JPS5918214A - Power plant using extraction turbine - Google Patents

Power plant using extraction turbine

Info

Publication number
JPS5918214A
JPS5918214A JP12775382A JP12775382A JPS5918214A JP S5918214 A JPS5918214 A JP S5918214A JP 12775382 A JP12775382 A JP 12775382A JP 12775382 A JP12775382 A JP 12775382A JP S5918214 A JPS5918214 A JP S5918214A
Authority
JP
Japan
Prior art keywords
deaerator
turbine
drain
plant
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12775382A
Other languages
Japanese (ja)
Inventor
Haruo Terada
寺田 治夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP12775382A priority Critical patent/JPS5918214A/en
Publication of JPS5918214A publication Critical patent/JPS5918214A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/38Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of turbine type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve the collection of heat from a return drain by a method wherein the return drain from a water producing plant annexed to the titled power plant is made to be supplied to a low pressure condensing system or a deaerator through a pipe according to the load condition of the turbine. CONSTITUTION:When the power plant is operated in a high load condition, a motor-driven stop valve 23 and a bypass valve 18 are closed and the return drain from an auxiliary steam pipe 22 for the deaerator led from the water producing plant 5 is flowed to the outlet port of a low pressure feed water heater 8 from a drain pipe 13 through a stop valve 14 without using the drain. Further, condensed water is supplied to a boiler 3 through a low pressure feed water heater 9, the deaerator 10 and a high pressure feed water heater 12. On the other hand, when the power plant is operated in a low load condition, the bypass valve 18 is opened and stop valves 16 and 17 are closed so as to collect the return drain from the water producing plant 5. Then, when the temperature of the condensed water bypassed the feed water heater 9 rises higher than a predetermined value, the stop valve 14 is closed and the stop valve 23 is opened so as to supply the return drain to the deaerator 10 from the auxiliary steam pipe 22.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は遣水プラントを併設した大容脅の抽気タービン
発電プラントに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a large-capacity extraction turbine power generation plant equipped with a water supply plant.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

動力および作業用蒸気を必要とする工場で、蒸気量が動
力6二比して比較的少ない場合や、それらの変動が著し
い場合には、抽気タービンが用いられる。この場合、入
口蒸気のうち一部は、作業用として途中で抽気され、残
りの蒸気は復水器に流入することC二なる。また大容蓋
の抽気タービン発電プラントにおいては、タービンから
抽気を水処理と利用する遣水プラントを併設し、この遣
水プラントの戻りドレンを低圧イ9水ラインに回収して
熱回収を計っている。
In factories that require power and working steam, extraction turbines are used when the amount of steam is relatively small compared to the power, or when the fluctuations in the amount are significant. In this case, a portion of the inlet steam is extracted midway for work use, and the remaining steam flows into the condenser. In addition, the large-capacity extraction turbine power generation plant is equipped with a water supply plant that uses the extracted air from the turbine for water treatment, and the return drain from this water supply plant is collected into the low-pressure water line for heat recovery.

しかし、抽気タービン発電プラントにおいては、その造
水プラントの併設の必要性からタービン出力が部分負荷
(二なっても遣水プラント側の油気を減少させることは
考えられない。したがって、タービン出力を低負荷にし
ていくと、低圧給水加熱器および脱気装置用の加熱蒸気
の圧力が減少し、ていく。これ(二ともなって、低圧給
水加熱器あるいは脱気装置の器内飽和温度が低下するた
め、ある部分負荷を境C:遣水プラントからの戻りドレ
ンな回収した復水の温度が、低圧給水加熱器の器内飽和
温度より逆l二高くなることがある。
However, in an extraction turbine power generation plant, due to the necessity of installing a water production plant in parallel, it is not possible to reduce the oil and gas on the water supply plant side even if the turbine output is reduced to a partial load. As the load increases, the pressure of the heating steam for the low-pressure feedwater heater and deaerator decreases. , C: The temperature of the collected condensate returned from the water supply plant may become inversely l2 higher than the internal saturation temperature of the low-pressure feed water heater.

通常、タービン運転に際し、さらに出力を下げたい場合
は、低圧給水加熱器を除外するカット運転を行なって対
処することもある。しかし、タービン出力の要求する最
少負荷がさらに低い場合、脱気装置の器内飽和温度が造
水プラントの戻りドレンを[61収した復水より低くな
るが、この場合C二脱気装置のカット運転は、プラント
の運転上から考えられない。そこでタービンの^圧設か
らの高圧加熱蒸気な脱気装置へバックアップすることを
考えられるが、これもタービンプラントのヒートレート
を悪くするので、有効な対策とはならない。
Normally, when operating a turbine, if it is desired to further reduce the output, this may be done by performing a cut operation that excludes the low-pressure feedwater heater. However, if the minimum load required by the turbine output is lower, the saturation temperature inside the deaerator will be lower than the condensate collected in the return drain of the desalination plant; Operation cannot be considered from the viewpoint of plant operation. Therefore, it is conceivable to use a degassing device that uses high-pressure heated steam from the turbine's pressure equipment as a backup, but this is not an effective countermeasure because it also worsens the heat rate of the turbine plant.

またタービン基本設計時に脱気装置への加熱蒸気への抽
気ポイントを高圧側へ移行して部分負荷時にもより高い
抽気圧力を得る方法もあるが、タービンプラントの最適
設計化という点で、定格附近でのヒートレートが悪化す
る可能性があって必ずしも有効な対策とはならない。こ
のようなことから、大容量抽気タービン発電プラントの
運転範囲け、最終段の排気温度の他1:脱気装置の飽和
温度に左右されると云う問題がある。
There is also a method of moving the extraction point for heating steam to the deaerator to the high-pressure side during basic turbine design to obtain higher extraction pressure even at partial load, but in terms of optimal design of the turbine plant, it is difficult to This is not necessarily an effective measure as it may worsen the heat rate. For this reason, there is a problem in that the operating range of a large-capacity extraction turbine power plant depends not only on the final stage exhaust temperature but also on the saturation temperature of the deaerator.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、造水プラントを併設した抽気タービン
プラントにおいて、造水プラントからの戻りドレンの有
効な熱回収を行ない、かつタービン発電プラントの運転
範囲の制限をうけない抽気タービン発電プラントを提供
するにある。
An object of the present invention is to provide an extraction turbine power generation plant that effectively recovers heat from return drain from the water production plant in an extraction turbine plant that is attached to a water production plant, and that is not subject to restrictions on the operating range of the turbine power generation plant. There is something to do.

〔発明の概要〕[Summary of the invention]

本発明は併設した遣水プラントからの戻りドレンを脱気
装置の補助蒸気として使用することを特徴とする抽気タ
ービン発電プラントに関するものである。
The present invention relates to an extraction turbine power generation plant characterized in that return drain from an attached water supply plant is used as auxiliary steam for a deaerator.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図面に示す実施例について説明する。図面
は本発明の脱気装置の制?Ml装置を使用した抽気ター
ビン発電プラントの全体系統図を示している。抽気ター
ビン発電プラントは、大別すると蒸気タービンシステム
1.これから駆動される発電機2.蒸気タービン1に蒸
気を供給するボイラ3.蒸気タービン1の俵水器4より
なり、本発明の対象になる抽気タービン発電プラントは
、蒸気タービン1の抽気を利用する造水プラント5を併
設している。
The present invention will be described below with reference to embodiments shown in the drawings. Does the drawing show the control of the degassing device of the present invention? 1 shows an overall system diagram of an extraction turbine power generation plant using an Ml device. Extraction turbine power generation plants can be broadly classified into steam turbine systems 1. Generator that will be driven 2. A boiler 3 that supplies steam to the steam turbine 1. The extraction turbine power generation plant, which is comprised of a steam turbine 1 and a bale water generator 4, and which is the object of the present invention, is also equipped with a water production plant 5 that utilizes the extraction air of the steam turbine 1.

すなわち、ボイラ3の蒸気は、生蒸気管6を通って高圧
タービンITおよび低圧タービンILに導かれこ\で仕
事し、発電機2と駆動することになる。タービン1で仕
事した蒸気は、復水器4で復水し、復水ポンプ7(二よ
り第1段低圧給水加熱器8および第2段低圧給水加熱器
9を経て加熱さi]て脱気装置1tlOに入り、こ\で
タービンの抽気蒸気で脱気加熱されたのち、ボイラ給水
ポンプ11で昇圧されて高圧給水加熱器12を経てボイ
ラ3へ送られる。造水プラント5は高圧蒸気タービンI
Tの中段よりの抽気蒸気をうけ、その戻りドレンはドレ
ン管13から電動止め弁14および逆止弁15を介して
低圧給水加熱器8の出口に回収される0この電動止め弁
+4Vi後述する脱気装置器内制御装置に制御されるも
ので、蒸気タービンの通常の高負荷運転時は開となって
いる。そして第2段低圧給水加熱器9にはその両側に止
め弁+6.17を設けるとともに、ヒータバイパス弁1
8を設けている。
That is, the steam of the boiler 3 is guided through the live steam pipe 6 to the high pressure turbine IT and the low pressure turbine IL, where it performs work and drives the generator 2. The steam that has worked in the turbine 1 is condensed in the condenser 4, and is degassed by the condensate pump 7 (heated through the first-stage low-pressure feedwater heater 8 and second-stage low-pressure feedwater heater 9). It enters the equipment 1tlO, where it is deaerated and heated by the steam extracted from the turbine, and then the pressure is increased by the boiler feed water pump 11 and sent to the boiler 3 via the high pressure feed water heater 12.
The return drain is collected from the drain pipe 13 to the outlet of the low pressure feed water heater 8 via the electric stop valve 14 and the check valve 15. It is controlled by the steam turbine internal control system and is open during normal high-load operation of the steam turbine. The second stage low pressure feed water heater 9 is provided with a stop valve +6.17 on both sides thereof, and a heater bypass valve 1
There are 8.

脱気装置10+二げ、高圧タービンITの抽気蒸気が抽
気管19から電動止め弁20および逆止弁2【を介して
供給され、この抽気蒸気によって脱気装filO内C二
人った復水は脱気し加熱される。電、動止め弁20Fi
後述する制御装置によって通常の高負荷時は開となって
いる。また脱気装棒用(二は、造水プラント5の戻りド
レンを導く補助蒸気管22を分岐し、電動止め弁23、
逆止弁24およびフラッシュタンク25を介して戻りド
レンな補助蒸気として導かれる。
The extracted steam from the deaerator 10 and the high-pressure turbine IT is supplied from the bleed pipe 19 through the electric stop valve 20 and the check valve 2, and this extracted steam causes the condensate inside the deaerator filO to be is degassed and heated. Electric, stop valve 20Fi
It is kept open under normal high load conditions by a control device to be described later. In addition, for the deaeration rod (2), the auxiliary steam pipe 22 that leads the return drain of the desalination plant 5 is branched, and the electric stop valve 23,
The steam is returned via the check valve 24 and the flash tank 25 and is led as auxiliary steam.

その電動止め弁23は後述の制御装置により通常の高負
荷時は閉となっている。さらし脱気装置10と復水器4
又は第1段低圧給水加熱器8との間1−器内圧調整%l
 26を設け、その電動止め弁27を後述する制御装置
によって制御する。なお、フラッシュタンク25内のド
レンは、ドレンレベル制御装置28とドレンレベル調整
弁29によって制御され、その余剰ドレンをドレン管3
0で復水器へ送ってレベル制御される。
The electric stop valve 23 is closed under normal high load conditions by a control device to be described later. Exposure deaerator 10 and condenser 4
or between the first stage low pressure feed water heater 8 and the internal pressure adjustment%l
26 is provided, and its electric stop valve 27 is controlled by a control device to be described later. The drain in the flash tank 25 is controlled by a drain level control device 28 and a drain level adjustment valve 29, and the excess drain is transferred to the drain pipe 3.
At 0, it is sent to the condenser and its level is controlled.

さて電動止め弁14 、2(1,23,27を制御する
脱気装置器内圧制御装置31には、低圧給水加熱器9が
ら脱気装置10にいたる排水の流んをオリフィス:32
および流量検出器33で検出してこれを流量信号として
入力し、またその復水温度検出器34で検出した伏水温
度信号を入力している。またこの制御装置431の1装
入力である脱気装置10の器内圧力を検出器35で検出
してこれを器内圧力信号として入力されている。さら(
−遣水プラント5の補助蒸気管22で分流した戻りドレ
ンの流t;は、オリフィス36および検出537で検出
されて流量信号とし2て制御装置17:(11二人力さ
れ、この戻りドレンの温度は、検出器、38で検出され
て戻りドレン温度信号として入力さね−でいる。
Now, the deaerator internal pressure control device 31 that controls the electric stop valves 14, 2 (1, 23, 27) has an orifice: 32 that controls the flow of waste water from the low-pressure feed water heater 9 to the deaerator 10.
The flow rate detector 33 detects this and inputs it as a flow rate signal, and the submerged water temperature signal detected by the condensate temperature detector 34 is input. Further, the pressure inside the deaerator 10, which is one input of the control device 431, is detected by the detector 35 and is inputted as an inside pressure signal. Sara(
- The flow t of the return drain separated by the auxiliary steam pipe 22 of the water supply plant 5 is detected by the orifice 36 and the detection 537, and is output as a flow rate signal by the control device 17: (11), and the temperature of this return drain is , and is detected by a detector 38 and inputted as a return drain temperature signal.

次に本発明の脱気装置10の制御装置の作動について欧
、明する。捷ず図面のプラント系統図は抽気タービン発
電プラントの重負荷運転時を示し、脱気装置器内圧制御
装置18の指令によって電動止めヅf14 、2+l、
 27it開で、′電動止め弁2;3およびバイパス弁
18は閉になっている。したかつて造水プラント5より
の脱気装置用ネi1助蒸気管22よりの戻りドレンC二
使用していない。この状態でに、造水プラント5の戻す
ドレンかドレン新1.3からi、 1ltll止め弁1
4および逆止弁15に通して低圧給水加熱器8の出口に
合流する。この復水は低圧給水加熱器9で加熱されて脱
気装置1旧二人り、ζ、\で抽気管19から入るタービ
ン抽気蒸気で脱気、加熱され、高圧給水加熱器12を経
てボイラ3へ送られる。
Next, the operation of the control device for the deaerator 10 of the present invention will be explained. The plant system diagram in the cutout drawing shows the heavy load operation of the extraction turbine power generation plant, and the electric cutoffs are stopped by commands from the deaerator internal pressure control device 18.
27 it is open, and the electric stop valves 2 and 3 and the bypass valve 18 are closed. However, the return drain C2 from the auxiliary steam pipe 22 for the deaerator from the fresh water production plant 5 was not used. In this state, the drain to be returned to the desalination plant 5 or drain new 1.3 to i, 1ltll stop valve 1
4 and a check valve 15 to join the outlet of the low pressure feed water heater 8. This condensate is heated by the low pressure feed water heater 9, degassed by the deaerator 1, heated by turbine bleed steam entering from the bleed pipe 19, and then passed through the high pressure feed water heater 12 to the boiler 3. sent to.

いま抽気タービン発電プラントが低負荷になると、バイ
パス弁18が開で止め弁1h、1.7が閉(二斤ってい
わゆる第2段低圧給水加熱器9のカット運転になる。そ
して造水プラント5の戻すドレンな回収し、かつ低圧給
水加熱器9をバイパスした復水の温度が、脱気装置IO
の器内t;A和温差温度晶くなった場合、脱気装置器内
圧制イ卸装置31からの信号で遣水プラント5のドレン
管1:3にある電動止め弁14を閉め、ドレン管13か
ら分岐した補助蒸気管22にある電動止め弁23を開ら
き、抽気蒸気管19+二ある電動止め弁20を閉める。
Now, when the extraction turbine power generation plant becomes a low load, the bypass valve 18 is opened, the stop valve 1h is closed, and the stop valve 1.7 is closed. The temperature of the condensate recovered in step 5 and bypassed the low-pressure feed water heater 9 is determined by the temperature of the condensate that is
When the temperature difference inside the vessel becomes crystalline, the electric stop valve 14 located at the drain pipe 1:3 of the water supply plant 5 is closed by a signal from the deaerator internal pressure control device 31, and the drain pipe 13 is closed. The electric stop valve 23 in the auxiliary steam pipe 22 branched from the auxiliary steam pipe 22 is opened, and the electric stop valve 20 in the extraction steam pipe 19+2 is closed.

す々わちい捷まで行なわれていた復水系への造水プラン
ト5の戻りドレンの回収と篩用タービンITの抽気蒸気
の脱気装ffff1lUへの供給を止め、造水プラント
5の戻すドレンを補助蒸気管22を辿しての脱気装置1
0へ供給することになる。
The collection of the return drain from the water production plant 5 to the condensate system, which had been completely drained, and the supply of extracted steam from the sieving turbine IT to the deaerator ffff1lU were stopped, and the return drain from the water production plant 5 was stopped. Deaerator 1 following auxiliary steam pipe 22
It will be supplied to 0.

補助蒸気悩22の造水プラント5の戻りドレンは、’F
IL 4n止め弁13.連止弁24およびオリフィス;
31)を通溝してフラツユタンク2bに入り、こ\でフ
ラッシュ蒸気となって脱気加熱用の蒸気となって脱気装
置F< HJへ入る。この間に戻りドレンの流Mけ、検
出ム37で検出さtL、温度はM度検出器38で検出さ
れ。
The return drain of the desalination plant 5 of the auxiliary steam tank 22 is 'F
IL 4n stop valve 13. Continuation valve 24 and orifice;
31) It passes through a groove and enters the flattening tank 2b, where it becomes flash steam, becomes steam for degassing and heating, and enters the deaerator F<HJ. During this time, the return drain flow M is detected by the detector 37 tL, and the temperature is detected by the M degree detector 38.

それそ第1制御装飯;う1へ入力される。また低圧給水
加熱器8をボ1−て脱気装置用に入る復水は、流量検出
器33およびtL m:検出器34でそれぞれ流ttお
よび温良が検出されて制御装置31に人力されている。
That is input to the first control device; Further, the condensate that enters the deaerator after passing through the low-pressure feed water heater 8 is detected by a flow rate detector 33 and a tLm:detector 34, respectively, for flow tt and temperature, and is manually input to a control device 31. .

脱気装υ1131の器内圧は、圧力検出器35かも制御
装置:311−人力される。これらの信号をうりた脱気
装り器内圧制御装置31で、脱気装置用の器内圧を遣水
プラント5の戻すドレンと低圧復水とがハシ5気装置I
!−内で混合し、た時の温度より若干低い温度を飽和温
度とするようC−各検出器37.38.33.34.3
5よりの入力信号を演pして七の結果により圧力調整弁
27を調整する。この圧力侃整弁2:(によって脱気装
偵゛、IO内を管26を介して1層水器4又は第1股低
圧給水加熱器8と逆通し、脱気g liT 10内を低
圧伽水と造水戻りドレンの混合後の瀞IJjより若干低
い飽和圧力になるように6)う整することにより、遣水
戻りドレンCフラッシュタンク25でフラッシュ蒸気C
二なって脱気装置用の脱気用加−(蒸気と(1,て使用
することが可能となる。そしてそのときのフラッシュタ
ンク25内のドレンは、ドレンレベル制御装置28と調
整弁29によって余剰ドレンとして復水器4へ送られる
The internal pressure of the deaerator υ1131 is manually controlled by the pressure detector 35 and the control device 311. The deaerator internal pressure control device 31 receives these signals, and the internal pressure for the deaerator is controlled by the drain and low-pressure condensate returned from the water supply plant 5.
! - Each detector 37, 38, 33, 34, 3
The input signal from step 5 is operated and the pressure regulating valve 27 is adjusted based on the result from step 7. This pressure regulating valve 2: (by means of the deaeration system, the inside of the IO is reversely connected to the one-layer water heater 4 or the first low-pressure water heater 8 through the pipe 26, and the inside of the deaeration gliT 10 is reduced to a low pressure. 6) By adjusting the pressure so that the saturated pressure is slightly lower than the saturated pressure after mixing the water and desalination return drain, flash steam C is generated in the water return drain C flash tank 25.
This makes it possible to use the degassing steam for the degassing device. At that time, the drain in the flash tank 25 is controlled by the drain level control device 28 and the regulating valve 29. It is sent to the condenser 4 as surplus drain.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明(二よれば、造水プラントを併設し
た抽気タービン発電プラントにおいて、低負荷時におい
ても遣水プラントの戻すドレンを脱気装置の脱気用加熱
蒸気として使用できるので、戻りドレンの熱回収が良好
になり、併せて遣水プラントの負荷を制限する必要なく
蒸気タービンの運転範囲を広ろけることができる利点を
有する〇4、 図+hiのfRi 、’Dなh(明図面
は本発明の」1;1気タービン発17.プラントの一実
施例を示す蒸気系新図である。
As described above, according to the present invention (2), in an extraction turbine power generation plant with a water production plant attached, the return condensate from the water supply plant can be used as heating steam for deaeration in the deaerator even during low load. It has the advantage of improving heat recovery and expanding the operating range of the steam turbine without the need to limit the load on the water supply plant. 1 is a new diagram of a steam system showing an embodiment of a 1;1 turbine-generated 17. plant of the present invention.

1・・・抽気蒸気タービン JT・・・高圧タービンI
L・・・低圧タービン 2・・・発電機3・・ホイラ 
    4・・・イυ水器5 ・づ。水プラント8.9
・・低圧給水加熱器1(]・・・脱気t″−直    
1ン暑・・商Fヒ給水加熱ン;、41.1・・・4 水
プラント戻りドレン管14、20. ニジ:(,27・
・・電+M止め弁  1b、 11・・・止め弁1B・
・・バイパス弁   22・・補助蒸気賀21)・・・
フラッシュタンク :31・・・脱気装的益内圧制御装置 3′/:、3tビ・・オリフィス 3:l + ;37
・・・流iif ’tφ出器:3<、3s・・・温11
1−侠出器
1...Extraction steam turbine JT...High pressure turbine I
L...Low pressure turbine 2...Generator 3...Hoiler
4...I υ Water vessel 5 ・zu. water plant 8.9
...Low pressure feed water heater 1 (]...Deaeration t''-direct
1 heat...Commercial Fhi water supply heating;, 41.1...4 Water plant return drain pipe 14, 20. Niji: (,27・
・Electric+M stop valve 1b, 11...stop valve 1B・
...Bypass valve 22...Auxiliary steam 21)...
Flash tank: 31... Deaeration equipment internal pressure control device 3'/:, 3t Bi... Orifice 3: l +; 37
...Flow iif'tφ output device: 3<, 3s...Temperature 11
1- Chivalry device

Claims (1)

【特許請求の範囲】[Claims] (1)中間段から蒸気を抽気する抽気タービンで発電機
を駆動するプラン)l二おいて、併設した造水プラント
の戻りドレンなタービンの負荷状態に応じて低圧復水系
g二混合するが又は脱気装置の補助蒸気として供給でき
るよう11配管構成したことを特徴とする抽気タービン
発電プラント(2)  造水プラントの戻りドレンをタ
ービンの高負荷時は低圧給水加熱器の出口復水に混合さ
せ、低負荷時における復水温展が脱気装置の器内飽和温
度より高くなったときに脱気装置の補助蒸気と]7て使
用することを特徴とする特許請求の範囲第1項の抽気タ
ービン発電プラント
(1) A plan in which a generator is driven by an extraction turbine that extracts steam from an intermediate stage) A low-pressure condensate system G2 is mixed depending on the load condition of the return drain turbine of the attached water production plant. An extraction turbine power generation plant characterized by having 11 piping configurations so that it can be supplied as auxiliary steam to a deaerator (2) Return drain from a water production plant is mixed with condensate at the outlet of a low-pressure feedwater heater when the turbine is under high load. The extraction turbine according to claim 1, wherein the extraction turbine is used as auxiliary steam for the deaerator when the condensate temperature evolution under low load becomes higher than the internal saturation temperature of the deaerator. power plant
JP12775382A 1982-07-23 1982-07-23 Power plant using extraction turbine Pending JPS5918214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12775382A JPS5918214A (en) 1982-07-23 1982-07-23 Power plant using extraction turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12775382A JPS5918214A (en) 1982-07-23 1982-07-23 Power plant using extraction turbine

Publications (1)

Publication Number Publication Date
JPS5918214A true JPS5918214A (en) 1984-01-30

Family

ID=14967830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12775382A Pending JPS5918214A (en) 1982-07-23 1982-07-23 Power plant using extraction turbine

Country Status (1)

Country Link
JP (1) JPS5918214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06507355A (en) * 1991-03-01 1994-08-25 エレクトロスタティック テクノロジー インコーポレーテッド Powder coating method for manufacturing thin laminates for circuit boards, etc.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06507355A (en) * 1991-03-01 1994-08-25 エレクトロスタティック テクノロジー インコーポレーテッド Powder coating method for manufacturing thin laminates for circuit boards, etc.

Similar Documents

Publication Publication Date Title
US4402183A (en) Sliding pressure flash tank
EP0847482B1 (en) Method and device for cooling the low-pressure stage of a steam turbine
JPH05133202A (en) Steam turbine system and method of improving efficiency thereof
JPS5918214A (en) Power plant using extraction turbine
KR20150060936A (en) Gas and steam turbine system having feed-water partial-flow degasser
JPS6179905A (en) Drain recovery system
JPH044481B2 (en)
JP3664759B2 (en) Flash prevention device
JPS582794A (en) Drain processing method of atomic power plant
JPS59110811A (en) Steam turbine plant
JP2650477B2 (en) Water hammer prevention method for deaerator water supply piping and piping equipment therefor
JPS6124679B2 (en)
JP2763178B2 (en) Feed water heater drain water level control device
JPH0135244B2 (en)
JPH0330762B2 (en)
JP2685472B2 (en) Condensate system control method and device
SU1553738A1 (en) Method of attaining peak power of power generation unit
JP2927860B2 (en) Feed water heater for reactor
JPH05240402A (en) Method of operating waste heat recovery boiler
JPS60219404A (en) Stabilizing device of deaerator output
JPS62206308A (en) Condensing plant for steam turbine plant
JPS6093205A (en) Method and device for controlling dry heater system of generating plant
JPS6136123B2 (en)
JPS62106208A (en) Method and device for discharging drain from moisture separating heater
JPS6091108A (en) Drain recovery device for feedwater heater