JPH10188979A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH10188979A
JPH10188979A JP8345215A JP34521596A JPH10188979A JP H10188979 A JPH10188979 A JP H10188979A JP 8345215 A JP8345215 A JP 8345215A JP 34521596 A JP34521596 A JP 34521596A JP H10188979 A JPH10188979 A JP H10188979A
Authority
JP
Japan
Prior art keywords
manganese oxide
lithium manganese
lithium
positive electrode
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8345215A
Other languages
Japanese (ja)
Inventor
Kenji Shizuka
賢治 志塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP8345215A priority Critical patent/JPH10188979A/en
Publication of JPH10188979A publication Critical patent/JPH10188979A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery having excellent charge and discharge cycle characteristics by using lithium manganese oxide subjected to washing, as a positive electrode active material. SOLUTION: Lithium manganese oxide includes by-product due to the uneven reaction and non-reactant in usual, and it is possible that charge and discharge cycle characteristics is lowered by an impure material. Since the impure material is eliminated by washing lithium manganese oxide, lowering of charge and discharge cycle characteristics can be reduced. Lithium manganese oxide is washed by dipping it in a washing liquid, and agitating or oscillating the liquid, and thereafter, filtering so as to recover the lithium manganese oxide, and drying it in an ordinary way. As the washing liquid, ordinary water is used, but if desired, organic solvent of alcohol such as methanol and ethanol and ketone such as acetone, methyletylketone can be used singly as a mixture.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液を用いた
リチウム二次電池の改良、特に正極活物質の改良に関わ
り、電池のサイクル特性の向上を意図するものである。
The present invention relates to the improvement of a lithium secondary battery using a non-aqueous electrolyte, particularly to the improvement of a positive electrode active material, and it is intended to improve the cycle characteristics of the battery.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】リチウ
ム二次電池の正極活物質として、マンガンとリチウムの
複合酸化物であるLiMn2 4 が提案され、研究が盛
んに行われている。正極にこのLiMn 2 4 を用いた
リチウム二次電池は高電圧・高エネルギー密度という特
徴を有しているものの、充放電サイクル寿命が短いので
実用電池として利用されるには至っていない。従って本
発明は、LiMn2 4 を正極活物質とする正極を備
え、かつ充放電サイクルに伴う容量変化の少ないリチウ
ム二次電池を提供しようとするものである。
BACKGROUND OF THE INVENTION Problems to be Solved by the Invention
Of manganese and lithium as positive electrode active materials for secondary batteries
LiMn is a composite oxideTwoOFourHas been proposed,
It has been done. This LiMn is used for the positive electrode. TwoOFourUsing
Lithium secondary batteries are characterized by high voltage and high energy density.
Despite the characteristics, the charge / discharge cycle life is short.
It has not been used as a practical battery. Therefore the book
The invention is based on LiMn.TwoOFourEquipped with a positive electrode that uses
And a small change in capacity due to charge / discharge cycles
To provide a secondary battery.

【0003】[0003]

【課題を解決するための手段】本発明に係るリチウム二
次電池は、正極活物質のリチウムマンガン酸化物が洗浄
処理、好ましくは水洗処理を経たものであることを特徴
とするものである。
The lithium secondary battery according to the present invention is characterized in that the lithium manganese oxide as the positive electrode active material has been subjected to a washing treatment, preferably a water washing treatment.

【0004】[0004]

【発明の実施の形態】リチウムマンガン酸化物(LiM
2 4 )を正極活物質とするリチウム二次電池におけ
る、正極の充放電反応は次式で示される。
DETAILED DESCRIPTION OF THE INVENTION Lithium manganese oxide (LiM
In a lithium secondary battery using n 2 O 4 ) as a positive electrode active material, the charge / discharge reaction of the positive electrode is represented by the following equation.

【0005】[0005]

【化1】 Embedded image

【0006】リチウムマンガン酸化物は、リチウム化合
物とマンガン化合物とのそれぞれの粉末をよく混合して
均一な混合物とし、これを加熱して固体相互間で反応さ
せることにより製造されている。この方法により得られ
るリチウムマンガン酸化物には、不均一反応による副生
物や未反応物が含まれているものと考えられる。本発明
者の検討によれば、この方法により得られるリチウムマ
ンガン酸化物は酸素欠損性、すなわち
[0006] Lithium manganese oxide is produced by thoroughly mixing respective powders of a lithium compound and a manganese compound to form a uniform mixture, heating the mixture, and causing the solids to react with each other. It is considered that the lithium manganese oxide obtained by this method contains by-products and unreacted products due to the heterogeneous reaction. According to the study of the present inventors, the lithium manganese oxide obtained by this method is oxygen-deficient, that is,

【0007】[0007]

【化2】 Embedded image

【0008】(δ=酸素欠損量)で示されるものであ
り、このことと含まれている上記したような不純物が充
放電サイクル特性の低下をもたらしている可能性が大き
い。そして本発明に従い、リチウムマンガン酸化物を洗
浄処理すると、これらの不純物が除去されるので、充放
電サイクル特性の低下が軽減できるものと考えられる。
(Δ = oxygen deficiency), and it is highly probable that this and the above-described impurities contained therein cause deterioration of the charge / discharge cycle characteristics. When the lithium manganese oxide is subjected to a washing treatment according to the present invention, these impurities are removed, and thus it is considered that the deterioration of the charge / discharge cycle characteristics can be reduced.

【0009】リチウムマンガン酸化物の洗浄は、リチウ
ムマンガン酸化物を洗浄液中に入れ、撹拌ないしは振蕩
したのち、濾過してリチウムマンガン酸化物を回収し、
常法により乾燥すればよい。洗浄液としては通常の水が
用いられるが、所望ならばメタノール、エタノール等の
アルコール類、アセトン、メチルエチルケトン等のケト
ン類のような有機溶媒を単独又は混合して用いることも
できる。しかし有機溶媒を用いる場合には水溶液として
用いるのが好ましい。
[0009] To clean the lithium manganese oxide, the lithium manganese oxide is put into a cleaning solution, stirred or shaken, and then filtered to collect the lithium manganese oxide.
What is necessary is just to dry by a conventional method. As the washing liquid, ordinary water is used. If desired, organic solvents such as alcohols such as methanol and ethanol, and ketones such as acetone and methyl ethyl ketone can be used alone or in combination. However, when an organic solvent is used, it is preferably used as an aqueous solution.

【0010】洗浄処理の温度及び時間は任意であるが、
一般に処理温度が高いほど短時間の処理で所望の効果を
あげることができる。本発明に係るリチウム二次電池
は、正極活物質として上記した洗浄処理を経たリチウム
マンガン酸化物を用いる以外は、従来公知のものと同様
の構成を有している。典型的には多孔質セパレーターを
挟んで正極と負極とを対向させ、これに非水溶液電解液
を加えた構造を有している。負極活物質としては、例え
ばリチウム、リチウム合金又はリチウムを挿入−放出す
る物質が用いられる。なかでも、リチウムを挿入−放出
する炭素材料が安全性が高いので好ましい。このような
炭素材料としては、黒鉛、石炭系コークス、石油系コー
クス、石炭系ピッチの炭化物、石油系ピッチの炭化物、
ニードルコークス、ピッチコークス、フェノール樹脂、
結晶セルロース等の炭化物等及びこれらを一部黒鉛化し
た炭素材、ファーネスブラック、アセチレンブラック、
ピッチ系炭素繊維等が挙げられる。
[0010] The temperature and time of the cleaning treatment are optional,
In general, the higher the processing temperature, the more the desired effect can be obtained in a shorter processing time. The lithium secondary battery according to the present invention has the same configuration as a conventionally known lithium secondary battery, except that the lithium manganese oxide that has been subjected to the above-described cleaning treatment is used as the positive electrode active material. Typically, it has a structure in which a positive electrode and a negative electrode are opposed to each other with a porous separator interposed therebetween, and a non-aqueous electrolyte is added thereto. As the negative electrode active material, for example, lithium, a lithium alloy, or a material that inserts and releases lithium is used. Among them, a carbon material that inserts and releases lithium is preferable because of its high safety. Such carbon materials include graphite, coal-based coke, petroleum-based coke, coal-based pitch carbide, petroleum-based pitch carbide,
Needle coke, pitch coke, phenolic resin,
Carbon materials such as crystalline cellulose and carbon materials partially graphitized thereof, furnace black, acetylene black,
And pitch-based carbon fibers.

【0011】正極の導電剤としては、黒鉛の微粒子、ア
セチレンブラック等のカーボンブラック、ニードルコー
クス等の無定形炭素の微粒子等が用いられる。負極活物
質及び正極活物質の結着剤(バインダー)としては、例
えばポリフッ化ビニリデン、ポリテトラフルオロエチレ
ン、EPDM(エチレン−プロピレン−ジエン三元共重
合体)、SBR(スチレン−ブタジエンゴム)、NBR
(アクリロニトリル−ブタジエンゴム)、フッ素ゴム等
が用いられる。
As the conductive agent for the positive electrode, fine particles of graphite, carbon black such as acetylene black, and fine particles of amorphous carbon such as needle coke are used. Examples of a binder (binder) for the negative electrode active material and the positive electrode active material include polyvinylidene fluoride, polytetrafluoroethylene, EPDM (ethylene-propylene-diene terpolymer), SBR (styrene-butadiene rubber), and NBR.
(Acrylonitrile-butadiene rubber), fluorine rubber and the like are used.

【0012】正極は、正極活物質に導電剤及び結合剤を
加えて均一な混合物としたものを加圧成形したり、これ
に適宜の溶剤を加えたスラリーを導電性支持体に塗布す
ることにより作成することができる。また負極としてリ
チウムを挿入−放出する炭素材料を用いる場合にも、正
極の場合と同じく、これに結合剤を加えて加圧成形した
り、結合剤と溶剤を加えてスラリーとしたものを導電性
支持体上に塗布することにより作成することができる。
The positive electrode may be prepared by adding a conductive agent and a binder to the positive electrode active material to form a uniform mixture, and then subjecting the mixture to pressure molding, or applying a slurry obtained by adding an appropriate solvent thereto to a conductive support. Can be created. When using a carbon material that inserts and releases lithium as the negative electrode, as in the case of the positive electrode, a binder is added to the material to form it under pressure, or a slurry obtained by adding a binder and a solvent is made conductive. It can be prepared by coating on a support.

【0013】セパレーターとしては、微多孔性の高分子
フィルムが用いられる。高分子フィルムとしては、例え
ばナイロン、セルロースアセテート、ニトロセルロー
ス、ポリスルホン、ポリアクリロニトリル、ポリフッ化
ビニリデンなどのフィルムを用いることもできるが、化
学的及び電気化学的安定性の点よりしてポリプロピレ
ン、ポリエチレン、ポリブテン等のポリオレフィンフィ
ルムが好ましく、電池セパレータの目的の一つである自
己閉塞温度の点からポリエチレンフィルムであることが
より好ましい。
As the separator, a microporous polymer film is used. As the polymer film, for example, a film of nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, and the like can be used.However, from the viewpoint of chemical and electrochemical stability, polypropylene, polyethylene, A polyolefin film such as polybutene is preferable, and a polyethylene film is more preferable in terms of the self-closing temperature, which is one of the purposes of the battery separator.

【0014】ポリエチレンセパレーターとしては、高温
形状維持性の点から超高分子量ポリエチレンであること
が好ましく、その分子量の下限は好ましくは50万、さ
らに好ましくは100万、最も好ましくは150万であ
る。他方、分子量の上限は、好ましくは500万、更に
好ましくは400万、最も好ましくは300万である。
分子量が大きすぎると、流動性が低すぎて加熱されたと
きにセパレーターの孔が閉塞しない場合がある。
The polyethylene separator is preferably ultra-high molecular weight polyethylene from the viewpoint of maintaining high-temperature shape, and the lower limit of the molecular weight is preferably 500,000, more preferably 1,000,000, and most preferably 1.5 million. On the other hand, the upper limit of the molecular weight is preferably 5,000,000, more preferably 4,000,000, and most preferably 3,000,000.
If the molecular weight is too large, the fluidity is too low and the pores of the separator may not be closed when heated.

【0015】また、電解液としては、リチウム塩を有機
溶媒に溶解した電解液が用いられる。有機溶媒として
は、例えばカーボネート類、エーテル類、ケトン類、ス
ルホラン系化合物、ラクトン類、ニトリル類、塩素化炭
化水素類、アミン類、エステル類、アミド類、リン酸エ
ステル化合物等を使用することができる。これらの代表
的なものを列挙すると、プロピレンカーボネート、エチ
レンカーボネート、ビニレンカーボネート、テトラヒド
ロフラン、2−メチルテトラヒドロフラン、1,4−ジ
オキサン、4−メチル−2−ペンタノン、1,2−ジメ
トキシエタン、1,2−ジエトキシエタン、γ−ブチロ
ラクトン、1,3−ジオキソラン、4−メチル−1,3
−ジオキソラン、ジエチルエーテル、スルホラン、メチ
ルスルホラン、アセトニトリル、プロピオニトリル、ベ
ンゾニトリル、ブチロニトリル、バレロニトリル、1,
2−ジクロロエタン、ジメチルホルムアミド、ジメチル
スルホキシド、リン酸トリメチル、リン酸トリエチル等
が挙げられ、これらを単独又は二種類以上の混合溶媒と
して使用できる。
As the electrolyte, an electrolyte obtained by dissolving a lithium salt in an organic solvent is used. As the organic solvent, for example, carbonates, ethers, ketones, sulfolane compounds, lactones, nitriles, chlorinated hydrocarbons, amines, esters, amides, phosphate ester compounds and the like can be used. it can. When these representatives are listed, propylene carbonate, ethylene carbonate, vinylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 4-methyl-2-pentanone, 1,2-dimethoxyethane, 1,2 -Diethoxyethane, γ-butyrolactone, 1,3-dioxolan, 4-methyl-1,3
-Dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, benzonitrile, butyronitrile, valeronitrile, 1,
Examples thereof include 2-dichloroethane, dimethylformamide, dimethylsulfoxide, trimethyl phosphate, and triethyl phosphate, and these can be used alone or as a mixed solvent of two or more kinds.

【0016】電解質も従来公知のいずれもが使用でき、
例えばLiClO4 、LiAsF6、LiPF6 、Li
BF4 、LiB(C6 5 4 、LiCl、LiBr、
CH 3 SO3 Li、CF3 SO3 Li等が用いられる。
以下に実施例によって本発明をさらに具体的に説明する
が、本発明はこれらに限定されるものではない。なお、
以下の実施例及び比較例において正極活物質として用い
たリチウムマンガン酸化物は、粉末X線回折により立方
晶のスピネル相であることを確認した。また、その組成
は次のようにして決定した。
As the electrolyte, any of conventionally known electrolytes can be used.
For example, LiClOFour, LiAsF6, LiPF6, Li
BFFour, LiB (C6HFive)Four, LiCl, LiBr,
CH ThreeSOThreeLi, CFThreeSOThreeLi or the like is used.
Hereinafter, the present invention will be described more specifically by way of examples.
However, the present invention is not limited to these. In addition,
Used as a positive electrode active material in the following Examples and Comparative Examples
Lithium manganese oxide is cubic by powder X-ray diffraction.
It was confirmed to be a crystalline spinel phase. Also, its composition
Was determined as follows.

【0017】Li含有量の測定;試料のリチウムマンガ
ン酸化物を50℃で1時間真空乾燥した。その約0.0
5gを精秤して塩酸酸性溶液に加え、加熱して溶解させ
たのち、メスフラスコで100mlとした。この溶液を
20倍に希釈したものについて、原子吸光装置を用い、
検量線法によってそのLi濃度を測定し、試料のLi含
有量を算出した。
Measurement of Li content: The sample lithium manganese oxide was vacuum dried at 50 ° C. for 1 hour. About 0.0
5 g was precisely weighed, added to the hydrochloric acid acidic solution, and dissolved by heating, and then adjusted to 100 ml with a volumetric flask. Using a 20-fold dilution of this solution, use an atomic absorption device,
The Li concentration was measured by the calibration curve method, and the Li content of the sample was calculated.

【0018】Mn含有量の測定(EDTA法);試料の
リチウムマンガン酸化物を50℃で1時間真空乾燥し
た。その約0.05gを精秤して塩酸酸性溶液に加え、
加熱して溶解させたのち、メスフラスコで100mlと
した。この溶液10mlをホールピペットで採取してコ
ニカルビーカーに入れ、少過剰の0.01M−EDTA
溶液を加えた。純水で全量を75mlとし、8規定の水
酸化ナトリウム水溶液とアンモニア緩衝液を適当量加え
てpH=10に調整したのち純水で全量を100mlと
した。この溶液にBT指示薬を加え、0.01M−マグ
ネシウムイオン標準溶液を用いて滴定し、BT指示薬の
色が青から赤に変色したところを終点とした。この滴定
結果から試料のマンガン含有量を算出した。
Measurement of Mn content (EDTA method): A lithium manganese oxide sample was vacuum-dried at 50 ° C. for 1 hour. Approximately 0.05 g thereof was weighed and added to the hydrochloric acid acid solution,
After heating to dissolve, the volume was adjusted to 100 ml with a volumetric flask. 10 ml of this solution was collected with a whole pipette, placed in a conical beaker, and a small excess of 0.01 M-EDTA was added.
The solution was added. The total volume was made up to 75 ml with pure water, adjusted to pH = 10 by adding an appropriate amount of an 8N aqueous sodium hydroxide solution and an ammonia buffer, and then made up to 100 ml with pure water. A BT indicator was added to the solution, and titration was performed using a 0.01 M-magnesium ion standard solution. The point at which the color of the BT indicator changed from blue to red was regarded as the end point. The manganese content of the sample was calculated from the results of the titration.

【0019】Mn3+及びMn4+の含有量の測定(ヨード
メトリー);試料のリチウムマンガン酸化物を50℃で
1時間真空乾燥したのち、その約0.02gを精秤して
コニカルビーカーに入れた。これに少過剰のヨウ化カリ
ウム飽和水溶液及び濃塩酸を順次添加して完全に溶解さ
せたのち、純水で全量を100mlとした。0.1規定
のチオ硫酸ナトリウム水溶液でこの試料溶液を滴定し
た。終点直前で澱粉溶液を加え、溶液の色が薄紫色から
無色に変色したところを終点とした。
Measurement of Mn 3+ and Mn 4+ contents (iodometry): After vacuum-drying a sample of lithium manganese oxide at 50 ° C. for 1 hour, about 0.02 g thereof was precisely weighed and placed in a conical beaker. I put it. A small excess of a saturated aqueous solution of potassium iodide and concentrated hydrochloric acid were sequentially added thereto to completely dissolve the solution, and then the total amount was adjusted to 100 ml with pure water. This sample solution was titrated with a 0.1 N aqueous sodium thiosulfate solution. Immediately before the end point, the starch solution was added, and the point at which the color of the solution changed from light purple to colorless was regarded as the end point.

【0020】Mn価数の算出;上記したEDTAによる
Mn含有量の測定と、ヨードメトリーによるMn3+及び
Mn4+の含有量の測定から、以下の計算によりリチウム
マンガン酸化物のMn価数を算出した。Mn4+、Mn3+
及びMn2+が単位量の試料中にk、m及びnモルづつ存
在すると、ヨードメトリー法では (Mn4+による反応) kMn4++4kI- →kMnI2 +kI2 (2) kI2 +2kS2 3 -2→kS4 6 -2+2kI- (3) (Mn3+による反応) mMn3++3mI- →mMnI2 + (1/2)mI2 (4) (1/2)mI2 +mS2 3 -2→ (1/2)mS4 6 -2+mI- (5) (Mn2+による反応) nMn4++2nI- →nMnI2 (6) Mn2+はI2 を遊離しないのでチオ硫酸ナトリウムとは
反応しない。以上より、ヨードメトリーでは、(2k+
m)モル相当分の滴定値が得られる。一方、EDTAキ
レート滴定では、(k+m+n)モル相当分の滴定値が
得られる。従って、
Calculation of Mn valence: From the measurement of Mn content by EDTA and the measurement of Mn 3+ and Mn 4+ contents by iodometry, the Mn valence of lithium manganese oxide was calculated by the following calculation. Calculated. Mn 4+ , Mn 3+
And the Mn 2+ is present k, m and n moles increments in a sample of unit amount, the iodometry (reaction with Mn 4+) kMn 4+ + 4kI - → kMnI 2 + kI 2 (2) kI 2 + 2kS 2 O 3 -2 → kS 4 O 6 -2 + 2kI - (3) ( reaction with Mn 3+) mMn 3+ + 3mI - → mMnI 2 + (1/2) mI 2 (4) (1/2) mI 2 + mS 2 O 3 −2 → (1/2) mS 4 O 6 −2 + mI (5) (Reaction with Mn 2+ ) nMn 4+ + 2nI → nMnI 2 (6) Since Mn 2+ does not release I 2 , Does not react with sodium sulfate. From the above, in iodometry, (2k +
m) A titer equivalent to moles is obtained. On the other hand, in the EDTA chelate titration, a titration value corresponding to (k + m + n) mole is obtained. Therefore,

【0021】[0021]

【数1】 Mn価数=4×k/(k+m+n) +3×m/(k+m+n) +2×n/(k+m+n) =(4k+3m+2n)/(k+m+n) =2+(2k+m)/(k+m+n) =2+(ヨードメトリーの結果)/(EDTAキレート滴定の結果)Mn valence = 4 × k / (k + m + n) + 3 × m / (k + m + n) + 2 × n / (k + m + n) = (4k + 3m + 2n) / (k + m + n) = 2+ (2k + m) / (k + m + n) = 2 + (result of iodometry) / (result of EDTA chelate titration)

【0022】酸素含有量の決定 Li含有量の測定結果とMn含有量の測定結果とからL
iとMnの組成比を算出した。組成比は両者の和が3に
なるように求めた。ここで求めたLiとMnのモル比と
上記で求めたMn価数とから、電気中性の規則を利用し
て酸素含有量を算出した。
Determination of oxygen content From the measurement results of the Li content and the Mn content, L
The composition ratio of i and Mn was calculated. The composition ratio was determined such that the sum of the two became 3. From the molar ratio of Li and Mn determined here and the Mn valence determined above, the oxygen content was calculated using the rules of electrical neutrality.

【0023】実施例1 リチウムマンガン酸化物(Li1.028 Mn1.972
3.963 )1gを、共栓三角フラスコに入れ、これに純水
50mlを加えた。フラスコをアルミホイルで覆ったの
ち、50℃の恒温振蕩器に装着して、60回/分の振蕩
条件で48時間振蕩した。ミリポアフィルターを用いて
吸引濾過したのち、120℃で通風乾燥した。これをメ
ノウ乳鉢で解砕したのち100℃で真空乾燥し、完全に
水分を除去した。このリチウムマンガン酸化物にアセチ
レンブラック及びポリ4フッ化エチレンを加え(重量混
合比75:20:5)、よく混合して正極合剤とした。
この正極合剤0.1gを1000kg/cm2 で直径1
6mmにプレス成形して正極を作成した。
Example 1 Lithium manganese oxide (Li 1.028 Mn 1.972 O
3.963 ) 1 g was placed in a stoppered Erlenmeyer flask, and 50 ml of pure water was added thereto . After the flask was covered with aluminum foil, it was mounted on a 50 ° C. constant temperature shaker and shaken under shaking conditions of 60 times / min for 48 hours. After suction filtration using a Millipore filter, air drying was performed at 120 ° C. This was crushed in an agate mortar and then vacuum dried at 100 ° C. to completely remove water. Acetylene black and polytetrafluoroethylene were added to this lithium manganese oxide (weight mixing ratio: 75: 20: 5) and mixed well to form a positive electrode mixture.
0.1 g of this positive electrode mixture is 1000 kg / cm 2 at a diameter of 1
A positive electrode was prepared by press molding to 6 mm.

【0024】この正極と負極(直径16mmのリチウム
金属板)とを多孔性ポリプロピレンフィルムを挟んで配
置し、電解液を加えて電池を形成した。電解液として
は、エチレンカーボネートと1,2−ジメトキシエタン
との等容量混合物に過塩素酸リチウムを1モル/リット
ルとなるように溶解したものを用いた。この電池につ
き、充放電電流2mA、電圧範囲4.35V〜3.2V
の間で定電流充放電する充放電サイクル試験を行った。
結果を表1に示す。
The positive electrode and the negative electrode (a lithium metal plate having a diameter of 16 mm) were arranged with a porous polypropylene film interposed therebetween, and an electrolytic solution was added to form a battery. As the electrolytic solution, a solution prepared by dissolving lithium perchlorate in an equal volume mixture of ethylene carbonate and 1,2-dimethoxyethane so as to be 1 mol / liter was used. The charging / discharging current of this battery was 2 mA, and the voltage range was 4.35 V to 3.2 V.
A charge / discharge cycle test for charging / discharging at a constant current was performed.
Table 1 shows the results.

【0025】比較例1 実施例1で洗浄処理に供したと同じリチウムマンガン酸
化物を、洗浄処理を施さずに正極活物質として用いた以
外は、実施例1と全く同様にしてリチウム二次電池を作
成し、充放電サイクル試験を行った。結果を表1に示
す。 実施例2 リチウムマンガン酸化物(Li1.024 Mn1.976
4.015 )を用いた以外は実施例1と全く同様にして、洗
浄処理、リチウム二次電池の作成及び充放電サイクル試
験を行った。結果を表1に示す。
Comparative Example 1 A lithium secondary battery was manufactured in exactly the same manner as in Example 1, except that the same lithium manganese oxide that had been subjected to the cleaning treatment in Example 1 was used as the positive electrode active material without performing the cleaning treatment. And a charge / discharge cycle test was performed. Table 1 shows the results. Example 2 Lithium manganese oxide (Li 1.024 Mn 1.976 O
4.015 ), cleaning treatment, preparation of a lithium secondary battery, and charge / discharge cycle test were performed in exactly the same manner as in Example 1. Table 1 shows the results.

【0026】比較例2 実施例2で洗浄処理を供したと同じリチウムマンガン酸
化物を、洗浄処理を施さずに正極活物質として用いた以
外は、実施例1と全く同様にしてリチウム二次電池を作
成し、充放電サイクル試験を行った。結果を表1に示
す。
Comparative Example 2 A lithium secondary battery was produced in exactly the same manner as in Example 1 except that the same lithium manganese oxide that had been subjected to the cleaning treatment in Example 2 was used as the positive electrode active material without performing the cleaning treatment. And a charge / discharge cycle test was performed. Table 1 shows the results.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】本発明によれば、リチウムマンガン酸化
According to the present invention, lithium manganese oxide

【0029】[0029]

【化3】 Embedded image

【0030】を洗浄して正極活物質として用いることに
より、充放電サイクル特性の優れたリチウム二次電池を
得ることができる。
By washing and using as a positive electrode active material, a lithium secondary battery having excellent charge / discharge cycle characteristics can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウムマンガン酸化物を正極活物質と
するリチウム二次電池において、正極活物質のリウチム
マンガン酸化物が洗浄処理を経たものであることを特徴
とするリチウム二次電池。
1. A lithium secondary battery using lithium manganese oxide as a cathode active material, wherein the lithium manganese oxide as the cathode active material has been subjected to a washing treatment.
【請求項2】 洗浄処理が水洗であることを特徴とする
請求項1記載のリチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the washing is water washing.
JP8345215A 1996-12-25 1996-12-25 Lithium secondary battery Pending JPH10188979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8345215A JPH10188979A (en) 1996-12-25 1996-12-25 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8345215A JPH10188979A (en) 1996-12-25 1996-12-25 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH10188979A true JPH10188979A (en) 1998-07-21

Family

ID=18375086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8345215A Pending JPH10188979A (en) 1996-12-25 1996-12-25 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH10188979A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203549A (en) * 2000-12-28 2002-07-19 Shin Kobe Electric Mach Co Ltd Lithium secondary battery and treatment method of the positive electrode active substance
JP2010126422A (en) * 2008-11-28 2010-06-10 Panasonic Corp Method for producing lithium-containing compound oxide and non-aqueous secondary battery
KR20160009015A (en) 2013-05-17 2016-01-25 미쓰이금속광업주식회사 Positive electrode active material for lithium secondary battery
US9337486B2 (en) 2012-09-25 2016-05-10 Mitsui Mining & Smelting Co., Ltd. Spinel-type lithium-manganese composite oxide
US10442699B2 (en) 2010-12-28 2019-10-15 Mitsui Mining & Smelting Co., Ltd. Method of manufacturing a positive electrode active material for lithium secondary batteries

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203549A (en) * 2000-12-28 2002-07-19 Shin Kobe Electric Mach Co Ltd Lithium secondary battery and treatment method of the positive electrode active substance
JP2010126422A (en) * 2008-11-28 2010-06-10 Panasonic Corp Method for producing lithium-containing compound oxide and non-aqueous secondary battery
US8404211B2 (en) 2008-11-28 2013-03-26 Panasonic Corporation Method for producing lithium-containing composite oxide and non-aqueous secondary battery
US10442699B2 (en) 2010-12-28 2019-10-15 Mitsui Mining & Smelting Co., Ltd. Method of manufacturing a positive electrode active material for lithium secondary batteries
US9337486B2 (en) 2012-09-25 2016-05-10 Mitsui Mining & Smelting Co., Ltd. Spinel-type lithium-manganese composite oxide
KR20160009015A (en) 2013-05-17 2016-01-25 미쓰이금속광업주식회사 Positive electrode active material for lithium secondary battery
US10186706B2 (en) 2013-05-17 2019-01-22 Mitsui Mining & Smelting Co., Ltd. Positive electrode active material for lithium secondary battery

Similar Documents

Publication Publication Date Title
KR100389052B1 (en) Positive electrode active material, preparation method thereof and nonaqueous solvent secondary battery using the same
JP6367313B2 (en) Spherical particles, their production and methods of using them
US20070117014A1 (en) Positive electrode active material for lithium secondary battery and method for producing same
KR102406752B1 (en) Process for making cathode materials for lithium ion batteries
JP5205923B2 (en) Non-aqueous electrolyte secondary battery electrode material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery using the same
JP6055967B2 (en) Positive electrode active material and method for producing the same, positive electrode active material precursor, positive electrode for lithium secondary battery, and lithium secondary battery
WO2017013848A1 (en) Positive electrode active material and battery
JP5890886B1 (en) Lithium manganese iron phosphate positive electrode active material and method for producing the same
KR20110022601A (en) Method for producing lithium-vanadium oxides and use thereof as a cathode material
JP2003229129A (en) Non-aqueous electrolyte secondary battery and its manufacturing method
CN108134050A (en) A kind of negative electrode active material and preparation method thereof and lithium ion battery
KR20170083573A (en) Mixed transition metal oxides for lithium-ion batteries
US20230050689A1 (en) A Method To Synthesize A Porous Carbon-Sulfur Composite Cathode For A Sodium-Sulfur Battery
JPH10188979A (en) Lithium secondary battery
KR20130133797A (en) Process for preparing precursors for transition metal mixed oxides
JP2020115484A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP3887983B2 (en) Positive electrode material for lithium secondary battery and lithium secondary battery
JP5052145B2 (en) Method for producing lithium ion secondary battery
JP2002289188A (en) Electrode active material for nonaqueous electrolyte secondary battery, electrode comprising it, and battery
KR101890105B1 (en) Process for preparing precursors for transition metal mixed oxides
JPH11162510A (en) Nonaqueous electrolyte secondary battery
JP3578902B2 (en) Lithium secondary battery
JPH10188981A (en) Lithium secondary battery
JPH1021914A (en) Non-aqueous electrolyte secondary battery
JPH1125970A (en) Electrode material and secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050322