JPH01115864A - Superconductor - Google Patents

Superconductor

Info

Publication number
JPH01115864A
JPH01115864A JP62272463A JP27246387A JPH01115864A JP H01115864 A JPH01115864 A JP H01115864A JP 62272463 A JP62272463 A JP 62272463A JP 27246387 A JP27246387 A JP 27246387A JP H01115864 A JPH01115864 A JP H01115864A
Authority
JP
Japan
Prior art keywords
bao
caf2
added
current density
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62272463A
Other languages
Japanese (ja)
Inventor
Masahiro Ito
昌宏 伊藤
Atsushi Iga
篤志 伊賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62272463A priority Critical patent/JPH01115864A/en
Publication of JPH01115864A publication Critical patent/JPH01115864A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To increase critical current density and moisture resistance by adding a specific amount of CaF2 to a sintering type superconductive material of Y2O3- BaO-CuO1-1.2. CONSTITUTION:For example, commercially available Y2O3, BaO and CuO powders are mixed at a molar ratio of 1/2:2:3, formed by pressing, kept at 930 deg.C in an oxidative atmosphere for 24hr, then cooled down at a rate of -50 deg.C/hr. The sintered product of (Y2O3)0.5.(BaO)2.(CuO1-1.2)3 is crushed into fine powder, then 0.3-12.0% of commercially available CaF2 at a weight ratio is added to the powder. The mixture is formed by pressing, then sintered at 880-950 deg.C for 4hr, and the sintered product is treated oxidatively at 750 deg.C for 8hr to give the subject superconductor.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、液体チッ素温度よシ高い温度で超電導特性を
もつ超電導体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to superconductors having superconducting properties at temperatures higher than the temperature of liquid nitrogen.

従来の技術 近年、つぎつぎと臨界温度が高い超電導体が発見されて
、ついに液体チッ素温度で超電導特性を有する材料が発
見されるにいたっている。そのうちでも特にY2O,−
BaO−CuO1〜1.2系の超電導体では焼結型と薄
膜型についてよく研究されている。
BACKGROUND OF THE INVENTION In recent years, superconductors with high critical temperatures have been discovered one after another, and a material having superconducting properties at the temperature of liquid nitrogen has finally been discovered. Among them, especially Y2O,-
Regarding BaO-CuO1-1.2 type superconductors, sintered type and thin film type have been well studied.

Y2O5−BaO−Cuo、−12系焼結型超電導体を
焼結法で作成する場合には Y2O,、BaO(又はB
aC0,)及びOuO(又はCu20)の粉体をよく混
合し、加圧成型して900〜1ooo℃の@度で焼結し
、徐冷するか、あるいは低温の定点で長時間保時するな
どの低温酸化処理を施して特性の向上をはかっている。
When creating a Y2O5-BaO-Cuo, -12 based sintered superconductor by a sintering method, Y2O,, BaO (or B
aC0,) and OuO (or Cu20) powders are thoroughly mixed, pressure molded, sintered at 900-100°C, and slowly cooled, or kept at a fixed point at a low temperature for a long time. The properties are improved through low-temperature oxidation treatment.

発明が解決しようとする問題点 しかしながら、上記の如き方法で製造した焼結型超電導
体では高い臨界電流密度を得ることがむづかしく、さら
に附湿特性がきわめて悪く、大気中の水分と反応すると
超電導特性が劣化し、ついには焼結体の形状が崩壊する
現象さえ見ることが出来た。
Problems to be Solved by the Invention However, it is difficult to obtain a high critical current density with the sintered superconductor manufactured by the method described above, and furthermore, it has extremely poor moisture absorption characteristics and does not easily react with moisture in the atmosphere. The superconducting properties deteriorated, and it was even possible to see the shape of the sintered body collapse.

本発明は、上記問題に鑑み、臨界電流密度が大きく、耐
湿性に優れ、大気中に放置しても超電導特性の劣化が小
さいY2O3−BaO−CuO1〜1.2系酸化物の超
電導体を提供するものである。
In view of the above problems, the present invention provides a Y2O3-BaO-CuO1-1.2-based oxide superconductor that has a large critical current density, excellent moisture resistance, and shows little deterioration in superconducting properties even when left in the atmosphere. It is something to do.

問題点を解決するための手段 上記問題点を解決するだめに本発明は、Y2O,−Ba
O−GuO,〜4.2系焼結型超電導材料に、添加物と
してCaF2 を重量比で0.3〜12.0%添加した
ものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides Y2O, -Ba
CaF2 is added as an additive in an amount of 0.3 to 12.0% by weight to an O-GuO, ~4.2-based sintered superconducting material.

作用 上記焼結法を採用することによって、焼結体は緻密に焼
結され低温における酸化処理が容易になって臨界電流密
度が向上し、耐湿特性が改善される。
Effect By employing the above sintering method, the sintered body is densely sintered, oxidation treatment at low temperature is facilitated, critical current density is improved, and moisture resistance properties are improved.

実施例 以下、本発明の第1の実施例について図面を参照しなが
ら説明する。
EXAMPLE Hereinafter, a first example of the present invention will be described with reference to the drawings.

市販の酸化イツトリウム(Y2O3) 、酸化バリウム
(BaO)  および酸化第2銅(CUO)のそれぞれ
の粉体を、 rnol : 2mol : 3 rno
l の比で混合し、加圧成型した後、酸化雰囲気中93
0℃にて24時間保持し、その後−60’C/時間の速
度で冷却して焼結体を得た。
Commercially available powders of yttrium oxide (Y2O3), barium oxide (BaO), and cupric oxide (CUO) were prepared as follows: rnol: 2 mol: 3 rno
After mixing at a ratio of 1.1 and pressure molding,
The temperature was maintained at 0° C. for 24 hours and then cooled at a rate of −60° C./hour to obtain a sintered body.

かぐして得た(Y2O5)l15会(Bad)2−(C
ubl−、,2)。
(Y2O5)l15 meeting (Bad)2-(C
ubl-,,2).

の焼結体を微粉砕し、これに重量比で0.30〜12.
0%の市販のふっ化カルシウム(caF2)t:添加し
て混合、加圧成型して880〜950 ℃の温度で4時
間の焼成をして焼結体を得て、次いで750 ℃8時間
の酸化処理を施しだ。次にこれらの焼結体に低温で銀電
極をやきつけた。なお、かかる焼結体の焼結による収縮
率はCaF 2を3重量%添加したものでは、880’
Cの焼成で3% 。
A sintered body of 0.30 to 12.
0% commercially available calcium fluoride (caF2) t: Added, mixed, pressure molded, sintered at a temperature of 880 to 950°C for 4 hours to obtain a sintered body, then heated at 750°C for 8 hours. It has been subjected to oxidation treatment. Next, silver electrodes were burned onto these sintered bodies at low temperatures. In addition, the shrinkage rate of such a sintered body by sintering is 880' when 3% by weight of CaF2 is added.
3% by firing C.

910’C(7)焼成で5%、9ESO”Cの焼成で1
0%であった。このようにして作製した試料について臨
界電流密度、耐湿特性の測定を行なった。
5% when fired at 910'C (7), 1 when fired at 9ESO"C
It was 0%. The critical current density and moisture resistance properties of the samples thus prepared were measured.

第1図に本発明の第1の実施例における焼結型超電導体
の特性を評価するだめの素子を示す。
FIG. 1 shows an element for evaluating the characteristics of a sintered superconductor in a first embodiment of the present invention.

第1図において、11は焼結型超電導体、12は銀電極
を示す。超電導体11は厚み約4.0羽。
In FIG. 1, 11 indicates a sintered superconductor, and 12 indicates a silver electrode. The superconductor 11 has a thickness of about 4.0 wings.

直径が約13.Onφの円板状をしたものである。The diameter is about 13. It has a disk shape of Onφ.

銀電極材料には低温焼きつけ型のものを用いた。A low-temperature baking type material was used for the silver electrode material.

以上のような素子を用いて、超電導体の緒特性を測定し
た。
Using the above-mentioned device, we measured the properties of superconductors.

第2図は(Y2O3)0. −(Bad)2− ((j
uO,−、,2)、5に添加したCaF2の量(wtC
X)と臨界部1i(’K)との関係を示した図である。
Figure 2 shows (Y2O3)0. -(Bad)2- ((j
uO,−,,2), the amount of CaF2 added to 5 (wtC
It is a figure showing the relationship between X) and critical part 1i ('K).

図には比較のためCaF□を添加しない材料につ贋ても
特性を示した。第2図からCaF2の添加量が12%を
越すと臨界温度が急激に低下することが認められる。
For comparison, the figure also shows the characteristics of a material to which no CaF□ was added. From FIG. 2, it is recognized that when the amount of CaF2 added exceeds 12%, the critical temperature decreases rapidly.

第3図は(Y2O,>1lL5e (Bad)2@(C
uO1〜1.2)3に添加したC aF 2の添加量(
wt%)と臨界電流密度(ム/ff1)との関係を示し
たものである。臨界電流密度は(aF2の添加lが3w
t%近傍で最大となす、ソノ値はJC〜1ooム/cI
!L、添加量が12wt% 以上になると急激に低下す
ることが認められる。
Figure 3 shows (Y2O, >1lL5e (Bad)2@(C
The amount of CaF2 added to uO1~1.2)3 (
%) and critical current density (mu/ff1). The critical current density is (if the addition l of aF2 is 3w
Maximum near t%, sono value is JC ~ 1oom/cI
! It is observed that when the amount of L added is 12 wt% or more, it decreases rapidly.

第4図は(Y2O3)CL5°(B″0)2°(Cub
l−t2)系焼結体を40 ’C、相対層fta o〜
95%の雰囲気中に放置したときの焼結体の外径の経時
変化を示したものである。図中、14ばCaF 2を添
加しない従来の材料についての例を示し、16は添加量
が0.3 wt% 、  18 id:3 W tcX
、 1 了ハ12 wt%O場合について示す。第4図
より、CaF□を添加した焼結体では、湿度による焼結
体の外径の経時変化が小さく、CILF2の添加効果が
認められる。
Figure 4 shows (Y2O3)CL5°(B″0)2°(Cub
lt2) system sintered body at 40'C, relative layer fta o~
This figure shows the change over time in the outer diameter of the sintered body when it was left in a 95% atmosphere. In the figure, 14 shows an example of a conventional material in which CaF2 is not added, 16 shows an example in which the amount added is 0.3 wt%, 18 id: 3 W tcX
, 1 The case of 12 wt%O is shown. From FIG. 4, in the sintered body to which CaF□ was added, the change over time in the outer diameter of the sintered body due to humidity was small, and the effect of adding CILF2 was observed.

CaF2添加量が12wt%以上のものではほとんど外
径が変化していない。
When the amount of CaF2 added is 12 wt% or more, the outer diameter hardly changes.

第5図は試料を40’Cで相対湿度が90〜95%の雰
囲気中に放置したときの試料の常温における抵抗値の経
時変化を示したものである。抵抗値の経時変化はきわめ
て大きく、焼結体の組織自体も変化しているようである
。これらの試料は常温では半導体的性質をもち、低温で
は超電導体となるが、超電導時の臨界電流密度は常温に
おける半導体の電気抵抗と深い関係がある。すなわち常
温における抵抗値の経時変化は主として分解や異物質の
析出によるものであり、これらは超電導体においては臨
界電流密度に直接影響を及ぼすものと考えられる。Ca
F2の添加だよって常温抵抗値の湿度による経時変化は
かな多安定化するが、これを完全に停止させることは出
来なかった。
FIG. 5 shows the change over time in the resistance value of the sample at room temperature when the sample was left in an atmosphere of 40'C and relative humidity of 90 to 95%. The change in resistance value over time is extremely large, and the structure of the sintered body itself seems to be changing. These samples have semiconductor properties at room temperature and become superconductors at low temperatures, but the critical current density at superconductivity is closely related to the electrical resistance of the semiconductor at room temperature. That is, the change in resistance value over time at room temperature is mainly due to decomposition and precipitation of foreign substances, and these are considered to have a direct effect on the critical current density in superconductors. Ca
Although the addition of F2 slightly stabilizes the change in resistance value at room temperature over time due to humidity, it was not possible to completely stop this change.

なお、第6図中、14はCaF2を添加しない従来の材
料について例を示し、16は添加量が0.3wt%、1
6は3wt%、1゛了は12 wtCXの場合について
示す。
In addition, in FIG. 6, 14 shows an example of a conventional material in which CaF2 is not added, and 16 shows an example of a conventional material in which the amount of addition is 0.3 wt%, 1
6 is 3wt%, and 1% is 12wtCX.

以下本発明の第2の実施例について説明する。A second embodiment of the present invention will be described below.

市販のY2O3,BaOおよびCuOの粉体をそれぞれ
−;no/ : 1.2tsmo、d : 1.ts9
molの比で混合し、加圧成型したのち大気中950’
Cにて24時間の焼成を行ない、その後毎時−so’c
の速度で冷却して(Y2O3)、5− (BaO)、4
5s (CuO1−12) 、、59の組成の焼結体を
得た。次にこの焼結体を微粉砕し重量比で0.3〜12
.0%のCaF2を添加して加圧成型し、890〜96
0℃の温度で4時間の焼成をした後、750’CB時間
の酸化処理を行なった。
Commercially available powders of Y2O3, BaO and CuO were prepared by -;no/: 1.2tsmo, d: 1. ts9
After mixing in a mol ratio and molding under pressure, it was heated to 950' in the atmosphere.
24 hours of firing at C, then hourly -so'c
(Y2O3), 5- (BaO), 4
A sintered body having a composition of 5s (CuO1-12), .59 was obtained. Next, this sintered body is finely pulverized and the weight ratio is 0.3 to 12.
.. Pressure molded with 0% CaF2 added, 890-96
After firing at a temperature of 0°C for 4 hours, oxidation treatment was performed for 750'CB hours.

CaF 2を3%添加した場合890℃の焼成では収縮
率は3%1920℃の焼成ではts9c、eeo℃の焼
成では10%であった。
When 3% CaF 2 was added, the shrinkage rate was 3% when fired at 890°C, ts9c when fired at 1920°C, and 10% when fired at eeo°C.

このようにして作製した試料を用いて、臨界電流密度及
び耐湿特性の測定を行なった。
Using the thus prepared sample, critical current density and moisture resistance were measured.

臨界電流密度は第1の実施例の場合とほぼ似た傾向を示
し CaF 2を添加しない場合Jc〜22ム/Cnl
であったものがCaF2添加と共に増大し、約3に添加
で%Jc〜36ム/d と最高になり更に添加量を増す
と減少する。臨界温度は第1の実施例と似た傾向を示し
、CaF2の添加量が14%を越えると液体チッ素温度
よシ低くなる。
The critical current density showed almost the same tendency as in the first example, and when CaF 2 was not added, Jc ~ 22 μm/Cnl
increases with the addition of CaF2, reaches a maximum of %Jc~36 μm/d when the amount of CaF2 is added, and decreases as the amount added is further increased. The critical temperature shows a tendency similar to that of the first example, and when the amount of CaF2 added exceeds 14%, it becomes lower than the temperature of liquid nitrogen.

これらの試料の湿度による膨張をCaF2の添加で抑制
することが出来るのは、第1の実施例の場合とほぼ同じ
で、まだ、常温における抵抗値の湿空経時変化も第1の
実施例と同傾向を示した。
The expansion of these samples due to humidity can be suppressed by adding CaF2, which is almost the same as in the first example, and the change in resistance value over time in humid air at room temperature is still similar to that in the first example. The same trend was observed.

以下本発明の第3の実施例について説明する。A third embodiment of the present invention will be described below.

市販のY2O5,BaO、およびCuOの粉体をそれぞ
れ−mop : 4.s mol : s、o rno
lノ比で混合し。
-mop of commercially available powders of Y2O5, BaO, and CuO, respectively: 4. s mol: s, o rno
Mix at a ratio of 1/2.

加圧成型したのち大気中940℃にて24時間の焼成を
行ない、その後毎時−50’Cの速度で冷却しテ(Y2
O3)0.5m (BaO)、、45 拳(Cu01−
1,2)5の組成の焼結体を得た。次にこの焼結体を微
粉砕し重量比で0.3〜12.0蟹のCaF2を添加し
て加圧成型し。
After pressure molding, it was fired in the atmosphere at 940°C for 24 hours, and then cooled at a rate of -50'C per hour (Y2
O3) 0.5m (BaO), 45 fist (Cu01-
A sintered body having a composition of 1, 2) and 5 was obtained. Next, this sintered body was finely pulverized, CaF2 of 0.3 to 12.0 weight ratio was added thereto, and the mixture was press-molded.

880〜960℃の温度で4時間の焼成をした後。After 4 hours of baking at a temperature of 880-960°C.

760°C8時間の酸化処理を行なった。CaF2を3
%添加した場合、880°Cの焼成では収縮率は3%、
910″Cの焼成では6に、960℃の焼成では10%
であった。
Oxidation treatment was performed at 760°C for 8 hours. CaF2 3
%, the shrinkage rate is 3% when fired at 880°C.
6 for firing at 910″C, 10% for firing at 960°C
Met.

このようにして作製した試料を用いて、臨界電流密度及
び耐湿特性の測定を行なった。
Using the thus prepared sample, critical current density and moisture resistance were measured.

CaF 2 ヲ3 N 添加シk トキ(” 20s 
)as ” (BaO)(L45 。
CaF 2 3 N addition (20s
)as” (BaO)(L45.

(CuO、〜t2)5系焼結体では臨界電流密度が最大
となり、その1直はJc〜43ム/cIit であった
。超電導特性のCaF 2添加量依存性、湿度による試
料外径の経時変化、臨界電流密度の湿度による劣化等は
ほぼ第1の実施例と同じ傾向を示した。C&F 2の添
加量が13に以上になると液体チッ素温度以上での超電
導特性が失われた。
(CuO, ~t2) The critical current density was maximum in the 5-based sintered body, and the critical current density was Jc~43 μm/cIit in one shift. The dependence of the superconducting property on the amount of CaF 2 added, the temporal change in the outer diameter of the sample due to humidity, the deterioration of the critical current density due to humidity, etc. showed almost the same trends as in the first example. When the amount of C&F 2 added exceeds 13, the superconducting properties above the liquid nitrogen temperature are lost.

以下本発明の第4の実施例について説明する。A fourth embodiment of the present invention will be described below.

市販のY2O3,BaO、およびCuOの粉体をそれぞ
れ−mol : 2.76rnol : e、2tsm
olの比で混合し、加圧成型したのち大気中930’C
Kで24時間の焼成を行ない、その後毎時−s o ’
cの速度で冷却して(Y2O3)a5・(BaO+2.
75 ’ (Cu’ 、−12’ 6.25の組成の焼
結体を得た。次にこの焼結体を微粉砕し1重量比で0.
3〜12.oにのCaF2を添加して加圧成型し、87
0〜960℃の温度で4時間の焼成をした後、750℃
8時間の酸化処理を行なった。
Commercially available powders of Y2O3, BaO, and CuO were prepared with -mol: 2.76rnol: e, 2tsm, respectively.
After mixing at a ratio of
K for 24 hours, then hourly −s o '
c at a rate of (Y2O3)a5.(BaO+2.
A sintered body having a composition of 75'(Cu',-12' 6.25) was obtained. Next, this sintered body was finely ground to give a weight ratio of 0.75'(Cu',-12').
3-12. Add CaF2 to
After firing for 4 hours at a temperature of 0 to 960℃, 750℃
Oxidation treatment was performed for 8 hours.

CaF2を3イ添加した場合870°Cの焼成では収縮
率は3%、910℃の焼成では6に、950’Cの焼成
では10%であった。
When three parts of CaF2 were added, the shrinkage rate was 3% when fired at 870°C, 6% when fired at 910°C, and 10% when fired at 950°C.

このようにして作製した試料を用いて、臨界電流密度及
び耐湿特性の測定を行なった。
Using the thus prepared sample, critical current density and moisture resistance were measured.

CILF2を3%添加したとき(Y2O3) 、5m 
(Bai)2.、、、 e(CuO、〜1.2)&2s
系焼結体では臨界電流密度が最大となり、その値はJc
〜68ム/cT&であった。超電導特性のCaF2添加
量依存性、湿度による試料外径の経時変化、臨界電流密
度の湿度による劣化等はほぼ第1の実施例と同じ傾向を
示した。CaF2の添加量が16%以上になると液体チ
ッ素温度以上での超電導特性が失われた。
When 3% CILF2 was added (Y2O3), 5m
(Bai)2. ,, e(CuO, ~1.2) &2s
The critical current density is maximum in the system sintered body, and its value is Jc
~68 mu/cT&. The dependency of the superconducting property on the amount of CaF2 added, the change over time in the outer diameter of the sample due to humidity, the deterioration of the critical current density due to humidity, etc. showed almost the same trends as in the first example. When the amount of CaF2 added exceeds 16%, superconducting properties at temperatures above the liquid nitrogen temperature are lost.

以下本発明の第5の実施例について説明する。A fifth embodiment of the present invention will be described below.

市販のY2O,、BaO,およびCuOの粉体をそれぞ
れ: nol: 0.75 mol : 2.09rn
O1の比で混合し、加圧成型したのち大気中930’C
にて24時間の焼成を行ない、その後毎時−50℃の速
度で冷却して(Y2O5)C5” (Bad)、75 
” (C”j−12’2.0?の組成の焼結体を得た。
Commercially available Y2O, BaO, and CuO powders: nol: 0.75 mol: 2.09rn
After mixing at a ratio of O1 and molding under pressure, it was heated to 930'C in the atmosphere.
Calcination was carried out for 24 hours at
A sintered body having a composition of "(C"j-12'2.0?) was obtained.

次にこの焼結体を微粉砕し、重量比で0.3〜12.0
%のCaF2を添加して加圧成型し、880〜950℃
の温度で4時間の焼成をした後、760’C8時間の酸
化処理を行なった。
Next, this sintered body is finely pulverized, and the weight ratio is 0.3 to 12.0.
% CaF2 was added and pressure molded at 880-950℃.
After firing at a temperature of 4 hours, oxidation treatment was performed at 760'C for 8 hours.

CaF2を3%添加した場合、sso’cの焼成では収
縮率は35<、91o’cの焼成では6%、960°C
の焼成では1*%であった。
When CaF2 is added at 3%, the shrinkage rate is 35< when fired at sso'c, 6% when fired at 91o'c, and 960°C.
In the case of firing, it was 1*%.

このようにして作製した試料を用いて、臨界電流密度及
び耐湿特性の測定を行なった。
Using the thus prepared sample, critical current density and moisture resistance were measured.

CaF2を3%添加したとき(Y2O,)llL、、e
 (B2LO)、、5−(CuO,〜1.2h09  
系焼結体では臨界電流密度が最大となり、その値はJc
〜38ム/CIiであった。超電導特性のCaF2添加
量依存性、湿度による試料外径の経時変化、臨界電流密
度の湿度による劣化等はほぼ第1の実施例と同じ傾向を
示した。CaF2の添加量が13%以上になると液体チ
ッ素温度以上での超電導特性が失われた。
When 3% of CaF2 is added (Y2O,)llL,,e
(B2LO), 5-(CuO, ~1.2h09
The critical current density is maximum in the system sintered body, and its value is Jc
~38 μm/CIi. The dependency of the superconducting property on the amount of CaF2 added, the change over time in the outer diameter of the sample due to humidity, the deterioration of the critical current density due to humidity, etc. showed almost the same trends as in the first example. When the amount of CaF2 added exceeds 13%, superconducting properties at temperatures above the liquid nitrogen temperature are lost.

以上実施例として、超電導体となる6種類のY2O3−
BaO−Gum、〜、2系配合組成物に関し、臨界電流
密度及び湿空劣化特性に及ぼすCaF2の添加効果につ
いて示したが、 CaF2の添加効果はこれら6種類の
組成に限らず、モル比で表わされた4つの組成(Y2O
,)cL5− (Bad) tzs −(Cub、−,
2)159゜(Y2O3)、5−(BaO)45− (
Cub、−,2)5. (Y2O3)0.5−(BaO
)2.75− (Cubl−、,2)、5及び(Y2O
3)0.5−(BaO)Il、5* (CuO4−1,
2)2.09で囲まれた超電導組成物全域に及ぶ。第6
図はその範囲を示したものである。第6図において、1
は(Y2O,)。。5− (BaO)2−(CuO,−
、,2)3.2は(Y2O3)、 −(Bad) t2
5−(OuO1〜1,2)、52.3は(Y2O,)c
L5− (Bai)、 −(CuO1−t2)5 、4
は(Y2O3)0.5− (B2LO) 、、5・(C
uO+−tz)tzs + sは(Y2O,)CL5−
 (Bad)、5−(Cu01−1.2 )2.09 
 を示す0コノY2O5−BaO−Cub、−12系の
上記4つの組成で囲まれた組成物にCaF2を添加した
超電導体と限定したのは、この範囲内の材料で良好な臨
界電流密度が得られるが、範囲外ではこれが小さくなっ
て超電導体として適さぬことによる。また、Y2O3−
BaO−Cub、−12系組成物に対するCaF2の添
加量を0.3〜12.Owt9cと限定したのは、0.
3%以下の添加では十分な添加効果が現わルぬこと、そ
して12.09c以上の場合には臨界温度が液体チッ素
温度以下となって高温超電導体としてのメリットが減少
することによる。
As examples above, six types of Y2O3-
The effect of CaF2 addition on the critical current density and humid air deterioration characteristics of BaO-Gum,~,2-based compositions has been shown, but the effect of CaF2 addition is not limited to these six types of compositions, and can be expressed in terms of molar ratio. The four compositions (Y2O
,)cL5- (Bad) tzs-(Cub,-,
2) 159° (Y2O3), 5-(BaO)45- (
Cub, -, 2)5. (Y2O3)0.5-(BaO
)2.75- (Cubl-,,2),5 and (Y2O
3) 0.5-(BaO)Il, 5* (CuO4-1,
2) Covers the entire superconducting composition surrounded by 2.09. 6th
The figure shows the range. In Figure 6, 1
is (Y2O,). . 5-(BaO)2-(CuO,-
,,2) 3.2 is (Y2O3), -(Bad) t2
5-(OuO1~1,2), 52.3 is (Y2O,)c
L5- (Bai), -(CuO1-t2)5, 4
is (Y2O3)0.5- (B2LO) , 5・(C
uO+-tz) tzs + s is (Y2O,)CL5-
(Bad), 5-(Cu01-1.2)2.09
The reason why we limited the superconductor to a superconductor made by adding CaF2 to the composition surrounded by the above four compositions of 0conoY2O5-BaO-Cub and -12 systems is that good critical current density can be obtained with materials within this range. However, outside this range, this becomes small and is not suitable as a superconductor. Also, Y2O3-
The amount of CaF2 added to the BaO-Cub, -12 composition is 0.3 to 12. Owt9c was limited to 0.
This is because if the addition is less than 3%, a sufficient addition effect will not be exhibited, and if it is more than 12.09c, the critical temperature will be below the liquid nitrogen temperature, reducing the merits as a high-temperature superconductor.

発明の効果 以上のように本発明によれば1モル比で表わされた4つ
の組成(τ20s ) as e (BaO+、、25
− (CuO1〜1.2)、。59゜(Y2O3)0.
5− (Bad)、5m (Cub、−12)5. (
Y2O3)0.5#(BaO)2.75− (CuO,
−12)、25.及び(Y2O5)TL5”(BaO)
Il、5− (Cu01〜tz)2.C9で囲まれた範
囲内の組成物にCaF2を重量比で0.3〜12.0%
添加して焼結型超電導体を作成することにより、臨界電
流密度と耐湿特性を向上させることができるという効果
が得られる。
Effects of the Invention As described above, according to the present invention, four compositions (τ20s) as e (BaO+, 25
- (CuO1-1.2),. 59°(Y2O3)0.
5- (Bad), 5m (Cub, -12)5. (
Y2O3)0.5#(BaO)2.75-(CuO,
-12), 25. and (Y2O5)TL5”(BaO)
Il, 5-(Cu01~tz)2. 0.3 to 12.0% by weight of CaF2 in the composition within the range surrounded by C9
By adding it to create a sintered superconductor, the effect of improving critical current density and moisture resistance properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における焼結型超電導体
の特性を評価するための素子を示す斜視図、第2図は同
超電導体のGaF2添加毫に対する臨界温度を示す特性
図、第3図は同超電導体のC1LF2添加量に対する臨
界電流密度を示す特性図、第4図は同超電導体の湿中放
置による形状の経時変化を示す特性図、第6図は同超電
導体の湿中放置による常連での電気抵抗の経時変化を示
す特性図、第6図は本発明の実施例に係わる超電導体の
Y2O,−BaO−Cub、、、2系の配合組成を示す
組成図である。 11・・・・・・超電導体、12・・・・・銀電罹。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第4
図 眸 間 (HF) 第5図 第 6 図 τY20t
FIG. 1 is a perspective view showing an element for evaluating the characteristics of a sintered superconductor in the first embodiment of the present invention, and FIG. 2 is a characteristic diagram showing the critical temperature of the same superconductor with respect to GaF2-added glass. Figure 3 is a characteristic diagram showing the critical current density with respect to the amount of C1LF2 added to the same superconductor, Figure 4 is a characteristic diagram showing the change in shape of the same superconductor over time when left in humidity, and Figure 6 is a characteristic diagram showing the change in shape of the same superconductor when left in humidity. Fig. 6 is a characteristic diagram showing the change in electrical resistance over time due to regular storage, and Fig. 6 is a composition diagram showing the compounding composition of the Y2O, -BaO-Cub, 2 system of the superconductor according to the embodiment of the present invention. . 11...Superconductor, 12...Silver electrolyte. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 4
Between the images (HF) Fig. 5 Fig. 6 τY20t

Claims (2)

【特許請求の範囲】[Claims] (1)Y_2O_3−BaO−CuO_1_〜_1_.
_2系の焼結型超電導材料に、CaF_2を重量比で0
.3〜12.0%添加したことを特徴とする超電導体。
(1) Y_2O_3-BaO-CuO_1_~_1_.
CaF_2 is added to the _2-based sintered superconducting material at a weight ratio of 0.
.. A superconductor characterized by adding 3 to 12.0%.
(2)Y_2O_3−BaO−CuO_1_〜_1_.
_2系の焼結型超電導材料として、モル比で表わされた
4つの組成 (Y_2O_3)_0_._5・(BaO)_1_._
2_5・(CuO_1_〜_1_._2)_1_._5
_9,(Y_2O_3)_0_._5・(BaO)_4
_._5・(CuO_1_〜_1_._2)_5,(Y
_2O_3)_0_._5・(BaO)_2_._7_
5・(CuO_1_〜_1_._2)_6_._2_5
及び(Y_2O_3)_0_._5・(BaO)_0_
._7_5・(CuO_1_〜_1_._2)_2で囲
まれた範囲内の組成物を用いた特許請求の範囲第1項に
記載の超電導体。
(2) Y_2O_3-BaO-CuO_1_~_1_.
As a _2-based sintered superconducting material, there are four compositions expressed in molar ratio (Y_2O_3)_0_. _5・(BaO)_1_. _
2_5・(CuO_1_〜_1_._2)_1_. _5
_9, (Y_2O_3)_0_. _5・(BaO)_4
_. _5・(CuO_1_〜_1_._2)_5, (Y
_2O_3)_0_. _5・(BaO)_2_. _7_
5・(CuO_1_〜_1_._2)_6_. _2_5
and (Y_2O_3)_0_. _5・(BaO)_0_
.. The superconductor according to claim 1, using a composition within the range surrounded by _7_5·(CuO_1_ to_1_._2)_2.
JP62272463A 1987-10-28 1987-10-28 Superconductor Pending JPH01115864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62272463A JPH01115864A (en) 1987-10-28 1987-10-28 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62272463A JPH01115864A (en) 1987-10-28 1987-10-28 Superconductor

Publications (1)

Publication Number Publication Date
JPH01115864A true JPH01115864A (en) 1989-05-09

Family

ID=17514266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62272463A Pending JPH01115864A (en) 1987-10-28 1987-10-28 Superconductor

Country Status (1)

Country Link
JP (1) JPH01115864A (en)

Similar Documents

Publication Publication Date Title
JP2804039B2 (en) Compound superconductor and method for producing the same
US5317008A (en) Method of manufacturing bismuth type oxide superconductor
JPH01115864A (en) Superconductor
US5665662A (en) High-temperature superconductor
JP3165770B2 (en) Manufacturing method of oxide superconductor
JPH01115862A (en) Superconductor
JPH01115860A (en) Superconductor
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JP2803823B2 (en) Method for producing T1-based oxide superconductor
JPH01115859A (en) Superconductor
JP2621344B2 (en) Superconductor manufacturing method
JP2556095B2 (en) Superconductor manufacturing method
JP2778100B2 (en) Oxide superconducting material and method for producing the same
Mombrú et al. Structural Transition in the La2− xNdxCuO4System
US5304537A (en) M-Tl-Ba-Cu-O high temperature superconductors wherein M is selected from the group consisting of Ti, Zr and Hf
JPH0745357B2 (en) Superconducting fibrous single crystal and method for producing the same
JPH01115861A (en) Superconductor
EP0389086A1 (en) Single crystalline fibrous superconductive composition and process for preparing the same
JP2855126B2 (en) Oxide superconductor
JPH02307823A (en) Oxide superconducting material
JPH01115863A (en) Superconductor
JP2751230B2 (en) Method for producing Bi-based superconducting oxide sintered body containing lead
JP2556096B2 (en) Superconductor manufacturing method
JPH01212225A (en) Oxide superconducting material
JPH0230618A (en) Oxide high-temperature superconductor