JPS59182233A - Oxidation of manganese carbonate to manganese dioxide for cell - Google Patents

Oxidation of manganese carbonate to manganese dioxide for cell

Info

Publication number
JPS59182233A
JPS59182233A JP58053197A JP5319783A JPS59182233A JP S59182233 A JPS59182233 A JP S59182233A JP 58053197 A JP58053197 A JP 58053197A JP 5319783 A JP5319783 A JP 5319783A JP S59182233 A JPS59182233 A JP S59182233A
Authority
JP
Japan
Prior art keywords
reaction
manganese
manganese dioxide
carbonate
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58053197A
Other languages
Japanese (ja)
Inventor
Isao Tanabe
田辺 伊佐雄
Toshie Takizawa
滝沢 利枝
Wataru Sekiguchi
関口 亘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Zinc Co Ltd
Toho Aen KK
Original Assignee
Toho Zinc Co Ltd
Toho Aen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Zinc Co Ltd, Toho Aen KK filed Critical Toho Zinc Co Ltd
Priority to JP58053197A priority Critical patent/JPS59182233A/en
Priority to BE0/212647A priority patent/BE899270A/en
Publication of JPS59182233A publication Critical patent/JPS59182233A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid

Abstract

PURPOSE:To prepare a high-quality manganese dioxide for cell, having low beta- content, by oxidizing heavy manganese carbonate at specific temperature and pressure with an oxidizing gas comprising a steam-containing oxygen gas or dried oxygen gas. CONSTITUTION:Heavy manganese carbonate is prepared e.g. by the precipitation reaction of a soluble manganese salt with a soluble carbonate. The produced heavy manganese carbonate is oxidized under a reaction pressure of 4- 20 atm at 275-350 deg.C using steam-containing oxygen gas or dried oxygen gas as the oxidizing gas. The objective chemically synthesized manganese dioxide for cell, having an MnO2-content of >=88% and beta-content in the produced MnO2 of <=20% can be produced by this process. The dry cell manufactured by using the chemically synthesized manganese dioxide as a raw material is superior to those manufactured from electrolytic manganese dioxide in the continuous discharge characteristics, intermittent discharge characteristics, etc.

Description

【発明の詳細な説明】 化学合成二酸化マンカンは、一般にカルバメート法又は
可溶性施塩と可溶性炭酸塩からの沈澱反応によって製造
された重質炭酸マンカンを酸化し、粗MnO2ヲ得てこ
れを稀硫酸などによシ、酸処理し、未反応MnC0,を
溶解し、MnO,品位を高めると共に、生成MnO2’
e活性化して電池用とするか、粗MnO2に酸、胤塩、
及びNa(30,を添加して反応させ、塩素酸塩反応に
よる生成Mn0tを粗Mn0t中の内部表面に取9こま
せ、充填性のよい重質MnO,とすることが行なわれて
いる。(電気化学vol 49 、766頁(1981
))しかしながら、一般にMnCO5の酸化は、空気を
用いて320℃前後の温度で行れ、酸化品位もMn0t
(資)5前後に止シ、反応物中にMnC0,15%前後
を残留し、しかも反応に長時間ヲ要している。
Detailed Description of the Invention Chemically synthesized mankan dioxide is produced by oxidizing heavy mankan carbonate, which is generally produced by the carbamate method or by soluble salt addition and precipitation reaction from soluble carbonate, to obtain crude MnO2, which is then treated with dilute sulfuric acid, etc. Then, acid treatment is performed to dissolve unreacted MnC0, improve the quality of MnO, and reduce the generated MnO2'
eActivate it for use in batteries, or add acid, seed salt to crude MnO2,
and Na(30) are added and reacted, and the Mn0t produced by the chlorate reaction is incorporated into the internal surface of the crude Mn0t, resulting in heavy MnO with good filling properties. ( Electrochemistry vol 49, page 766 (1981
)) However, in general, oxidation of MnCO5 can be carried out using air at a temperature of around 320°C, and the oxidation grade is also Mn0t.
The reaction stopped at around 5%, and around 0.15% of MnC remained in the reaction product, and the reaction took a long time.

(rwnganjs4:Tij otMr uqes 
by s、ん’fehs 159 ptye、電気化学
vo149.175 (1981) )即ち、現在一般
に行なわれている酸化方法は、酸化品位が低(MnC0
,利用率が低い欠点を有し、更に処理に際して残留Mn
CO5は胤塩として浴出するため、生成MnO,は著し
く軽質となる欠点を有している。更に粗Mn0tを充填
性のよいMn0tとするため、これに酸、胤塩及びNh
C!!Ds tl−添加反応させ重質化処理を行うさい
にも、塩素酸塩反応によるMnO,。
(rwnganjs4:TijotMr uques
(by s, n'fehs 159 ptye, electrochemistry vol. 149.175 (1981)) In other words, the oxidation method currently in common use has a low oxidation grade (MnC0
, has the disadvantage of low utilization rate, and furthermore, residual Mn during processing
Since CO5 is extracted as seed salt, the produced MnO has the disadvantage of being extremely light. Furthermore, in order to make the crude Mn0t into Mn0t with good filling properties, acid, seed salt and Nh
C! ! Ds tl-MnO, which is caused by a chlorate reaction, also when performing a weighting treatment by addition reaction.

の生成比を大としなければ重質化の程度が低い欠点を有
している。(電気化学vo149□766頁(1981
))これを改善する方法として、カルバメート法による
重質MnC0,を対象とした、4気圧以下の軽加正合湿
酸素を用いる方法がある。(電気化学vol 4976
6頁(1981) )同方法は生成MnO,品位は90
〜91%に達し、残留MnCO3も3〜4%に低下する
すぐれた方法である。しかしながら、同方法は生成Mn
O2のβ型化率の問題は未穆、討で、4気圧以上の加圧
酸素を使用すれば生成MnO2の一部がβ型化する障害
があることを指摘しているに止っている。
The disadvantage is that unless the production ratio of is increased, the degree of weighting is low. (Electrochemistry vol 149 □ 766 pages (1981
)) As a method to improve this, there is a method of using lightly humidified humidified oxygen of 4 atmospheres or less for heavy MnC0 by the carbamate method. (Electrochemistry vol 4976
6 (1981)) The same method produces MnO, the quality is 90
It is an excellent method that reaches ~91% and also reduces residual MnCO3 to 3-4%. However, the method produces Mn
The issue of the β-formation rate of O2 remains unresolved, and only points out that if pressurized oxygen of 4 atmospheres or more is used, there is a problem in that some of the produced MnO2 becomes β-form.

この問題については、酸化時の反応圧力と生成MnO,
のβ型化率の関係並びにβ型化率が生成MnO。
Regarding this problem, the reaction pressure during oxidation and the generated MnO,
The relationship between the β-formation rate and the β-formation rate of MnO.

の放電特性に及ばず影響は全く研究例がない状態である
ので、この問題を明にすべく研究した。
Since there is no research on the effect on the discharge characteristics, we conducted a study to clarify this problem.

即ち、発明者らはMn5O+溶液と(NH4)2COs
溶液を攪拌下で並行チャージする方式で得た、第1表に
示すタップ密度2.36のMnCO3を用い、反応温度
としては最適温度とされている325℃を選び酸化用、
酸素ガスの水蒸気分圧は1気圧として、反応圧力と生成
MnO2の品位、並びにβ型化率の関係を反応時間を3
時間に一定して検討した。MnO2のβ型化率について
は、第1表に併記した発明者らが研究したβ型のないア
モルファスMnO,とMn (NOx )tを加熱分解
し、更に脱水して得たβ−Mn02を標準試料とし、M
O管球を用いステップスキャン方式によシ両試料の混合
比率とβ−MnO2ビークの基線上の面積の関係から第
1図に示す検量線を作成して用いる方式でX線回折法に
よって求めた。
That is, the inventors prepared Mn5O+ solution and (NH4)2COs
Using MnCO3 with a tap density of 2.36 shown in Table 1, which was obtained by charging the solution in parallel while stirring, the reaction temperature was 325°C, which is considered to be the optimum temperature, for oxidation.
Assuming that the water vapor partial pressure of oxygen gas is 1 atm, the relationship between the reaction pressure, the quality of MnO2 produced, and the β-formation rate is determined by the reaction time of 3.
Considered at regular intervals. Regarding the β-formation rate of MnO2, the amorphous MnO without β-form, which is also listed in Table 1, and β-Mn02 obtained by thermal decomposition of Mn (NOx)t and further dehydration are used as standard. As a sample, M
The calibration curve shown in Figure 1 was created from the relationship between the mixing ratio of both samples and the area on the base line of the β-MnO2 peak using an O tube using a step scan method. .

第1表 この結果反応圧力と生成Mn0tの品位、生成MnO。Table 1 As a result, the reaction pressure, the quality of produced Mn0t, and produced MnO.

のβ型化率の関係について、第2図に示す結果を得た。The results shown in FIG. 2 were obtained regarding the relationship between the β-forming rate of .

次にβ型化率が5〜25%迄段階的に異る試料おのおの
1009をINHNosで3時間処理し、洗滌乾燥し電
解液として32%znc14.1%NH4cc、水溶液
を用い常法により、合剤中のアセチレンブラック12%
とし、Mn01充填率を249に一定として、Dサイズ
乾電池を作成し、4Ω連続放電試験を行ない、0.85
 V迄の保持時間を求め、電解二酸化マンカンと同一条
件で比較すると共に、β型化率と保持時間の関係を図に
整理した結果は第3図の通りであった0 以上の結果から酸処理前のMn0tのβ型化率と保持時
間の関係は、β型化率旬%迄は殆んど変9はなく保持時
間17〜18時間、放電効率20%〜7y%の範囲で、
電解MnO+の保持時間16.8時間よりすぐれた値を
示した。しかしながらβ型化率20%以上では保持時間
は急激に低下した。即ちβ−Mn02は本来不活性で放
電効率は低いとされているが1.、MnCO3を酸化し
たMnO2については、β型化率20%迄はその影響は
少くとも、きわめて小で問題にしないでもよいとの結果
となりた。これはこの化学合成MnO2の特殊性による
ものと考えられる。
Next, each sample of 1009 with a stepwise difference in β-forming rate from 5 to 25% was treated with INHNos for 3 hours, washed and dried, and synthesized by a conventional method using an aqueous solution of 32% ZNC 14.1% NH 4 cc as an electrolyte. Acetylene black in agent 12%
With the Mn01 filling rate constant at 249, a D size dry battery was made, and a 4Ω continuous discharge test was conducted.
The retention time up to V was determined and compared with electrolytic mankan dioxide under the same conditions, and the relationship between the β-formation rate and retention time was summarized in a diagram.The results are shown in Figure 3.0 Based on the above results, acid treatment The relationship between the β-forming rate and the retention time of Mn0t is almost unchanged up to the β-forming rate of 1%, and the retention time is 17 to 18 hours, and the discharge efficiency is in the range of 20% to 7y%.
This value was superior to the retention time of electrolytic MnO+, which was 16.8 hours. However, when the β-formation rate was 20% or more, the retention time sharply decreased. That is, although β-Mn02 is originally inert and is said to have low discharge efficiency, 1. As for MnO2, which is the oxidation of MnCO3, the effect was found to be at least extremely small and not a problem up to a β-formation rate of 20%. This is considered to be due to the special characteristics of this chemically synthesized MnO2.

次にふ9かえりて、酸化圧、反応時間と生成MnO2の
品位の関係についてみると第4図の通りでちゃ、5気圧
ではMnO,品位が90%以上に達する必要時間は3時
間であり、一方β型化率は6%であるが20気圧では第
5図に示す通91時間でMnO,88%以上に達し、β
型化率は13%に止ってお夛、シかも含湿酸素によらず
乾燥酸素でも酸化品位は、Mn0t88%以上に達して
いる。更に反応圧力を囲気圧とした場合扛、反応時間’
lr1時間としても生成MnOxは90%以上の品位と
なるがβ型化率も21%に達する結果となった。
Next, looking back at the relationship between oxidation pressure, reaction time, and the quality of MnO2 produced, it is as shown in Figure 4. At 5 atm, the required time to reach 90% or more of MnO quality is 3 hours. On the other hand, the β-type conversion rate is 6%, but at 20 atm, MnO reaches 88% or more in 91 hours as shown in Figure 5, and β
Although the molding rate was only 13%, the oxidation grade reached Mn0t88% or higher even with dry oxygen, regardless of moist oxygen. Furthermore, when the reaction pressure is ambient pressure, the reaction time is
Even if lr was used for 1 hour, the quality of the generated MnOx was 90% or more, but the β-forming rate also reached 21%.

以上総合して電池用MnO2を目的とする重質MnCO
5の酸化方法としては、酸化カスとして水蒸気を含有す
る02カス又は、乾燥O,カスを用い、反応圧力4〜2
0気圧(ゲージ圧)の範囲で、反応温度275°’C/
−350℃で実施すべきものと結論される。
Overall, heavy MnCO for the purpose of MnO2 for batteries
As the oxidation method of No. 5, 02 scum containing water vapor or dry O, scum is used as the oxidation scum, and the reaction pressure is 4 to 2.
In the range of 0 atm (gauge pressure), the reaction temperature is 275°C/
It is concluded that the test should be carried out at -350°C.

第6図に反応圧を15気圧とした含湿02 (PH20
:′UA)によシ酸化時間2時間として反応温度と酸化
生成物のMnot品位とそのβ型化率を示したもので、
この結果から反応温度は275〜350℃範囲とすべき
ことが示された。
Figure 6 shows the humidity level 02 (PH20
:'UA) shows the reaction temperature, Mnot grade of the oxidation product, and its β-form conversion rate, assuming an oxidation time of 2 hours.
This result showed that the reaction temperature should be in the range of 275-350°C.

本方法はこれ迄研究の全く行れていない方法であシ全く
新規な方法であるということが出来る。
This method has not been studied at all so far, and can be said to be a completely new method.

以下率・方法の実施例について述る。Examples of rates and methods will be described below.

実施例1゜ タップ密度2.58の重質’MnCO510kgを横型
強制攪押力式の円筒状電気炉にチャージし、攪拌下で反
応温度315℃〜325℃で反応圧15気圧で、水蒸気
分圧1気圧の含湿酸素を用いて2時間酸化した。
Example 1 510 kg of heavy MnCO with a tap density of 2.58 was charged in a horizontal forced stirring and pushing type cylindrical electric furnace, and under stirring, the reaction temperature was 315°C to 325°C, the reaction pressure was 15 atm, and the water vapor partial pressure was increased. Oxidation was performed using humid oxygen at 1 atm for 2 hours.

この結果MnO,品位9065%の下記二酸化マンガン
7.70kgk得た。次にこの二酸化マンガン7.7k
gにlN−HNO31OA’を添加して、反応温度85
℃で1時間処理し水洗乾燥してMnO,93J3%品位
の精製二酸化マンカンフ、39kgを得た。酸化反応物
のMnO2β型化率は12%であシ硝酸処理後の分析値
及び物性値は表1の通りであった。
As a result, 7.70 kg of MnO and manganese dioxide having a grade of 9065% were obtained. Next, this manganese dioxide 7.7k
1N-HNO31OA' was added to the reaction temperature of 85.
The mixture was treated at ℃ for 1 hour, washed with water, and dried to obtain 39 kg of purified man camphor dioxide having a grade of 3% MnO, 93J. The MnO2β conversion rate of the oxidation reaction product was 12%, and the analytical values and physical property values after treatment with nitric acid were as shown in Table 1.

つぎにこの酸処理試料200gを用い、アセチレンブラ
ック並びに32%ZnClユ、1%NI(4CI2/水
溶液を電解液として、合剤中のアセチレンブラック12
.0%、1ヶ当の二酸化マンカン24gとして乾電池8
ケを作成し、それぞれ4ケ宛を用い4Ω連続放電、4Ω
間欠放電試験を行い、同一条件で作成した電解二酸化マ
ンカン単独使用のものと比較した結果は下記の通シであ
り、0.85Vの保持時間並びに放電効率は、第7図に
示す通り連続放電、間欠放電共に電解二酸化マンカンよ
りすぐれていた。
Next, using 200 g of this acid-treated sample, acetylene black, 32% ZnCl, 1% NI (4CI2/aqueous solution) was used as an electrolyte, and acetylene black 12
.. 0%, 1 piece of mankan dioxide 24g as dry cell 8
4 Ω continuous discharge using 4 Ω each, 4 Ω
An intermittent discharge test was conducted and the results were compared with those prepared under the same conditions using electrolytic mankan dioxide alone. The results are as follows. The holding time of 0.85V and the discharge efficiency are as shown in Figure 7. Both intermittent discharge was superior to electrolytic mankan dioxide.

実施例結果総括 使用MnCO310kg (Mu 46.9%、タップ
密度2.58 )15気圧02(Puzol、0)31
5〜325℃、2時間酸化時の得量7.70に9酸化物
品位及びβ型化率 全Mn 60.7%、MnO290,5%、β型化率1
2%INHNO,処理物の得量及び品位・・・・・・7
.39kl?放電試験結果 A、B12%電解液Znet、 32%、凪α、1%二
酸化マンカン249チャージ 4Ω連続放電 0.85V迄の保持時間 17.8hr
s放電効率          % 比較電解二酸化マンカン16.8 hrs放電効率  
        % 4Ω間欠放電 0.85V迄の保持時間 22.7 h
rs(0,5hr/day)  放電効率      
    %比較電解二酸化マンカン 19.4 hrs
放電効率         % 一実施例2゜ タップ密度2.36の重質MnCO310時を実施例1
と同一の反応器で温度315〜325℃、水蒸気分圧1
.0気圧、全圧5,0気圧(ゲージ圧)の含湿酸素で3
時間攪拌下で反応し、MnO2品位91%の二酸化マン
カンフ、71 kge得た。次にこの酸化物にMnCO
52,2kg ’c添加し、更に7%HNO3101を
添加攪拌し75℃に昇温し、粉末Naノs 9009 
f 75℃を保持しつつ添加した。添加後さらに2時間
攪拌後濾過水洗し100℃で乾燥し、9.40 kgの
重質化二酸化マンガンを得た。
Summary of Example Results Used MnCO310kg (Mu 46.9%, tap density 2.58) 15 atmospheres 02 (Puzol, 0) 31
Yield after oxidation at 5 to 325°C for 2 hours: 7.70, 9 oxide quality and β-formation rate Total Mn: 60.7%, MnO: 290.5%, β-formation rate: 1
2%INHNO, yield and quality of processed material...7
.. 39kl? Discharge test results A, B 12% electrolyte Znet, 32%, Nagi α, 1% mankan dioxide 249 charge 4Ω continuous discharge Holding time to 0.85V 17.8hr
s discharge efficiency % Comparative electrolytic mankan dioxide 16.8 hrs discharge efficiency
% 4Ω intermittent discharge Holding time to 0.85V 22.7 hours
rs (0.5hr/day) Discharge efficiency
% comparative electrolytic mankan dioxide 19.4 hrs
Discharge efficiency % Example 2 Example 1: heavy MnCO3 with a tap density of 2.36
In the same reactor as above, the temperature was 315-325℃ and the water vapor partial pressure was 1.
.. 3 with humid oxygen at 0 atm and total pressure 5.0 atm (gauge pressure)
The reaction was carried out under stirring for hours to obtain 71 kg of mankampf dioxide with a MnO2 content of 91%. Next, add MnCO to this oxide.
52.2 kg 'c was added, and further 7% HNO3101 was added, stirred and heated to 75°C, and powdered NaNOS 9009
f It was added while maintaining the temperature at 75°C. After the addition, the mixture was further stirred for 2 hours, filtered, washed with water, and dried at 100°C to obtain 9.40 kg of heavy manganese dioxide.

酸化反応時のβ型化率、重質化二酸化マンカンの品位及
び物性は下記の通りであった。
The β-forming rate during the oxidation reaction, the quality and physical properties of the heavy mankan dioxide were as follows.

なお、重質化二酸化マンカンの2009’を分取し、ア
セチレンブラックを混合し、32%ZnC4、1%NH
4CL電解液を用い、合剤中のアセチレンブラック含有
率12%となる如く合剤を作り、1ヶ当り二酸化マンカ
ン充填量24gとなる如く8ケの乾電池を製作し、同一
条件で乾電池とした電解二酸化マンカンと4Ω連続放電
並びに間欠放電特性を比較した結果は下記の通りであり
、この合成重質化二酸化マンガンは電解品よりもすぐれ
た特性を示し、またクロレート反応によるMnO2の生
成比は約20%であるが電解品より大きなタップ密度に
達した。
In addition, 2009' of heavy mankan dioxide was collected, mixed with acetylene black, and mixed with 32% ZnC4 and 1% NH.
Using 4CL electrolytic solution, a mixture was prepared so that the acetylene black content in the mixture was 12%, and 8 dry batteries were manufactured so that each battery contained 24 g of mankan dioxide, and the batteries were electrolyzed under the same conditions. The results of comparing the 4Ω continuous discharge and intermittent discharge characteristics with manganese dioxide are as follows. This synthetic heavy manganese dioxide shows superior characteristics than the electrolytic product, and the MnO2 production ratio due to the chlorate reaction is approximately 20 %, but reached a greater tap density than the electrolytic product.

実施例2.結果総括 使用MnC0B 10 kg (Mn46.8%、タッ
プ密度2.36)5気圧(Puto 1.0 ) 02
での3時間酸化(315〜325°C)による酸化物得
量、品位及びβ型化率 得量7.71kg、MnO291,0% β型化率6%
MnCO5(Mn 46.8%)2.2kl?、7%H
N0,10 l添加、NaC10,900g添加反応後
の得量及び品位物性 放電試験結果 A、B12%電解液ZnCLL32%、NH4CJ、 
i%二酸化マンカン24Nチャージ 4Ω連続放電       17.9 hrs比較電解
二酸化マンカン  16.8 hrs4Ω間欠放電  
     22.8 hrs比較電解二酸化マンカン 
 19.2 hrs
Example 2. Summary of results MnC0B used 10 kg (Mn46.8%, tap density 2.36) 5 atm (Puto 1.0) 02
Oxide yield, quality, and β-formation rate obtained by 3-hour oxidation (315-325°C) at 7.71 kg, MnO291.0% β-formation rate 6%
MnCO5 (Mn 46.8%) 2.2kl? , 7%H
Amount and quality after reaction with addition of N0.10 l and addition of 10.900 g of NaC Physical properties Discharge test results A, B 12% electrolyte ZnCLL 32%, NH4CJ,
i% Mancan dioxide 24N charge 4Ω continuous discharge 17.9 hrs Comparative electrolytic Mancan dioxide 16.8 hrs 4Ω intermittent discharge
22.8 hrs comparative electrolytic mankan dioxide
19.2 hours

【図面の簡単な説明】[Brief explanation of drawings]

第1図はβ−MnOt混合比とに−へに於るβ−Mr1
0tピークの面積の関係、第2図はMnCO3の酸化圧
力と生成物のMnot%及びβ−M1102相当含有量
の関係(反応時間3時間)、第3図はβ−Mn02%と
Dサイズ乾電池の4Ω連続放電の保持時間との関係、第
4図は5気圧での酸化時の反応時間とMnO2品位及び
β化率を示す。(PH201,0気圧、320℃)第5
図は乾燥酸素による酸化時の反応時間1時間での酸化圧
力と胤0□品位及びβ化率(320℃)、第6図は15
気圧での酸化時の酸化温度とMn01品位及びβ化率(
PH201,0気圧、反応時間2時間)、第7図はZn
CnC型Dサイズ乾電池の4Ω連続及び4Ω間欠(0,
5Hr/da7)放電の放電性能(24gチャージ) :〕17;/ノシ) 7−sno、、/” イ3a /3−Mn0−〆一 12品 6       /6       jLO、31)ル
 −− プ4U 手続補正書(自発) 、2−/ 昭和58年5月H日 特許庁長官 若 杉 和 失敗 1、事件の表示  特願昭58−53197号2、発明
の名称  炭酸マンガンの電池用二酸化マンガンへの酸
化方法。 3、補正をする者 事件との関係 特許出願人 住 所    東京都中央区日本橋3−12−2名 称
    東邦亜鉛株式会社外−名4、代 理 人 図面の簡単な説明の欄、及び明 利害添付の図面の第3図、第4 図、第6図、第7図。 6、補正の内容 明細書中、下記の個所の記載は不備4つくので補正しま
す。 (1)  明細書第2頁5行目の「行れ」を「行なわれ
」に、又6行目の「止り」を「止まり」にそれぞれ補正
します。 (2)  明細書第2頁下から5行目の「行う」を「行
なう」に補正します。 (3)  明細書第3買上から7行目の1止っている」
を「止まっている」に、又11行目の「明にすべく」を
「明らかにするべく」に、又14行目の「密度」を[密
度(’i’、D)Jにそれぞれ補正します。 (4)  明細書第4頁下から7行目の「異る」を「異
なる」に補正します。 (5)  明細書第5買上から2行目の「間の関係を」
を「間及び放電効率との関係iに、又6行目の「保持時
間17〜18時間」を「保持時間18.5〜19時間」
に、父上から1行目の「止っており」を「止まっており
」にそれぞれ補正します。 (6)  明細書第6買上から10行目の「実施すべき
もの」を「実施するべきもの」に、父上から7行目の「
範囲とすべき」を「範囲とするべき」に、又下から5行
目の「行れていない」を「行なわれていない」に、父子
から3行目の「述る」を「述べる」にそれぞれ補正しま
す。 (7)  明細W第7頁上から9行及び10行目におい
て「表1の通りであった」とあるのを「下記の実施例1
.結果総括に示した。」と補正します。 (8)  明細書第7頁下から3行目の「下記の通り」
を「下記の総括に示した通り」に補正します。 (9)  明細書第1頁上行目の「実施例結果総括」を
「実施例1.結果総括」に補正します。 (IQ  明細書第8頁13行から20行までの記戦を
次のように補正します。 4Ω連続放電  0.85V迄の保持時間  19.0
hrs放電効率     72.6% 比較電解二酸化マンガン   16.8hrs放電効率
     70,2% 4Ω間欠放電   0.85■迄の保持時間   22
.7hrs(0,5br/day)  放電効率   
   89.3%比較電解二酸化マンガン  19.4
 hrs放電効率     79.7% 収り 明細書第9買上から12行目の「下記の通りであ
った」を「下記の実施例2.結果総括に示した」に補正
します。 tlB  明細書第9頁下から1行目の「下記の通り」
を「下記の総括に示した通り」に補正します。 α謙 明細書第11頁上から6行目の「保持時間との関
係」を「保持時間及び放電効率との関係」に補正します
。 I 明細書添付図面中第3図、第4図、第6図、及び第
7図を別紙添付図面の通りそれぞれ補正します。
Figure 1 shows the β-MnOt mixing ratio and β-Mr1 in
The relationship between the area of the 0t peak, Figure 2 shows the relationship between the oxidation pressure of MnCO3 and the Mnot% and β-M1102 equivalent content of the product (reaction time 3 hours), and Figure 3 shows the relationship between β-Mn02% and the D size dry battery. FIG. 4 shows the relationship between the holding time of 4Ω continuous discharge and the reaction time during oxidation at 5 atm, the MnO2 grade, and the β conversion rate. (PH201, 0 atm, 320℃) 5th
The figure shows the oxidation pressure, seed 0□ grade, and β conversion rate (320℃) during oxidation with dry oxygen at a reaction time of 1 hour, and Figure 6 shows 15
Oxidation temperature during oxidation at atmospheric pressure, Mn01 grade and β conversion rate (
PH201, 0 atm, reaction time 2 hours), Figure 7 shows Zn
CnC type D size dry cell 4Ω continuous and 4Ω intermittent (0,
5Hr/da7) Discharge performance of discharge (24g charge): 17; Written amendment (spontaneous), 2-/ May H, 1980, Commissioner of the Patent Office Kazu Wakasugi Failure 1, Indication of case Patent application No. 58-53197 2, Title of invention Oxidation of manganese carbonate to manganese dioxide for batteries Method. 3. Relationship with the case of the person making the amendment Patent applicant address: 3-12-2 Nihonbashi, Chuo-ku, Tokyo Name: Outside of Toho Zinc Co., Ltd. Name 4: Agent A column for a brief explanation of the drawing, and Figures 3, 4, 6, and 7 of the attached drawings for clarity. 6. Contents of amendment In the detailed statement, there are four deficiencies in the following sections, so we will amend them. (1) Description Correct "Gyore" on the 5th line of the 2nd page to "Gyomarare", and correct "Stop" on the 6th line to "Stop". (2) Amend "do" in the fifth line from the bottom of the second page of the specification to "do". (3) Line 1 on the 7th line from the 3rd purchase on the statement has stopped.”
to "stopped", "to make clear" in line 11 to "to make clear", and "density" in line 14 to [density ('i', D)J]. To do. (4) “Different” in the seventh line from the bottom of page 4 of the specification should be corrected to “different”. (5) “Relationship between” on the second line from the fifth purchase on the statement
to "relationship i with time and discharge efficiency", and "retention time 17 to 18 hours" in the 6th line to "retention time 18.5 to 19 hours"
Then, from the father, in the first line, "stopping" is corrected to "stopping". (6) “Things to be carried out” on the 10th line from the 6th purchase in the specification are changed to “Things to be carried out” from the father on the 7th line.
``should be within the scope'' becomes ``should be within the scope'', ``hasn't been done'' in the 5th line from the bottom is changed to ``hasn't been done'', and ``state'' in the 3rd line from the bottom to ``state'' Correct each. (7) In the 9th and 10th lines from the top of page 7 of the specification W, the phrase “as in Table 1” was replaced with “Example 1 below.”
.. The results are shown in the summary. ” and correct it. (8) “As below” in the third line from the bottom of page 7 of the specification
will be corrected “as shown in the summary below”. (9) "Summary of results of Examples" on the top line of page 1 of the specification will be corrected to "Example 1. Summary of Results." (Correct the record from line 13 to line 20 on page 8 of the IQ specification as follows. 4Ω continuous discharge Holding time to 0.85V 19.0
hrs discharge efficiency 72.6% Comparative electrolytic manganese dioxide 16.8hrs discharge efficiency 70.2% 4Ω intermittent discharge Holding time up to 0.85■ 22
.. 7hrs (0.5br/day) Discharge efficiency
89.3% comparative electrolytic manganese dioxide 19.4
hrs discharge efficiency 79.7% Accurate "It was as follows" in the 9th to 12th line of the statement will be corrected to "as shown in Example 2. Result summary below." tlB "As below" in the first line from the bottom of page 9 of the specification
will be corrected “as shown in the summary below”. αken The "Relationship with retention time" in the 6th line from the top of page 11 of the specification will be corrected to "Relationship with retention time and discharge efficiency." I. Figures 3, 4, 6, and 7 of the drawings attached to the specification are amended as shown in the attached drawings.

Claims (1)

【特許請求の範囲】[Claims] 重質炭酸マンカンの電池用二酸化マンガンへの酸化方法
として、水蒸気を含有する酸素ガス又は乾燥酸素カスを
使用し、反応条件として全圧4気圧以上(ゲージ圧)2
0気圧以下の反応圧で、反応温度275℃から350℃
範囲で反応させ、MnO288%以上で、しかも生成M
nO2のβ型化率を四%以下とする電池用化学合成二酸
化マンガンを目的とする炭酸マンカンの酸化方法。
As a method for oxidizing heavy mancan carbonate to manganese dioxide for batteries, oxygen gas containing water vapor or dry oxygen scum is used, and the reaction conditions are a total pressure of 4 atmospheres or more (gauge pressure) 2
At reaction pressure below 0 atmospheres, reaction temperature from 275℃ to 350℃
The reaction was carried out within a range of MnO288% or more, and the produced M
A method for oxidizing mankan carbonate for the purpose of producing chemically synthesized manganese dioxide for batteries with a β-form conversion rate of nO2 of 4% or less.
JP58053197A 1983-03-29 1983-03-29 Oxidation of manganese carbonate to manganese dioxide for cell Pending JPS59182233A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58053197A JPS59182233A (en) 1983-03-29 1983-03-29 Oxidation of manganese carbonate to manganese dioxide for cell
BE0/212647A BE899270A (en) 1983-03-29 1984-03-28 PROCESS FOR THE PRODUCTION OF CHEMICAL SYNTHETIZED MANGANESE DIOXIDE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58053197A JPS59182233A (en) 1983-03-29 1983-03-29 Oxidation of manganese carbonate to manganese dioxide for cell

Publications (1)

Publication Number Publication Date
JPS59182233A true JPS59182233A (en) 1984-10-17

Family

ID=12936145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58053197A Pending JPS59182233A (en) 1983-03-29 1983-03-29 Oxidation of manganese carbonate to manganese dioxide for cell

Country Status (2)

Country Link
JP (1) JPS59182233A (en)
BE (1) BE899270A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428393A (en) * 1987-07-03 1989-01-30 Varta Batterie Production of plastic bonded gas diffusion electrode having manganese catalyst based on mn2o3 xmn5o8
JPH01131029A (en) * 1987-11-13 1989-05-23 Nippon Telegr & Teleph Corp <Ntt> Manganese oxide amorphous substance, production thereof and cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5777030A (en) * 1980-10-29 1982-05-14 Isao Tanabe Manufacture of manganese dioxide
JPS5815035A (en) * 1981-07-13 1983-01-28 Isao Tanabe Manufacture of heavy manganese dioxide
JPS5983938A (en) * 1982-11-05 1984-05-15 Toho Aen Kk Preparation of manganese dioxide
JPS59102822A (en) * 1982-12-02 1984-06-14 Chuo Denki Kogyo Kk Production of manganese dixoide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5777030A (en) * 1980-10-29 1982-05-14 Isao Tanabe Manufacture of manganese dioxide
JPS5815035A (en) * 1981-07-13 1983-01-28 Isao Tanabe Manufacture of heavy manganese dioxide
JPS5983938A (en) * 1982-11-05 1984-05-15 Toho Aen Kk Preparation of manganese dioxide
JPS59102822A (en) * 1982-12-02 1984-06-14 Chuo Denki Kogyo Kk Production of manganese dixoide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428393A (en) * 1987-07-03 1989-01-30 Varta Batterie Production of plastic bonded gas diffusion electrode having manganese catalyst based on mn2o3 xmn5o8
JPH01131029A (en) * 1987-11-13 1989-05-23 Nippon Telegr & Teleph Corp <Ntt> Manganese oxide amorphous substance, production thereof and cell

Also Published As

Publication number Publication date
BE899270A (en) 1984-07-16

Similar Documents

Publication Publication Date Title
JP4128627B2 (en) Method for producing lithium manganese oxide spinel
CN109796006B (en) Application of ionic liquid in preparation of nitrogen-doped carbon quantum dots, and preparation method and application of nitrogen-doped carbon quantum dots
JPS58166633A (en) Positive electrode for organic solvent cell
KR101982601B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content using alkoxytrialkylsilanes
CN111613784A (en) Organic-inorganic composite lithium-selenium battery positive electrode material and preparation method and application thereof
JPS6065478A (en) Polymer secondary battery
CN101428862B (en) Process for producing potassium permanganate doped potassium ferrate
KR19990022253A (en) Improved Manufacturing Method of Lithium Treated Lithium Manganese Oxide Spinel
TW486838B (en) Non-aqueous electrolytic solution and lithium secondary battery
CN103145113A (en) Micro-nano structure zinc oxide-carbon composite pellet and preparation method thereof
CN112271314B (en) Flow battery positive electrode electrolyte based on tetrathiafulvalene dicarboxylic acid ethyl ester and preparation method thereof
JPS59182233A (en) Oxidation of manganese carbonate to manganese dioxide for cell
US4388210A (en) High surface area lead oxide composite and method for making the same
CN110828815A (en) Lithium battery negative electrode material and preparation method thereof
WO2024036906A1 (en) Lithium-ion battery positive electrode material and preparation method therefor
GB2023558A (en) Process for the Production of Electrochemically Active Lead Dioxide
JP2001155723A (en) Sealed lead acid storage battery and method of fabricating it
CN114744195B (en) Graphene-crown ether-metal ternary composite material, preparation method and application
JP2001354425A (en) Manganese tetratrioxide and method for manufacturing the same
JPH10188979A (en) Lithium secondary battery
JPH07183032A (en) Electrolytic manganese dioxide, and its manufacture and application
JP2938144B2 (en) Manganese dry cell
Hidayat et al. Optimization of substitution degree in synthesis carboxymethyl cellulose from corncobs for application as electrode binder
KR20030003890A (en) Purification Method of Carbon Nanotubes for Hydrogen Storage
JP2558316B2 (en) Sheet electrode and method for manufacturing the same