintered superconductor, and 12 indicates a silver electrode. The superconductor 11 has a disk shape with a thickness of about 4 mm, a diameter of about 13-0+oa&.

銀電極材料には、低温焼きつけ型のものを用いた。A low-temperature baking type material was used for the silver electrode material.

以上のような素子を用いて、超電導材料の緒特性を測定
した。
Using the device described above, we measured the properties of superconducting materials.

第2図は(Y2O5)、5− (Bad)2− (Cu
b、〜、2)3に添加した工n203の量(wt%)と
臨界温度(K)との関係を示した図である。図には、比
較のため、工n203を添加しない材料についても特性
を示し尼。
Figure 2 shows (Y2O5), 5- (Bad)2- (Cu
b, ~, 2) It is a diagram showing the relationship between the amount (wt%) of n203 added to 3 and the critical temperature (K). For comparison, the figure also shows the characteristics of a material that does not contain N203.

第2図から工n203の添加量が8%を越すと臨界温度
が急激に低下することが認められる。
From FIG. 2, it is recognized that when the amount of addition of n203 exceeds 8%, the critical temperature decreases rapidly.

第3図は(Y2O5)(15” (BaO)2 ” (
Cu01〜1.2)3に添加した工n203の添加量(
wt%)と臨界電流密度(ム/cJ)との関係を示した
ものである。臨界電流密度は工n20.の添加量が1w
t%近傍で最大となり、その値はJc〜11oム/c4
 、添加量が8wt%以上になると急速に低下すること
が認められる。
Figure 3 shows (Y2O5)(15"(BaO)2" (
Addition amount of Cu n203 added to Cu01~1.2)3 (
%) and critical current density (mu/cJ). The critical current density is n20. The amount added is 1w
It reaches a maximum near t%, and its value is Jc~11om/c4
It is recognized that when the amount added is 8 wt% or more, the content decreases rapidly.

第4図は、(Y2O5)(15・(BaO)2 ・(C
uO1〜1.2)3系焼結体を40℃、相対湿度90〜
96%の雰囲気中に放置したときの、焼結体の外径の経
時変化を示しだものである。図中、14はIn2O3を
添加しない従来の材料について例を示し、15は添加量
が0.3wt%、16は3wt%、17は8 wt%の
場合について示す。第4図よシ、工n203を添加した
焼結体では、湿度による焼結体の外径の経時変化が小さ
く、In2O,の添加効果が認められる。
Figure 4 shows (Y2O5)(15・(BaO)2・(C
uO1~1.2) 3-based sintered body at 40℃, relative humidity 90~
This figure shows the change in the outer diameter of the sintered body over time when it is left in a 96% atmosphere. In the figure, 14 shows an example of a conventional material to which In2O3 is not added, 15 shows the case where the addition amount is 0.3 wt%, 16 shows the case of 3 wt%, and 17 shows the case of 8 wt%. As shown in FIG. 4, in the sintered body to which In203 was added, the change over time in the outer diameter of the sintered body due to humidity was small, and the effect of the addition of In2O was observed.

工n203添加量がSwt%以上のものでも、外径の変
化をなくすことはできない。
Even if the amount of n203 added is Swt% or more, changes in the outer diameter cannot be eliminated.

第6図は試料を40℃で相対湿度が90〜96チの雰囲
気中に放置したときの試料の常温における抵抗値の経時
変化を示したものである。抵抗値の経時変化はきわめて
大きく、焼結体の組織自体も変化しているようである。
FIG. 6 shows the change over time in the resistance value of the sample at room temperature when the sample was left in an atmosphere of 40 DEG C. and a relative humidity of 90 to 96 degrees Celsius. The change in resistance value over time is extremely large, and the structure of the sintered body itself seems to be changing.

これらの試料は常温では半導体的性質をもち、低温では
超電導体となるが、超電導時の臨界電流密度は常温にお
ける半導体の電気抵抗と深い関係がある。すなわち常温
における抵抗値の経時変化は主として分解や異物質の析
出によるものであり、これらは超電導体においては臨界
電流密度に直接影響を及ぼすものと考えられる。工n2
03の添加によって常温抵抗値の湿度による経時変化は
かなり安定化するが、これを完全に停止させることは出
来なかった。
These samples have semiconductor properties at room temperature and become superconductors at low temperatures, but the critical current density at superconductivity is closely related to the electrical resistance of the semiconductor at room temperature. That is, the change in resistance value over time at room temperature is mainly due to decomposition and precipitation of foreign substances, and these are considered to have a direct effect on the critical current density in superconductors. Engineering n2
Although the addition of 03 considerably stabilized the change in room temperature resistance value over time due to humidity, it was not possible to completely stop this change.

なお、第5図中、14は工n203を添加しない従来の
材料について例を示し、16は添加量がQ、3wt%、
16は3wt%、17はawt%の場合について示す。
In addition, in FIG. 5, 14 shows an example of a conventional material that does not contain n203, and 16 shows an example in which the amount of addition is Q, 3 wt%,
16 shows the case of 3wt%, and 17 shows the case of awt%.

以下本発明の第2の実施例について説明する。A second embodiment of the present invention will be described below.

市販のY2O3,BaO、およびCuOの粉体をそれぞ
れj−mop : 1.2s rlrol : 1.5
9molの比で混合し、加圧成型したのち大気中950
”Cにて24時間の焼成を行ない、その後毎時−50℃
の速度で冷却して(Y2O5)(15・(BaO)1.
2s・(CuO1〜1.2)1.59の組成の焼結体を
得た。次にこの焼結体を微粉砕し重量比で0.30〜8
%の工n203を添加して加圧成型し、890〜960
℃の温度で4時間の焼成をした後、750℃8時間の酸
化処理を行なった。
Commercially available powders of Y2O3, BaO, and CuO were each j-mop: 1.2s rlrol: 1.5
After mixing at a ratio of 9 mol and molding under pressure, 950
"C" for 24 hours, then -50℃ per hour.
Cooling at a rate of (Y2O5)(15.(BaO)1.
A sintered body having a composition of 2s·(CuO1-1.2)1.59 was obtained. Next, this sintered body is finely pulverized and the weight ratio is 0.30 to 8.
% of engineering n203 is added and pressure molded, 890-960
After firing for 4 hours at a temperature of 750°C, an oxidation treatment was performed at 750°C for 8 hours.

In2O3を3%添加した場合、890℃の焼成では収
縮率は3%、920’Cの焼成では6チ、960℃の焼
成では10%であった。
When 3% In2O3 was added, the shrinkage rate was 3% when fired at 890°C, 6% when fired at 920'C, and 10% when fired at 960°C.

このようにして作製した試料を用いて、臨界電流密度及
び耐湿特性の測定を行なった。
Using the thus prepared sample, critical current density and moisture resistance were measured.

臨界電流密度は第1の実施例の場合とほぼ似た傾向を示
し、In2O3を添加しない場合JG〜22ム/ c4
であったものが工n203添加と共に増大し、約1チ添
加でJc〜33ム/ c4と最高になり更に添加量を増
すと減少する。臨界温度は又第1の実施例と似た傾向を
示し、工n205の添加量が8%を越えると液体チッ素
温度より低くなる。これらの試料の湿度による膨張を工
”203の添加で抑制することが出来るのは、第1の実
施例の場合とは譬同じでまた、常温における抵抗値の湿
空経時変化も第1の実施例と同傾向を示した。
The critical current density shows almost the same tendency as in the case of the first example, and when In2O3 is not added, it is JG ~ 22 μ/c4
However, it increases with the addition of n203, reaches a maximum of Jc ~ 33 m/c4 when approximately 1 h is added, and decreases as the amount added is further increased. The critical temperature also shows a tendency similar to that of the first example, and becomes lower than the liquid nitrogen temperature when the amount of Ni205 added exceeds 8%. The fact that the expansion of these samples due to humidity can be suppressed by adding 203 is the same as in the first embodiment, and the change in resistance value over time in humid air at room temperature is also suppressed as in the first embodiment. It showed the same tendency as the example.

以下本発明の第3の実施例について説明する。A third embodiment of the present invention will be described below.

市販のY2O,、BaO、およびCuOの粉体をそれぞ
れ+mol: 4.5 tnol : 5.Omopの
比で混合し、加圧成型したのち大気中940℃にて24
時間の焼成を行ない、その後毎時−50’C,の速度で
冷却して(Y2O3)(L5 ・(B’O)[145”
(”01−1.2)5の組成の焼結体を得た。次にこの
焼結体を微粉砕゛し重量比で0.3〜8.0%の工n2
03を添加して加圧成型し、880〜960℃の温度で
4時間の焼成をした後、760℃8時間の酸化処理を行
なつた。工n203を3%添加した場合、880℃の焼
成では収縮率は3% 、910℃の焼成ではS俤。
Commercially available powders of Y2O, BaO, and CuO were each +mol: 4.5 tnol: 5. After mixing at a ratio of Omop and molding under pressure, it was
Calcinate for an hour and then cool at a rate of -50'C per hour to form (Y2O3)(L5 ・(B'O)[145''
("01-1.2) A sintered body having a composition of
03 was added, pressure molded, baked at a temperature of 880 to 960°C for 4 hours, and then oxidized at 760°C for 8 hours. When 3% of N203 is added, the shrinkage rate is 3% when fired at 880°C, and S when fired at 910°C.

950”Cの焼成では10チであった。When fired at 950''C, it was 10 inches.

このようにして炸裂した試料を用いて、臨界電流密度及
び耐湿特性の測定を行なった。
Using the sample exploded in this way, critical current density and moisture resistance characteristics were measured.

工n203を1%添加したとき(Y2Os ) (L5
 ’ (”0)4s ’(Cub1〜L2)5系焼結体
では臨界電流密度が事大となり、その値はJO〜45ム
/瞥であった。超電導特性の工n203添加量依存性、
湿度による試料外径の経時変化、臨界電流密度の湿度に
よる劣化等ははソ第1の実施例と同じ傾向を示した。工
n20゜の添加量が8.0%以上になると液体チッ素温
度以上での超電導特性が失われた。
When 1% of engineering n203 was added (Y2Os) (L5
'("0)4s'(Cub1~L2) In the 5-based sintered body, the critical current density was significant, and its value was JO ~ 45 μ/l. Dependence of superconducting properties on the amount of n203 added,
Changes in the outer diameter of the sample over time due to humidity, deterioration of critical current density due to humidity, etc. showed the same trends as in the first example. When the amount of n20° added exceeds 8.0%, the superconducting properties at temperatures above the liquid nitrogen temperature are lost.

以下本発明の第4の実施例について説明する。A fourth embodiment of the present invention will be described below.

市販のY2O3,BaO、およびCuOの粉体をそれぞ
れ工TftO1: 2.75 mop : 6.25 
molの比で混合し、加圧成型したのち大気中930℃
にて24時間の焼成を行ない、その後毎時−60°Cの
速度で冷却して(Y2O5)as ・(B tL O)
 2,5 + (G u O1〜1.2)6.25の組
成の焼結体を得た。次にこの焼結体を微粉砕し重量比で
0.3〜8.0チの工n203を添加して加圧成型し、
870〜960°Cの温度で4時間の焼成をした後、7
50’C8時間の酸化処理を行なった。In2O3を3
チ添加した場合、870℃の焼成では収縮率は3%、9
10℃の焼成ではS係。
Commercially available powders of Y2O3, BaO, and CuO were prepared respectively. TftO1: 2.75 mop: 6.25
After mixing in a mol ratio and molding under pressure, it was heated to 930°C in the atmosphere.
Calcining was performed for 24 hours at
A sintered body having a composition of 2,5 + (G u O1-1.2)6.25 was obtained. Next, this sintered body was finely pulverized, 0.3 to 8.0 g of n203 was added in weight ratio, and pressure molded.
After baking for 4 hours at a temperature of 870-960°C, 7
Oxidation treatment was performed at 50'C for 8 hours. In2O3 3
When chlorine is added, the shrinkage rate is 3% and 9% when fired at 870℃.
For firing at 10℃, it is S section.

960℃の焼成では10%であった。It was 10% when fired at 960°C.

このようにして作製した試料を用いて、臨界電流密度及
び耐湿特性の測定を行なった。
Using the thus prepared sample, critical current density and moisture resistance were measured.

工n203を1%添加したとき(Y2O3)[L5 ”
 (BaO)2.75”(CUO1〜1.2) 6.2
5系焼結体では臨界電流密度が最大となり、その値はJ
、〜63ム/dであった。
When 1% of n203 was added (Y2O3) [L5”
(BaO)2.75” (CUO1~1.2) 6.2
The critical current density is maximum in the 5-series sintered body, and its value is J
, ~63 mu/d.

超電導特性の工n203添加量依存性、湿度による試料
外径の経時変化、臨界電流密度の湿度による劣化等はは
ソ第1の実施例と同じ傾向を示した。
The dependence of the superconducting properties on the amount of n203 added, the temporal change in the outer diameter of the sample due to humidity, the deterioration of the critical current density due to humidity, etc. showed the same trends as in the first example.

工n203の添加量が8チ以上になると液体チッ素温度
以上での超電導特性が失われた。
When the amount of n203 added exceeds 8 g, the superconducting properties at temperatures above the liquid nitrogen temperature are lost.

以下本発明の第5の実施例について説明する。A fifth embodiment of the present invention will be described below.

市販のY2O,、BaO、およびCuOノ粉体をそれぞ
れ−zrnol : 0.75 mop : 2.09
 molの比で混合し、加圧成型したのち大気中930
’Cにて24時間の焼成を行ない、その後毎時−50’
Cの速度で冷却して(Y2O5)15 ” ”0)11
75”(CuO1〜1.2)2.09の組成の焼結体を
得た。次にこの焼結体を微粉砕し重量比で0.3〜S、
O%のIn2O3を添加して加圧成型し、880〜96
0°Cの温度で4時間の焼成をした後、75038時間
の酸化処理を行なった。工n203を3%添加した場合
、880’Cの焼成では収縮率は3%、910℃の焼成
では6%。
Commercially available Y2O, BaO, and CuO powders were respectively -zrnol: 0.75 mop: 2.09
After mixing in a mol ratio and molding under pressure, 930% in the atmosphere
24 hours of firing at 'C, then -50' per hour
Cool at a rate of C (Y2O5)15 ” ”0)11
A sintered body with a composition of 75" (CuO1-1.2) 2.09 was obtained. Next, this sintered body was finely pulverized to a weight ratio of 0.3-S,
880-96 by adding 0% In2O3 and pressure molding.
After firing for 4 hours at a temperature of 0°C, oxidation treatment was performed for 75,038 hours. When 3% of N203 is added, the shrinkage rate is 3% when fired at 880'C and 6% when fired at 910°C.

950’Cの焼成では10%であった。It was 10% when fired at 950'C.

このようにして作製した試料を用いて、臨界電流密度及
び耐湿特性の測定を行なった。
Using the thus prepared sample, critical current density and moisture resistance were measured.

工n203を1%添加したとき(Y2O3)15 ”(
B&0)(L75 ” (CuO1−1,2) 2.0
9系焼結体では臨界電流密度が最大となり、その値はJ
O〜38人/ cAであった。超電導特性の工n203
添加量依存性、湿度による試料外径の経時変化、臨界電
流密度の湿度による劣化等ははソ第1の実施例と同じ傾
向を示した。Xn203の添加量が8%以上になると液
体チッ素温度以上での超電導特性が失われた。
When 1% of n203 was added (Y2O3)15'' (
B&0)(L75” (CuO1-1,2) 2.0
In the 9-series sintered body, the critical current density is maximum, and its value is J
It was O ~ 38 people/cA. Engineering of superconducting properties n203
The dependence on the amount added, the change over time in the outer diameter of the sample due to humidity, the deterioration of critical current density due to humidity, etc. showed the same trends as in the first example. When the amount of Xn203 added exceeds 8%, superconducting properties at temperatures above liquid nitrogen temperature are lost.

以上実施例として、超電導材料となる5種類のY2O,
−BaO−Cub、〜4.2系配合組成物に関し、臨界
電流密度及び混生劣化特性に及ぼすIn2O3の′添加
効果について示したが、In2O,の添加効果はこれら
5種類の組成に限らず、モル比で表わされた4つの組成
(Y2O5)(L5 ’ (”O)+ 、25 ’(C
uO4−L2)L59’(Y20!1)(15” (”
0)4.5 ’ (Cu0j 〜1.2)510203
)15’(”’)2.75 ’ (CuO1〜L2)6
.25及び(”20!り[15’(”0)(L75 ’
(CuO1−1,2)2.09 で囲まれた超電導組成
物全域に及ぶ。第6図はその範囲を示しだものである。
As examples above, five types of Y2O, which are superconducting materials,
Regarding the -BaO-Cub ~4.2 system blend composition, we have shown the effect of the addition of In2O3 on the critical current density and mixed deterioration characteristics, but the effect of the addition of In2O is not limited to these five types of compositions; Four compositions (Y2O5) (L5'("O)+,25' (C
uO4-L2)L59'(Y20!1)(15"("
0)4.5' (Cu0j ~1.2)510203
)15'('')2.75' (CuO1~L2)6
.. 25 and ("20!ri[15'("0)(L75'
(CuO1-1,2)2.09 It covers the whole area of the superconducting composition surrounded by. Figure 6 shows the range.

第6図において、(1)はくY2O3)。5(Ba0)
2(Cubl−4,)3. (2>は(Y20!l)[
15(”o)1.25(Cuol−1,2)1−5p 
+  (3)は(Y2O5)[L5 (B” )4.5
(Cu01〜1.2 )5 r (4)は(Y2O5)
[15(Ba0)2.75(Guol−1,2)6.2
51 (’)は”203)us (”&O)o、ys(
CuO1〜1.2 )2.09を示す。
In FIG. 6, (1) Y2O3). 5 (Ba0)
2 (Cubl-4,)3. (2> is (Y20!l) [
15(”o)1.25(Cuol-1,2)1-5p
+ (3) is (Y2O5)[L5 (B”)4.5
(Cu01~1.2)5 r (4) is (Y2O5)
[15(Ba0)2.75(Guol-1,2)6.2
51 (') is "203) us ("&O) o, ys (
CuO1-1.2) shows 2.09.

このY2O3−]3aO−Cub、−1,2系の上記4
つの組成で囲まれた組成物に工n203を添加した超電
導材料と限定したのは、この範囲内の材料で良好な臨界
電流密度が得られるが、範囲外ではこれが小さくなって
超電導材料として適さぬことによる。
The above 4 of this Y2O3-]3aO-Cub, -1,2 system
The reason why we limited the superconducting material to be a superconducting material in which E-N203 is added to a composition surrounded by two compositions is that a good critical current density can be obtained with a material within this range, but this becomes small outside this range and is not suitable as a superconducting material. It depends.

また、Y2O5−BaO−Cub1〜,2系組成物に対
する工n20.の添加量を0.3〜8.OWt係と限定
したのは、0.3%以下の添加では十分な添加効果が現
われぬこと、そして8.0%以上の場合には臨界温度が
液体チッ素温度以下となって高温類電導体としてのメリ
ットが減少することによる。
In addition, the engineering n20. Addition amount of 0.3 to 8. The reason why we limited it to OWt is that if it is added less than 0.3%, a sufficient addition effect will not appear, and if it is more than 8.0%, the critical temperature will be below the liquid nitrogen temperature and it will become a high-temperature conductor. This is due to a decrease in the benefits of

発明の効果 以上のように本発明によれば、モル比で表わされた4つ
の組成(Y2O3)us ” (”0)1.25 ’(
Cu01〜1.2)L591  (”203)(L5 
’ (”0)4.5 ”(CuO4〜1.2)5 ” 
Y2O5)n5 ” (”O)2.75 ”(CuO1
−1,2)6.251及び(Y2O5)[L5 ’ (
”0)(L75’(aUO1〜1..2)2.。、で囲
まれた範囲内の組成物に工n205を重量比で0.3〜
8.0チ添加して焼結型超電導材′料を作成することに
より、臨界電流密度と耐湿特性を向上させることができ
るという効果が得られる。
Effects of the Invention As described above, according to the present invention, four compositions (Y2O3) us ” (“0) 1.25 ’ (
Cu01~1.2) L591 (”203) (L5
'("0)4.5"(CuO4~1.2)5"
Y2O5)n5” (”O)2.75”(CuO1
-1,2)6.251 and (Y2O5)[L5' (
"0)(L75'(aUO1~1..2)2..", to the composition within the range surrounded by 0.3~0.3~
By adding 8.0% to a sintered superconducting material, it is possible to improve the critical current density and moisture resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における焼結型超電導体
の特性を評価するための素子を示す斜視図、第2図は同
超電導体のIn2O、添加量に対する臨界温度を示す特
性図、第3図は同超電導体のIn2O3添加量に対する
臨界電流密度を示す特性図、第4図は同超電導体の湿中
放置による形状の経時変化を示す特性図、第6図は同超
電導体の湿中放置による常温での電気抵抗の経時変化を
示す特性図、第6図は本発明の実施例に係わる超電導体
のY2O5−Ba0−Cub、−1,2系の配合組成を
示す組成図である。 11・・・・・・超電導体、12・・・・・・銀電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名舗齢
袋檀棒鰹≧ 第4図 巧 7’)、’1  (Hか) M5図 時間(F−Ip) 槙6図 ノ YzO3
FIG. 1 is a perspective view showing an element for evaluating the characteristics of a sintered superconductor in the first embodiment of the present invention, and FIG. 2 is a characteristic diagram showing the critical temperature of the same superconductor with respect to the amount of In2O added. , Figure 3 is a characteristic diagram showing the critical current density with respect to the amount of In2O3 added to the same superconductor, Figure 4 is a characteristic diagram showing the change in shape of the same superconductor over time when it is left in humidity, and Figure 6 is a characteristic diagram showing the change in shape of the same superconductor over time when it is left in humidity. Figure 6 is a characteristic diagram showing the change in electrical resistance over time at room temperature when left in humidity. Figure 6 is a composition diagram showing the compounding composition of the Y2O5-Ba0-Cub, -1,2 system of superconductors according to examples of the present invention. be. 11...Superconductor, 12...Silver electrode. Agent's name: Patent attorney Toshi Nakao and one other person

Claims (2)

【特許請求の範囲】[Claims] (1)Y_2O_3−BaO−CuO_1_〜_1_.
_2系の焼結型超電導材料に、In_2O_3を重量比
で0.3〜8.0%添加したことを特徴とする超電導体
(1) Y_2O_3-BaO-CuO_1_~_1_.
A superconductor characterized by adding 0.3 to 8.0% by weight of In_2O_3 to a _2-based sintered superconducting material.
(2)Y_2O_3−BaO−CuO_1_〜_1_.
_2系の焼結型超電導材料として、モル比で表わされた
4つの組成 (Y_2O_3)_0_._5・(BaO)_1_._
2_5・(CuO_1_〜_1_._2)_1_._5
_9,(Y_2O_3)_0_._5・(BaO)_4
_._5・(CuO_1_〜_1_._2)_5,(Y
_2O_3)_0_._5・(BaO)_2_._7_
5・(CuO_1_〜_1_._2)_6_._2_5
及び(Y_2O_3)_0_._5・(BaO)_0_
._7_5・(CuO_1_〜_1_._2)_2で囲
まれた範囲内の組成物を用いた特許請求の範囲第1項に
記域の超電導体。
(2) Y_2O_3-BaO-CuO_1_~_1_.
As a _2-based sintered superconducting material, there are four compositions expressed in molar ratio (Y_2O_3)_0_. _5・(BaO)_1_. _
2_5・(CuO_1_〜_1_._2)_1_. _5
_9, (Y_2O_3)_0_. _5・(BaO)_4
_. _5・(CuO_1_〜_1_._2)_5, (Y
_2O_3)_0_. _5・(BaO)_2_. _7_
5・(CuO_1_〜_1_._2)_6_. _2_5
and (Y_2O_3)_0_. _5・(BaO)_0_
.. The superconductor according to claim 1, which uses a composition within the range surrounded by _7_5·(CuO_1_ to_1_._2)_2.
JP62272461A 1987-10-28 1987-10-28 Superconductor Pending JPH01115862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62272461A JPH01115862A (en) 1987-10-28 1987-10-28 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62272461A JPH01115862A (en) 1987-10-28 1987-10-28 Superconductor

Publications (1)

Publication Number Publication Date
JPH01115862A true JPH01115862A (en) 1989-05-09

Family

ID=17514236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62272461A Pending JPH01115862A (en) 1987-10-28 1987-10-28 Superconductor

Country Status (1)

Country Link
JP (1) JPH01115862A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393624A (en) * 1989-09-04 1991-04-18 Hitachi Ltd In-ba-y and/or ca-cu-o superconducting substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393624A (en) * 1989-09-04 1991-04-18 Hitachi Ltd In-ba-y and/or ca-cu-o superconducting substance

Similar Documents

Publication Publication Date Title
JP2804039B2 (en) Compound superconductor and method for producing the same
JPH01115862A (en) Superconductor
JPH01115859A (en) Superconductor
JPH01115860A (en) Superconductor
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JPH01115861A (en) Superconductor
JPH01115864A (en) Superconductor
JPH06263441A (en) Metal oxide material and its production
JP2556095B2 (en) Superconductor manufacturing method
JP2751230B2 (en) Method for producing Bi-based superconducting oxide sintered body containing lead
JP2621344B2 (en) Superconductor manufacturing method
JPS62296401A (en) Barium titanate system semiconductor and manufacture of the same
JPH0435072A (en) Conductive oxide material
JP2855126B2 (en) Oxide superconductor
JPH01115863A (en) Superconductor
JP2556096B2 (en) Superconductor manufacturing method
JPH0275108A (en) Manufacture of superconductor
JPH0218321A (en) La-ba-ca-cu oxide superconductor
JPH01172259A (en) Production of ceramic superconducting molded body
JPH02196060A (en) Production of superconductor
JPH02199053A (en) Production of superconductor
JPH0474754A (en) Production of oxide superconductor
JPH01224259A (en) Production of high-temperature superconducting ceramics
JPH0465342A (en) Superconductor and its production
JPH0230618A (en) Oxide high-temperature superconductor