JPS5918205A - Moving blade of gas turbine - Google Patents
Moving blade of gas turbineInfo
- Publication number
- JPS5918205A JPS5918205A JP12561782A JP12561782A JPS5918205A JP S5918205 A JPS5918205 A JP S5918205A JP 12561782 A JP12561782 A JP 12561782A JP 12561782 A JP12561782 A JP 12561782A JP S5918205 A JPS5918205 A JP S5918205A
- Authority
- JP
- Japan
- Prior art keywords
- passage
- cooling
- cooling fluid
- moving blade
- plural
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012809 cooling fluid Substances 0.000 claims abstract description 26
- 238000001816 cooling Methods 0.000 abstract description 19
- 238000000034 method Methods 0.000 abstract description 2
- 230000007246 mechanism Effects 0.000 description 6
- 238000005192 partition Methods 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000567 combustion gas Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
- F05D2260/2212—Improvement of heat transfer by creating turbulence
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、がスタービンの動翼に係り、特に、流体冷却
構造を備えた動翼の改良に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a rotor blade for a turbine, and more particularly to an improvement in a rotor blade equipped with a fluid cooling structure.
一般的に1がスタービンは往復機関に比較して小型軽量
で大馬力が得られるなどの多くの利点を有している。こ
のようなガスタービンは、通常、1つの軸に圧縮機と7
9ツータービンとを連結し、圧縮機で圧縮された高圧空
気で燃焼器内の圧力を高め、この状態で燃焼器内に燃料
を噴射して燃焼させ、この燃焼によって生じた高温、高
圧のガスを、4ワータービンえ導いて膨張させることK
よシ回転動力を得るように構成されている。圧縮機は、
通常、案内翼と回転翼と燃焼ガスによって翼温度が上昇
することになる。In general, a turbine has many advantages over a reciprocating engine, such as being smaller and lighter and being able to provide greater horsepower. Such gas turbines typically have a compressor and seven shafts on one shaft.
The pressure inside the combustor is increased using high-pressure air compressed by a compressor, and in this state, fuel is injected into the combustor and combusted, and the high-temperature, high-pressure gas generated by this combustion is to be expanded using a four-power turbine.
It is configured to obtain rotational power. The compressor is
Normally, the blade temperature will increase due to the guide vane, rotor vane, and combustion gas.
翼を構成する現用の耐熱金属では900℃を越えると長
時間運転が不能となる。したがって、翼の運転寿命を長
くするには、何らかの手段でX温度を低下させるよシ外
ない。Current heat-resistant metals that make up blades cannot be operated for long periods of time at temperatures exceeding 900°C. Therefore, in order to extend the operational life of the blade, there is no choice but to lower the X temperature by some means.
上述した理由から、従来、冷却構造を備えたがスタービ
ンの翼が種々提案されている。これら冷却構造を備えた
翼は、通常、翼本体内に上記翼本体の高さ方向に沿って
冷却流体の通路を設けるとともに上記通路に導かれた冷
却流体を上記通路を構成する壁を貫通し、かつ翼本体の
高さ方向に亘って複数設けられた小孔金倉して真性へ流
出させる構成となっている。すなわち。For the reasons mentioned above, various types of turbine blades equipped with cooling structures have been proposed. Wings equipped with these cooling structures usually have a cooling fluid passage provided in the blade body along the height direction of the blade body, and the cooling fluid guided into the passage passes through a wall that constitutes the passage. , and a plurality of small holes are provided in the height direction of the wing body to allow the air to flow out into the air. Namely.
上記翼は、冷却流体が上記通路を流通することによって
起こる対流冷却効果、同じく各小孔をすなわち、動翼で
は、この動翼内に設けられた通路に存在する冷却流体に
遠心力が作用する。The blades have a convection cooling effect that occurs when the cooling fluid flows through the passages, and each small hole has a centrifugal force acting on the cooling fluid that exists in the passages provided in the blades. .
この結果、通路内の圧力は、翼本体の根元部側に位置す
る部分が最も低く、具本体の先端部(ティグ部)に位置
する部分が最も高くなる。As a result, the pressure within the passage is lowest in the part located on the root side of the blade body and highest in the part located in the tip part (TIG part) of the tool body.
このため、上記通路を構成する壁を貝通し、かつ翼本体
の高さ方向に亘って複数設けられた前記各小孔からの冷
却流体流出量の分布が具本体の高さ方向に不均一となり
、必然的に冷却むらが発生する。そこで、従来の翼では
、上述した冷却むらの発生を防止するために冷却流体の
量を増加させる方式が採られている。しかし、このよう
に冷却流体の量を増加させると、増加圧応じて空力損失
も増加するので、これが原因して効率を向上させること
ができない問題があった。For this reason, the distribution of the amount of cooling fluid flowing out from each of the plurality of small holes, which are provided through the wall constituting the passage and extending in the height direction of the blade body, becomes uneven in the height direction of the tool body. , uneven cooling inevitably occurs. Therefore, in conventional blades, a method is adopted in which the amount of cooling fluid is increased in order to prevent the above-mentioned uneven cooling from occurring. However, when the amount of cooling fluid is increased in this way, aerodynamic loss also increases in accordance with the increased pressure, which causes a problem in that efficiency cannot be improved.
本発明は、このような事情に鑑みてなされた〔発明の概
要〕
本発明に係るガスタービンの動翼は、動翼本体内に動翼
本体の高さ方向に沿って設けられる冷却流体の通路に、
上記通路の通流断面積を局部的に絞って前述した各/j
・孔からの冷却流体流出量を均一化させる絞シ機構を上
記通路に沿って複数設けたことを特徴としている。The present invention has been made in view of the above circumstances [Summary of the Invention] A gas turbine rotor blade according to the present invention has a cooling fluid passage provided in the rotor blade body along the height direction of the rotor blade body. To,
By locally narrowing the flow cross-sectional area of the above passage, each of the above-mentioned /j
- A feature is that a plurality of throttling mechanisms are provided along the passage to equalize the amount of cooling fluid flowing out from the holes.
上記構成であると、絞り機構によって、上記fD機構が
位置する部分の流動抵抗を調整することができる。した
がって、予め、上記絞シ機構の通流断面積を所定に設定
しておきさえすれば、遠心力によって冷却流体通路内に
大きな圧力差が生じるのを防止でき、この結果、翼本体
の高さ方向に亘って複数設けられた前記各小孔からの冷
却流体流出量をはぼ均一にすることがンパ線に沿って切
断して示す縦断面図である。With the above configuration, the flow resistance of the portion where the fD mechanism is located can be adjusted by the aperture mechanism. Therefore, by setting the flow cross-sectional area of the throttling mechanism to a predetermined value in advance, it is possible to prevent a large pressure difference from occurring in the cooling fluid passage due to centrifugal force, and as a result, the height of the blade body can be reduced. It is a longitudinal cross-sectional view taken along the damping line and showing that the amount of cooling fluid flowing out from each of the plurality of small holes provided in the direction is made almost uniform.
この動翼は、大きく分けて、翼本体1と、この翼本体1
を図示しない回転軸に固定するための翼根部2と、この
翼根部2内および翼本体1内に設けられた冷却機構3と
で構成されているO上記冷却機構3は、翼根部2内に翼
の高さ方向に形成された冷却流体導入路11と、この冷
却流体導入路11にそれぞれ通じる関係に翼本体1内の
前縁部、中間部および後縁部に設けられた第1.第2.
第3の冷却系統12.13゜14とで構成されている。This moving blade can be roughly divided into a blade body 1 and a blade body 1.
The cooling mechanism 3 is composed of a blade root 2 for fixing to a rotating shaft (not shown), and a cooling mechanism 3 provided within the blade root 2 and within the blade body 1. Cooling fluid introduction passages 11 formed in the height direction of the blade, and first... Second.
It is composed of a third cooling system 12.13°14.
第1の冷却系統12は、翼本体1の前縁壁15と仕切壁
16とによって翼本体1の高さ方向に沿って形成された
通路17と、第2図にも示すように上記前縁壁15に高
さ方向に亘って複数設けられ上記通路17内に導かれた
冷却流体を上記第2の冷却系統13は、仕切壁21と2
2とによって翼本体1の高さ方向く延び、翼本体1の先
端部において上記仕切壁22と23とKよって前縁部側
口シに180°方向変換して翼本体1の根元部まで延び
、さらに上記根元部において仕切壁23と16とによっ
て前縁部側口りに180°方向変換して翼本体1の先端
部まで延びる屈曲通路24と、この屈曲通路24の仕切
壁21と22とが位置する部分および仕切壁23と16
とが位置する部分で翼本体1の腹側に位置する壁を第2
図に示すように貫通し、かつ翼本体1の高さ方向に亘っ
て複数設けられたフィルム冷却用の小孔25と、屈曲通
路24を構成する壁でかつ翼本体1の腹側および背側に
位置する内面に突設された熱伝達効果を上げるためのリ
プ26と、屈曲通路24を構成する壁で、環状突壁27
とで構成されている。As shown in FIG. The second cooling system 13 is provided with a plurality of cooling fluids provided in the wall 15 in the height direction, and the cooling fluid guided into the passage 17 is connected to the partition walls 21 and 2.
2 extends in the height direction of the blade body 1, and at the tip of the blade body 1, the direction is changed by 180° to the leading edge side opening by the partition walls 22 and 23 and K, and extends to the root of the blade body 1. Furthermore, at the root portion, a bending passage 24 whose direction is changed by 180° to the leading edge side mouth by partition walls 23 and 16 and extending to the tip of the wing body 1, and partition walls 21 and 22 of this bending passage 24 are formed. The part where is located and the partition walls 23 and 16
The wall located on the ventral side of the wing body 1 at the part where the
As shown in the figure, a plurality of small holes 25 for film cooling are provided through the blade body 1 in the height direction, and a wall forming the bending passage 24 and on the ventral and dorsal sides of the blade body 1. The lip 26 protrudes from the inner surface of the wall 26 to increase the heat transfer effect, and the wall constituting the bending passage 24 includes an annular protruding wall 27.
It is made up of.
29をm成する壁で、かつ翼本体1の腹側に位置する壁
を第2図に示すように貫通し高さ方向に亘って複数設け
られたフィルム冷却用の小孔J(7と、後縁壁28に高
さ方向に亘って複数形成され通路29に導かれた冷却流
体f、翼真性流出させる小孔3)と、通路29を構成す
る壁の内面で翼本体1の腹側および背側に位置する部分
に複数突設された熱伝達効果を上げるためのりプ32と
、同じく通路29を構成する壁の内面に高さ方向に亘っ
て複数突設され通路29の流通断面積を局部的に絞る環
状突壁33とで構成されている。As shown in FIG. 2, a plurality of small holes J for film cooling (7 and A plurality of small holes 3) are formed in the trailing edge wall 28 in the height direction and are guided into the passage 29 to allow the cooling fluid f to flow out of the blade, and the inner surface of the wall constituting the passage 29 is formed on the ventral side of the blade body 1 and A plurality of ribs 32 are provided on the dorsal side to increase the heat transfer effect, and a plurality of ribs 32 are provided on the inner surface of the wall constituting the passageway 29 in the height direction to increase the flow cross-sectional area of the passageway 29. It is composed of an annular projecting wall 33 that narrows locally.
上記のような構成であると、図中太矢印で示すように冷
却流体導入路1ノへ導かれた冷却流体は、翼本体1内の
根元部において3つに分流し、第1.第2.第3の冷却
系統12.13゜14へと流れる。With the above configuration, the cooling fluid introduced into the cooling fluid introduction path 1 is divided into three parts at the root part within the blade body 1, as shown by the thick arrows in the figure, and the cooling fluid is divided into three parts at the root part within the blade body 1. Second. It flows into a third cooling system 12.13°14.
最終的に小孔18から噴出して翼本体1の前縁部を冷却
する。また、第2の冷却系統13へ流れ込んだ冷却流体
は屈曲通路24を通流する間最終的に小孔25から噴出
して翼本体1の中間蒐
1の後縁部腹側外面を冷却するとともに小孔31から噴
出して後縁部を冷却する。Finally, it is ejected from the small holes 18 and cools the leading edge of the blade body 1. Further, while the cooling fluid that has flowed into the second cooling system 13 flows through the bent passage 24, it finally jets out from the small hole 25 and cools the ventral side outer surface of the trailing edge of the intermediate axle 1 of the blade body 1. It is ejected from the small hole 31 to cool the trailing edge.
そして、この場合には、各冷却系統12.13゜14の
通路で翼本体1の高さ方向に延びる部分の内面に通路の
通流断面積全局部的に絞る環状突壁20.27.33を
高さ方向に亘って複数設けているので、各環状突壁20
.21.33の内径を高さ方向に所定に設定することに
よって各環状突壁20.27.33に流量制御機能を発
揮させることができ、この流量制御機能で遠心力による
圧力増加を抑制させることができる。したがって、各通
路の各部用力をほぼ均一にすることができるので、各小
孔1B、25゜30、Jjlから流出する冷却流体量を
筒さ方向に亘って均一化することができる。このため。In this case, an annular projecting wall 20, 27, 33 is provided on the inner surface of the portion of the passage of each cooling system 12, 13, 14 extending in the height direction of the blade body 1 to locally narrow the entire flow cross-sectional area of the passage. Since a plurality of are provided in the height direction, each annular protruding wall 20
.. By setting the inner diameter of 21.33 to a predetermined height direction, each annular protruding wall 20.27.33 can exhibit a flow control function, and this flow control function suppresses pressure increase due to centrifugal force. I can do it. Therefore, since the power applied to each part of each passage can be made almost uniform, the amount of cooling fluid flowing out from each of the small holes 1B, 25° 30, and Jjl can be made uniform over the cylindrical direction. For this reason.
必要最少限度の冷却流体蓋で翼本体1の各部をは同動翼
を第1図におけるA−入線に沿って切断し矢印方向に見
た横断面図である。This is a cross-sectional view of each part of the blade main body 1 taken along the entry line A--in FIG. 1 and viewed in the direction of the arrow in FIG.
1・・・翼本体、2・・・翼根部、17.24.29・
・・通路、18.25.30.31・・・小孔、20゜
27.33・・・環状突壁。1... Wing body, 2... Wing root, 17.24.29.
... Passage, 18.25.30.31 ... Small hole, 20°27.33 ... Annular projecting wall.
出願人 工業技術院長 石 坂 誠 −第1図Applicant: Director of the Agency of Industrial Science and Technology Makoto Ishizaka - Figure 1
Claims (1)
通路を設けるとともに上記通路に導かれた冷却流体を上
記通路を構成する壁を貫通A cooling fluid passage is provided in the rotor blade body along the height direction of the blade body, and the cooling fluid guided to the passage passes through a wall forming the passage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12561782A JPS5918205A (en) | 1982-07-21 | 1982-07-21 | Moving blade of gas turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12561782A JPS5918205A (en) | 1982-07-21 | 1982-07-21 | Moving blade of gas turbine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5918205A true JPS5918205A (en) | 1984-01-30 |
JPS6215724B2 JPS6215724B2 (en) | 1987-04-09 |
Family
ID=14914506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12561782A Granted JPS5918205A (en) | 1982-07-21 | 1982-07-21 | Moving blade of gas turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5918205A (en) |
-
1982
- 1982-07-21 JP JP12561782A patent/JPS5918205A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6215724B2 (en) | 1987-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4366178B2 (en) | Turbine airfoil section with long and short chord lengths and high and low temperature performance | |
US4992026A (en) | Gas turbine blade | |
US5531568A (en) | Turbine blade | |
JP4311919B2 (en) | Turbine airfoils for gas turbine engines | |
US5690473A (en) | Turbine blade having transpiration strip cooling and method of manufacture | |
US7118326B2 (en) | Cooled gas turbine vane | |
US7303372B2 (en) | Methods and apparatus for cooling combustion turbine engine components | |
US10480329B2 (en) | Airfoil turn caps in gas turbine engines | |
US6269628B1 (en) | Apparatus for reducing combustor exit duct cooling | |
JPH09505655A (en) | Cooled turbine airfoil | |
JPS62258103A (en) | Cooling vane | |
US20050281671A1 (en) | Gas turbine airfoil trailing edge corner | |
US10495309B2 (en) | Surface contouring of a flowpath wall of a gas turbine engine | |
US10577943B2 (en) | Turbine engine airfoil insert | |
US20180347375A1 (en) | Airfoil with tip rail cooling | |
JP3213107U (en) | Collision system for airfoils | |
US20190301286A1 (en) | Airfoils for gas turbine engines | |
DE102019104814B4 (en) | Turbine blade equipped with an insert carrier | |
EP1094200A1 (en) | Gas turbine cooled moving blade | |
US10619489B2 (en) | Airfoil having end wall contoured pedestals | |
JPH11193701A (en) | Turbine wing | |
JPS59231102A (en) | Gas turbine blade | |
JPS5918205A (en) | Moving blade of gas turbine | |
US11293347B2 (en) | Airfoil with baffle showerhead and cooling passage network having aft inlet | |
EP2771554B1 (en) | Gas turbine and method for guiding compressed fluid in a gas turbine |