JPS59180353A - Measuring device for pyruvic acid - Google Patents

Measuring device for pyruvic acid

Info

Publication number
JPS59180353A
JPS59180353A JP58053637A JP5363783A JPS59180353A JP S59180353 A JPS59180353 A JP S59180353A JP 58053637 A JP58053637 A JP 58053637A JP 5363783 A JP5363783 A JP 5363783A JP S59180353 A JPS59180353 A JP S59180353A
Authority
JP
Japan
Prior art keywords
fad
immobilized
solution
measurement
pyruvate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58053637A
Other languages
Japanese (ja)
Other versions
JPH0248059B2 (en
Inventor
Yoshio Ishimori
石森 義雄
Masako Notsuke
野附 正子
Masao Koyama
小山 昌夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58053637A priority Critical patent/JPS59180353A/en
Publication of JPS59180353A publication Critical patent/JPS59180353A/en
Publication of JPH0248059B2 publication Critical patent/JPH0248059B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To maintain stably enzyme activity for a long time in a measuring device for a pyruvic acid using immobilized pyruvic acid oxidase by bringing a specific concn. range of flavin adenine dinucleotide (FAD) soln. into the immobilized oxidase. CONSTITUTION:An FAD soln. is supplied through a piping 10 having a small inside diameter at a measured supplying rate of 10<-9>-10<-6>mol/min from a storage tank 12 by using a micro metering pump to an electrode part 15 of a measuring device for a pyruvic acid using a film 6 formed by fixing pyruvic acid oxidase (POP) to collagen, polyacrylamide, etc. A sample is supplied from a supplying part 14 and a buffer or substrate soln. is supplied from a storage tank 11, respectively to the piping 9 of the part 15. The FAD soln. is brought into the POP immobilized film 16 through the ultrafilter film 2 and buffer layer 3 of the part 15 in the above-mentioned way, by which the activity of POP is maintained stably for a long time. The same result is obtainable by bringing the FAD soln. into contact with said film in the stage of non-measuring or washing the part 15 in place of doing the same in the stage of measurement.

Description

【発明の詳細な説明】 ]発明の技術分野】 本発明はピルビン酸測定装置に関し、更に詳しくは、固
定化ピルビン酸オキシダーゼの酵素活性を安定化せしめ
たピルビン酸測定装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a pyruvate measuring device, and more particularly to a pyruvate measuring device in which the enzymatic activity of immobilized pyruvate oxidase is stabilized.

[発明の技術的背景とその問題点] 近年、臨床分析は急速に発展し、血液中に存在する各種
の酵素活性を測定することにより病態を正確に知ること
ができるようになった。このため、臨床分析は医学の進
歩に多大の貢献をなすに至った。
[Technical background of the invention and its problems] In recent years, clinical analysis has rapidly developed, and it has become possible to accurately determine pathological conditions by measuring the activities of various enzymes present in the blood. For this reason, clinical analysis has come to make a significant contribution to the advancement of medicine.

従来の酵素活性の測定は、酵素、基質、補酵素及び必要
であれば発色試薬からなる酵素反応系において酵素反応
を行わしめ、反応前後における吸光度変化を測定して比
色定量する方法が採用されていた。例えば、肝機能の目
安になるグルタミン酸ピルビン酸トランスアミナーゼ(
GPT)の酵素活性を測定する場合は、GPTを基質に
作用させてピルビン酸を生成せしめ、次いで該ピルビン
酸を乳酸脱水素酵素(LDH)により還元すると、該反
応系に共存させておいたニコチンアミドーアデニンジメ
クレオチド (NAD)I)が酸化されてNAIIを生
成するので、340 r+mの波長における該NADH
の吸光度を測定することにより間接的にGPTの酵素活
性を測定することができる。しかしながら、この吸光度
測定法にあっては、NAD)1.LDH及び各種の発色
試薬等は高価であって、かつこれらの試薬は測定径廃棄
されるものであるため、測定原価が極めて高かった。ま
た、反応系中に血小板、血球及びゴミ等の懸濁物質が混
入していると吸光度測定が困難になるため、測定に先立
って該非測定物を除去する前処理が必要とされた。
Conventionally, enzyme activity is measured by carrying out an enzymatic reaction in an enzymatic reaction system consisting of an enzyme, a substrate, a coenzyme, and if necessary a coloring reagent, and measuring the change in absorbance before and after the reaction for colorimetric determination. was. For example, glutamate pyruvate transaminase (
When measuring the enzymatic activity of GPT, GPT acts on a substrate to generate pyruvate, and then the pyruvate is reduced by lactate dehydrogenase (LDH), which removes the nicotine coexisting in the reaction system. Since amide adenine dimerotide (NAD) I) is oxidized to form NAII, the NADH at a wavelength of 340 r+m
The enzymatic activity of GPT can be indirectly measured by measuring the absorbance of GPT. However, in this absorbance measurement method, NAD)1. LDH and various coloring reagents are expensive, and since these reagents are discarded after measurement, the cost of measurement is extremely high. Furthermore, if suspended substances such as platelets, blood cells, and dust are mixed in the reaction system, it becomes difficult to measure the absorbance, so pretreatment to remove the non-measurable substances is required prior to measurement.

そこで、このような吸光度測定法の欠点を解消するため
に、GPTの酵素反応生成物であるピルビン酸を電極法
により定量する方法が提案された(特開昭58−122
947)。これは、多孔性の高分子膜にピルビン酸オキ
シダーゼを固定化してなる固定化酵素膜を酸素電極表面
に装着して、ピルビン酸オキシダーゼによるピルビン酸
の分解に伴う溶存酸素減少量からピルビン酸の量を測定
するものである。しかしながら、調整した固定化酵素膜
の活性は不安定であるため、長時間の使用に耐えること
ができない (多くても50回)という欠点があった。
Therefore, in order to overcome these drawbacks of the absorbance measurement method, a method was proposed for quantifying pyruvic acid, which is an enzymatic reaction product of GPT, using an electrode method (Japanese Patent Application Laid-Open No. 122-1989).
947). An immobilized enzyme membrane consisting of pyruvate oxidase immobilized on a porous polymer membrane is attached to the surface of an oxygen electrode, and the amount of pyruvate is determined from the amount of dissolved oxygen decreased due to the decomposition of pyruvate by pyruvate oxidase. It is used to measure. However, since the activity of the prepared immobilized enzyme membrane is unstable, it has the disadvantage that it cannot be used for a long time (50 times at most).

なお、一般的にピルビン酸オキシダーゼは不安定な酵素
であるため、各種の固定化方法及び担体を用いても、そ
の寿命(活性の半減期)はせいぜい1〜2週間であった
In addition, since pyruvate oxidase is generally an unstable enzyme, its lifespan (half-life of activity) was at most 1 to 2 weeks even if various immobilization methods and carriers were used.

また、GPTの酵素活性を測定する方法として、GPT
の酵素反応生成物であるグルタミン酸を脱水素酵素によ
り分解した際、該酵素反応に伴い還元された補酵素を一
定電圧が印加された電極で酸化するときに流れる電流の
測定値からGPTの活性を測定する方法があるが(特開
昭58−92448) 、この方法は血液中に存在する
他の還元性物質(ビタミン等)の妨害を受は易いため、
やはり長時間の使用に耐えることができないという欠点
があった。
In addition, as a method to measure the enzyme activity of GPT, GPT
When glutamic acid, an enzymatic reaction product, is decomposed by dehydrogenase, the activity of GPT can be determined from the measured value of the current flowing when the coenzyme reduced by the enzymatic reaction is oxidized with an electrode to which a constant voltage is applied. There is a method for measuring it (Japanese Patent Laid-Open No. 58-92448), but this method is easily interfered with by other reducing substances (vitamins, etc.) present in the blood.
However, it still has the drawback of not being able to withstand long-term use.

[発明の目的] 木発゛明は、上記した欠点がなく、長寿命で、かつ安定
なピルビン酸測定装置を提供することを目的とする。
[Object of the Invention] The object of the present invention is to provide a long-life and stable pyruvic acid measuring device that does not have the above-mentioned drawbacks.

[発明の概要l 従来は、0.01mMのFAD含有緩衝液を用いてピル
ビン酪測定を行っていたが、本発明者らは、0.11以
上の高濃度フラビンアデニンジヌクレオチド溶液を電極
内に配置された固定化ピルビン酸オキシダーゼと接触せ
しめることにより該ピルビン酸オキシダーゼの酵素活性
寿命を安定化できることを見いだし、本発明を完成する
に至った。
[Summary of the Invention l Conventionally, pyrubin protein measurement was performed using a buffer containing 0.01mM FAD, but the present inventors added a high concentration flavin adenine dinucleotide solution of 0.11 or more to the electrode. It was discovered that the lifetime of the enzymatic activity of pyruvate oxidase can be stabilized by bringing it into contact with the immobilized pyruvate oxidase, and the present invention has been completed.

すなわち本発明は、固定化ピルビン酸オキシダーゼを用
いたピルビン酸測定装置において、0.1〜50mMの
フラビンアデニンジヌクレオチド溶液を該固定化ピルビ
ン酸オキシダーゼと接触せしめる機構を備えたことを特
徴とする。
That is, the present invention is a pyruvate measuring device using immobilized pyruvate oxidase, which is characterized by having a mechanism for bringing a 0.1 to 50 mM flavin adenine dinucleotide solution into contact with the immobilized pyruvate oxidase.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明にかかるピルビン酸測定装置は、従来から用いら
れているピルビン酸測定装置に新たに上記した機構を備
え付けたものであって、該機構以外の構造は全て従来と
同一でよい。
The pyruvic acid measuring device according to the present invention is a conventionally used pyruvic acid measuring device newly equipped with the above-described mechanism, and the structure other than this mechanism may be the same as the conventional one.

本発明において用いられる固定化ピルビン酸オキシダー
ゼとは、ピルビン酸オキシダーゼ(pop)を、該酵素
を保持し得る担体に固定化したものをいう。固定化担体
は、ピルビン酸オキシダーゼを固定化することができる
ものであれば、いかなるものであってもよい。その具体
例としては、例えばコラーゲン、ポリアクリルアミド、
カラギナン、アガロースゲル、多孔性ガラスピーズ、ア
ルブミン等が挙げられる。通常、ピルビン酸オキシダー
ゼは、0.01〜30重量%の範囲内で担体に固定化さ
れる。なお、ピルビン酸オキシダーゼを担体に固定化す
る方法については格別限定されない。
The immobilized pyruvate oxidase used in the present invention refers to pyruvate oxidase (POP) immobilized on a carrier capable of holding the enzyme. The immobilization carrier may be any carrier as long as it can immobilize pyruvate oxidase. Specific examples include collagen, polyacrylamide,
Examples include carrageenan, agarose gel, porous glass beads, albumin, and the like. Usually, pyruvate oxidase is immobilized on a carrier in a range of 0.01 to 30% by weight. Note that the method for immobilizing pyruvate oxidase on a carrier is not particularly limited.

しかしながら、固定化ピルビン酸オキシダーゼをピルビ
ン酸測定装置のフローシステムに組込む場合には、膜状
、粒状、ゲル状の担体に包括法あるいは共有結合法によ
り固定化することが好ましく、更に電極表面に装着する
場合には、コラーゲン等の繊維性タンパク質を担体とし
て酵素膜を作成する包括法を適用することが好ましい。
However, when incorporating immobilized pyruvate oxidase into the flow system of a pyruvate measurement device, it is preferable to immobilize it on a membrane, granular, or gel-like carrier by an entrapment method or a covalent bonding method, and further attach it to the electrode surface. In this case, it is preferable to apply a comprehensive method in which an enzyme membrane is created using a fibrous protein such as collagen as a carrier.

次に、フラビンアデニンジヌクレオチド溶液を固定化ピ
ルビン酸オキシダーゼと接触せしめる機構について説明
するが、本発明においては該溶液を供給し得るものであ
ればいかなる機構であってもよい。該機構の一例を第1
図に示した。図は改良された電極部の概略図であって、
1はフローセル、2は限外濾過膜、3は緩衝液層、4は
0−リング、5は酸素又は過酸化水素透過性膜、8はP
OP固定化膜、7は白金陰極、8は鉛陽極、9は配管、
10は小内径配管である。該図に示した機構は、フラビ
ンアデニンジヌクレオチド(FAD)溶液′とピルビン
酸オキシダーゼとの接触を測定時に行うための機構であ
るが、これらの接触を非測定時又は洗浄液の使用により
行う場合には、小内径配’1210を具備していないこ
と以外は上記と同様の機構を有する電極部を用いればよ
い。なお、電極としては、通常、ピルビン酸の酵素分解
過程における溶存酸素の減少量を測定する酸素電極(酸
素透過性膜5使用)を用いるか、又は該過程で生成する
過酸化水素量を測定する過酸化水素量極(過酸化水素透
過性膜5使用)を用いる。
Next, a mechanism for bringing the flavin adenine dinucleotide solution into contact with immobilized pyruvate oxidase will be explained, but in the present invention, any mechanism that can supply the solution may be used. An example of this mechanism is shown in the first example.
Shown in the figure. The figure is a schematic diagram of an improved electrode section,
1 is a flow cell, 2 is an ultrafiltration membrane, 3 is a buffer layer, 4 is an O-ring, 5 is an oxygen or hydrogen peroxide permeable membrane, 8 is P
OP immobilization membrane, 7 platinum cathode, 8 lead anode, 9 piping,
10 is a small inner diameter pipe. The mechanism shown in the figure is a mechanism for bringing the flavin adenine dinucleotide (FAD) solution' and pyruvate oxidase into contact during measurement. An electrode section having the same mechanism as above except that it does not include the small inner diameter section 1210 may be used. As the electrode, an oxygen electrode (using an oxygen permeable membrane 5) is usually used to measure the amount of reduction in dissolved oxygen during the enzymatic decomposition process of pyruvic acid, or an oxygen electrode is used to measure the amount of hydrogen peroxide generated in this process. A hydrogen peroxide quantity electrode (using a hydrogen peroxide permeable membrane 5) is used.

本発明において、上記機構を用いてピルビン酸オキシダ
ーゼの酵素活性を安定化するための方法としては、ピル
ビン酸測定後 (非測定時)に、FAD溶液を固定化ピ
ルビン酸オキシダーゼと接触1せしめる方法が挙げられ
る。この場合には、通常、ピルビン酸測定が終了し、配
管内を洗浄した後、FAII溶液を配管内に充填し室温
でこの状態のまま一夜保存する方法が挙げられる。また
、他の方法として、−回の測定が終了する毎に、FAD
含有洗浄液を用いて配管内を洗浄し、更に一日の測定が
終了する毎に該洗浄液を配曽内に充填し室温でこの状態
まま一夜保存する方法が挙げられる。
In the present invention, a method for stabilizing the enzymatic activity of pyruvate oxidase using the above mechanism is a method of bringing the FAD solution into contact with immobilized pyruvate oxidase after measuring pyruvate (when not measuring). Can be mentioned. In this case, the usual method is to fill the pipe with the FAII solution after the pyruvic acid measurement is completed and to clean the pipe, and to store the pipe in this state overnight at room temperature. In addition, as another method, the FAD
An example of a method is to clean the inside of the pipe using a cleaning liquid containing the liquid, and then fill the inside of the pipe with the cleaning liquid each time a day's measurement is completed, and store the liquid in this state overnight at room temperature.

更に他の方法として、ピルビン酸の測定を行っている最
中に、10−9〜10−6mol/minの速度でFA
D溶液を配管内に供給する方法が挙げられる。この場合
には測定系内の洗浄とpop活性の低下防止とを同時に
行うことができるという利点がある。以上の測定法にお
いては、0.1〜50mMのFAD溶液又はFAD含有
洗浄液を用いることが必要である。これらめ溶液と固定
化ピルビン酸オキシダーゼとの接触時間は、長くなる程
好ましい結果が得られ、接触処理を一回のみで終らせる
のではなく、連日接触処理を行うことが望ましい。なお
、上記した方法は単独で又は組合せて行われる。ちなみ
に、従来の0.01mM程度の低濃度FAD含有緩衝液
を使用しただけでは、FADは透過膜5を十分に拡散で
きずに測定系外に排出されてしまうため、本発明効果を
奏し得ない。
Still another method is to add FA at a rate of 10-9 to 10-6 mol/min while measuring pyruvate.
An example of this method is to supply solution D into the pipe. In this case, there is an advantage that the measurement system can be cleaned and the POP activity can be prevented from decreasing at the same time. In the above measurement method, it is necessary to use a 0.1 to 50 mM FAD solution or a washing solution containing FAD. The longer the contact time between these solutions and the immobilized pyruvate oxidase, the better the results will be obtained, and it is desirable to carry out the contact treatment for consecutive days rather than completing the contact treatment only once. Note that the above methods may be performed alone or in combination. Incidentally, if only the conventional buffer solution containing FAD at a low concentration of about 0.01 mM is used, FAD will not be able to sufficiently diffuse through the permeable membrane 5 and will be discharged outside the measurement system, so the effect of the present invention will not be achieved. .

次に、ピルビン酸測定装置の具体例を示し、該装置の使
用方法を説明する。非測定時にFAD溶液を固定化ピル
ビン酸オキシダーゼと接触せしめることにより該ピルビ
ン酸オキシダーゼの酵素活性を安定化せしめた本発明ピ
ルビン酸測定装置の一例を第2図にブロック図で示した
。図中、11は緩衝液又は基質溶液の貯液槽、12は濃
厚FAD溶液の貯液槽、13は自動溶媒切換器、14は
試料注入口、15は電極部、16は定流量ポンプ、17
は自動三方バルブ、+8a及び18bは配管、18は排
液槽、20は記録計、21はコントローラー、22はス
ターラー、23は攪拌子である。
Next, a specific example of the pyruvic acid measuring device will be shown and a method of using the device will be explained. An example of the pyruvate measuring device of the present invention, in which the enzymatic activity of pyruvate oxidase is stabilized by bringing the FAD solution into contact with immobilized pyruvate oxidase during non-measurement periods, is shown in a block diagram in FIG. In the figure, 11 is a storage tank for buffer solution or substrate solution, 12 is a storage tank for concentrated FAD solution, 13 is an automatic solvent changer, 14 is a sample injection port, 15 is an electrode part, 16 is a constant flow pump, 17
is an automatic three-way valve, +8a and 18b are piping, 18 is a drain tank, 20 is a recorder, 21 is a controller, 22 is a stirrer, and 23 is an agitator.

該測定装置においては、通常次のようにして測定が行わ
れる。まず、21のコントローラーから測定指令が出さ
れて(実際の操作では、コントローラー21の表示パネ
ル上の測定開始スイ・ンチを押すだけである)自動溶媒
切換器13においてB又はFのバルブとAとが接続され
、自動三方ノくルブ17が配管18aに接続された後、
定流量ポンプ16が作動して測定系内に緩衝液が満たさ
れる。完全に満たされるとコントローラー21の表示パ
ネル上にRUNの表示が点灯する。緩衝液は、測定時に
常時一定の流量で流れている。この状態で試料注入口1
4より適当量の試料液を注入(図中、矢印は注入方向を
示す)すると、電極部15により試料中のピルビン酸が
検知され、その信号は記録計20に送られて記録される
。通常、試料注入から記録計における記録まで約5分間
で終了する(流速:0.B+++l/minの場合)。
In this measuring device, measurements are normally performed as follows. First, a measurement command is issued from the controller 21 (in actual operation, simply press the measurement start switch on the display panel of the controller 21), and the automatic solvent changer 13 connects the B or F valve and A. is connected and the automatic three-way knob 17 is connected to the pipe 18a,
The constant flow pump 16 is operated to fill the measurement system with the buffer solution. When it is completely filled, the RUN display lights up on the display panel of the controller 21. The buffer solution is constantly flowing at a constant flow rate during measurement. In this state, sample injection port 1
When an appropriate amount of sample liquid is injected from No. 4 (in the figure, the arrow indicates the injection direction), pyruvic acid in the sample is detected by the electrode section 15, and the signal is sent to the recorder 20 and recorded. Usually, it takes about 5 minutes from sample injection to recording on the recorder (when the flow rate is 0.B+++l/min).

なお、検出又は定量の終了した排液は配管18aを経て
排液槽18に貯蔵される。
Note that the waste liquid that has been detected or quantified is stored in the waste liquid tank 18 via the pipe 18a.

次に、測定が終了した後は、コントローラー21の表示
パネル上の測定終了スイッチを押すと、コントローラー
21から指令が出て、自動溶媒切換器13のC,E、G
又はIのいずれかのバルブがAと接続され、系内に充填
されていた緩衝液及び試料液が全て排出される。一定吟
間後(緩衝液が完全に排出されるのに要する時間)、自
動溶媒切換器13のバルブがD又はHに切換えられ、そ
れと同時に自動三方バルブ17も切換えられて、該バル
ブ17は配管+8bに接続される。以上の操作により、
測定系内に濃厚FAD溶液が満たされ、電極部15の酵
素膜の失活が防止される。
Next, after the measurement is completed, press the measurement end switch on the display panel of the controller 21, and the controller 21 will issue a command to change the C, E, and G of the automatic solvent changer 13.
Either valve I or I is connected to A, and the buffer solution and sample solution filled in the system are all discharged. After a certain period of time (the time required for the buffer solution to be completely drained), the valve of the automatic solvent changer 13 is switched to D or H, and at the same time, the automatic three-way valve 17 is also switched, and the valve 17 is connected to the pipe. Connected to +8b. By the above operations,
The measurement system is filled with a concentrated FAD solution, and the enzyme membrane of the electrode section 15 is prevented from being deactivated.

測定後の洗浄液中にFADを含有せしめることにより固
定化ピルビン酸オキシダーゼの酵素活性を安定化せしめ
た本発明ピルビン酸測定装置の一例を第3図にブロック
図で示した。図中、12aは濃厚FAD含有洗浄液の貯
液槽であるが、その他の構成は第2図に示した装置とほ
ぼ同様である。
FIG. 3 shows a block diagram of an example of the pyruvate measuring device of the present invention, in which the enzymatic activity of immobilized pyruvate oxidase is stabilized by containing FAD in the washing solution after measurement. In the figure, 12a is a liquid storage tank for a concentrated FAD-containing cleaning liquid, but the other configurations are almost the same as the apparatus shown in FIG.

該測定装置においては、通常次のようにして測定が行わ
れる。測定が終了し、系内に充填、されていた緩衝液及
び試料液が排出された後に自動溶媒切換器13のバルブ
をD又はHに切換え、しかる後貯液槽12a内のFAD
含有洗浄液を測定装置内に流すaとにより酵素膜の失活
を防止することができる。
In this measuring device, measurements are normally performed as follows. After the measurement is completed and the buffer solution and sample solution filled in the system are discharged, the valve of the automatic solvent changer 13 is switched to D or H, and then the FAD in the liquid storage tank 12a is
Deactivation of the enzyme membrane can be prevented by flowing the containing cleaning liquid into the measuring device.

測定時に、FAD含有洗浄液を固定化ピルビン酸オキシ
ダーゼと接触せしめることにより該ピルビン酸オキシダ
ーゼの酵素活性を安定化せしめた本発明ピルビン酸測定
装置の一例を第4図にプロ・ンク図で示した。図中、1
2は濃厚FA口溶液の貯液層、24は微量送液ポンプ、
10は小内径配管であるが、その他の構成は第2図に示
した装置とほぼ同様である。
An example of the pyruvate measuring device of the present invention, in which the enzymatic activity of pyruvate oxidase is stabilized by bringing the FAD-containing washing solution into contact with the immobilized pyruvate oxidase during measurement, is shown in a pro-nk diagram in FIG. In the figure, 1
2 is a storage layer for concentrated FA oral solution, 24 is a micro-liquid pump,
10 is a small inner diameter pipe, but the other configuration is almost the same as the device shown in FIG.

該測定装置においては、通常次のようにして測定が行わ
れる。定流量ポンプ16が作動して測定系内に緩衝液及
び濃厚FAD溶液が常時一定の流量で流れ始めた後、試
料注入口14より適当量の試料液を注入すると、電極部
15により試料中のピルビン酸が検知される。
In this measuring device, measurements are normally performed as follows. After the constant flow pump 16 is activated and the buffer solution and concentrated FAD solution begin to flow into the measurement system at a constant flow rate, when an appropriate amount of sample solution is injected from the sample injection port 14, the electrode section 15 Pyruvate is detected.

[発明の効果] 本発明によれば、固定化ピルビン酸オキシダーゼの酵素
活性を安定化することができるため、長寿命で、かつ安
定なピルビン酸測定装置を提供することが可能となる。
[Effects of the Invention] According to the present invention, the enzymatic activity of immobilized pyruvate oxidase can be stabilized, so it is possible to provide a long-life and stable pyruvate measuring device.

また、ピルビン酸測定にあたって、測定値の再現性も著
しく向上する。
Furthermore, in measuring pyruvic acid, the reproducibility of measured values is also significantly improved.

[発明の実施例] 実施例1 以下に示した装置、試薬を用いて、非測定時に固定化ピ
ルビン酸オキシダーゼをFAD溶液と接触させた。
[Examples of the Invention] Example 1 Using the apparatus and reagents shown below, immobilized pyruvate oxidase was brought into contact with an FAD solution during non-measurement.

A)装置(第2図参照) 1)自動溶媒切換器:ガスクロ工業(株)製、モデル5
V−5008A 2)自動三方バルブ:ガスクロ工業(株)製、モデルM
PV−3A 3)コントローラー二東京芝浦電気(株)製、(マイク
ロコンピュータ−搭載) B)試薬 ピルビン酸オキシダーゼは東洋醸造(株)製のものを使
用した。チアミンピロリン酸及びFADは東京化成(株
)製のものを使用した。その他の試薬は市販品(特級)
を精製せずにそのまま使用した。また、コラーゲンは牛
皮より調製し、凍結保存したものを使用時に解凍して使
用した。なお、全操作を通じてイオン交検水を使用した
A) Equipment (see Figure 2) 1) Automatic solvent changer: Model 5 manufactured by Gascro Kogyo Co., Ltd.
V-5008A 2) Automatic three-way valve: Manufactured by Gascro Industries Co., Ltd., model M
PV-3A 3) Controller 2 manufactured by Tokyo Shibaura Electric Co., Ltd. (equipped with a microcomputer) B) Reagent Pyruvate oxidase manufactured by Toyo Jozo Co., Ltd. was used. Thiamine pyrophosphoric acid and FAD manufactured by Tokyo Kasei Co., Ltd. were used. Other reagents are commercially available (special grade)
was used as is without purification. In addition, collagen was prepared from cowhide, stored frozen, and thawed before use. Note that ion exchange water was used throughout the entire operation.

C)W樹液、POP固定化コラーゲン膜、電極部及び試
料溶液の調製 緩衝液としては、0.05M リン酸塩緩衝液(pH7
,5)の中に、0.01mN FAD、0.04!11
mM塩化”F7ガン及びO,1mMチアミンピロリン酸
を含有せしめたものを使用した。
C) The preparation buffer for W sap, POP-immobilized collagen membrane, electrode part, and sample solution was 0.05M phosphate buffer (pH 7).
, 5), 0.01mN FAD, 0.04!11
A solution containing 1 mM thiamine pyrophosphate and 1 mM thiamine pyrophosphate was used.

POP固定化コラーゲン膜を次のようにして調製した。A POP-immobilized collagen membrane was prepared as follows.

0.6%コラーゲン懸濁液 (pH4,0) Logを
よく攪拌した後、POP(21units/mg) 1
00mgを混合X 5cm)  上に 展開し、28°
Cで3時間風乾した。
After stirring 0.6% collagen suspension (pH 4,0) Log well, POP (21 units/mg) 1
Mix 00mg x 5cm) and spread on 28°
It was air-dried at C for 3 hours.

次いで、テフロン板から剥離した膜を 1cmX 1c
mに裁断し、これを0.1%グルタルアルデヒド水溶液
(p)18.0)を用いて気相中28℃で10分間架橋
処理することによりPOP固定化コラーゲン膜を調製し
た。
Next, the film peeled off from the Teflon plate was placed in a 1cm x 1c
A POP-immobilized collagen membrane was prepared by cutting the membrane into pieces of 0.1% glutaraldehyde aqueous solution (p 18.0) and crosslinking it in the gas phase at 28°C for 10 minutes.

電極部は過酸化水素透過性膜で白金電極を被覆してなる
ポーラログラフ式過酸化水素電極の感応面を、POP固
定化コラーゲン膜(厚み:約80km、酵素活性:約!
00 TU/ C11’) テ被覆し、更にその上をセ
ルロースアセテート製限外濾過膜(厚み:約48 g 
m)の粗密層で被覆したものを使用した。この電極部を
プラスチック製の70−セルに装着し、これを測定シス
テムに組込んだ。
The electrode part is a polarographic hydrogen peroxide electrode consisting of a platinum electrode covered with a hydrogen peroxide permeable membrane.
00 TU/C11') and then a cellulose acetate ultrafiltration membrane (thickness: approx. 48 g)
The material coated with the coarse and dense layer of m) was used. This electrode part was attached to a plastic 70-cell, and this was incorporated into a measurement system.

試料溶液としては、上記緩衝液に0.5mMピルビン酸
ナトリウムを添加したものを用いた。
The sample solution used was the above buffer solution to which 0.5 mM sodium pyruvate was added.

D)操作 コントローラーの表示パネル上の測定開始スイッチを入
れて系内に緩衝液を満たした後、シリンジポンプのスイ
ッチを入れて200Jj−1の試料溶液を注入した。測
定時の反応温度は37°0、流速は0.6ml/l1l
inであった。次いで、反応により生成した過酸化水素
を電極部で検出し、その値を記録計で記録した。測定は
一日約30回行った。測定終了後はコントローラーの表
示パネル上の測定終了スイッチを入れて系内の緩衝液を
排出してから1mM FAD溶液を充填し、室温でこの
状態のまま一夜保存した。翌日は、コントローラーの測
定開始スイッチを入れて系内のFAD溶液を貯液槽に回
収した後、再び系内に緩衝液を流下せしめて上記と同様
の操作を行った。
D) Operation After turning on the measurement start switch on the display panel of the controller and filling the system with buffer, the syringe pump was turned on and 200 Jj-1 sample solution was injected. The reaction temperature during measurement was 37°0, and the flow rate was 0.6ml/l1l.
It was in. Next, hydrogen peroxide produced by the reaction was detected with the electrode section, and the value was recorded with a recorder. Measurements were performed approximately 30 times a day. After the measurement was completed, the measurement end switch on the display panel of the controller was turned on, the buffer solution in the system was discharged, and 1 mM FAD solution was filled, and the system was stored overnight in this state at room temperature. The next day, after turning on the measurement start switch on the controller and collecting the FAD solution in the system into the storage tank, the buffer solution was allowed to flow into the system again and the same operation as above was performed.

以上の操作を5日間繰返し行った。得られた電極応答値
の結果を第5図のAに示した。図から明らかなように応
答値の減少は殆ど認められなかった。また、−日の応答
値の偏差も5%以内であった。なお、図示しなかったが
、以上の測定を1ケ月間行ったところ、1ケ月後の電極
応答値は初期応答値の約80%であった。
The above operation was repeated for 5 days. The obtained electrode response values are shown in A of FIG. As is clear from the figure, almost no decrease in response value was observed. Furthermore, the deviation of the response values on day - was also within 5%. Although not shown, when the above measurements were carried out for one month, the electrode response value after one month was about 80% of the initial response value.

実施例2 0.1mMのFAD溶液を用いたこと以外は、実施例1
と同様にして測定を行った。1週間後の電極応答値は初
期応答値の約90%であった。
Example 2 Example 1 except that a 0.1 mM FAD solution was used.
Measurements were carried out in the same manner. The electrode response value after one week was approximately 90% of the initial response value.

実施例3 グルタミン酸オキザロ酢酸トランスアミナーゼ(GOT
)は、α−ケトグルタル酸をオキザロ酢酸に変換し、オ
キザロ酢酸デカルボキシラーゼ(OAC)はこのオキザ
ロ酢酸を分解してピルビン酸とする。そこで、OAGを
アミノアルキル多孔性ガラスピーズに固定化し、これを
ガラス製カラム(直径3+Ila+ 、長さ5Qn+m
)に充填して、OAC固定化カラムを調製した。このカ
ラムを第2図に示した装置の試料注入口と電極、部の間
に挿入してGOTの酵素活性を繰返し測定した。
Example 3 Glutamate oxaloacetate transaminase (GOT
) converts α-ketoglutarate to oxaloacetate, and oxaloacetate decarboxylase (OAC) decomposes this oxaloacetate to pyruvate. Therefore, OAG was immobilized on aminoalkyl porous glass beads, and this was attached to a glass column (diameter 3+Ila+, length 5Qn+m).
) to prepare an OAC-immobilized column. This column was inserted between the sample injection port and the electrode section of the apparatus shown in FIG. 2, and the enzyme activity of GOT was repeatedly measured.

なお、本実施例では、緩衝液の代りに、0.05Mリン
酸塩緩衝液(pH7,5)の中に0−01mM FA−
D、Q、(145a+M塩化マフガン、0 、1mMチ
アミンピロリン酸、2.1mM a−ケトグルタル酩及
び30mM L−アラニンを含有させた基質溶液を用い
、これを貯液槽に貯留させた。
In this example, 0-01mM FA-
A substrate solution containing D, Q, (145a+M chloride mafgan, 0, 1mM thiamine pyrophosphate, 2.1mM a-ketoglutarine, and 30mM L-alanine) was used and was stored in a storage tank.

また、試料溶液としては、上記基質溶液に、10.50
 、100 、並びに500units/LのGOT 
、 0.8%NaCl及び1%アルブミンを含有させた
ものを用いた。
In addition, as a sample solution, add 10.50% to the above substrate solution.
, 100, and 500 units/L GOT
, containing 0.8% NaCl and 1% albumin was used.

実施例1と同様にしてGOT活性を1ケ月間測定したと
ころ、1ケ月後の電極応答値は初期応答値の約80%で
あった。また、−日の応答値の偏差も5%以内であった
When GOT activity was measured for one month in the same manner as in Example 1, the electrode response value after one month was about 80% of the initial response value. Furthermore, the deviation of the response values on day - was also within 5%.

比較例I FAD溶液の代りに、実施例1で用いられた0、011
のFADを含有する緩衝液を非測定時に系内(ご充填し
たこと以外は、実施例1と同様に測定を行った。測定結
果を第5図中、Bで示した。図から明らかなように、測
定開始後、3日目から徐々に電極応答値が減少し、5日
後には初期応答値の約30%の値しか示さなかった。
Comparative Example I Instead of FAD solution, 0,011 used in Example 1
Measurements were carried out in the same manner as in Example 1, except that a buffer solution containing FAD of Moreover, the electrode response value gradually decreased from the 3rd day after the start of the measurement, and after 5 days, the electrode response value showed only about 30% of the initial response value.

比較例2 0.05mM FAD溶液を非測定時に系内に充填した
こと以外は、実施例1と同様に測定を行ったところ、比
較例1と同様の結果が得られた。
Comparative Example 2 The same results as in Comparative Example 1 were obtained when measurements were carried out in the same manner as in Example 1, except that the 0.05 mM FAD solution was filled into the system during non-measurement periods.

実施例4 以下に示した装置、試薬を用いて、FAD含有洗浄液を
固定化ピルビン酸オキシダーゼと測定後に接触させた。
Example 4 Using the apparatus and reagents shown below, an FAD-containing washing solution was brought into contact with immobilized pyruvate oxidase after measurement.

A)装置(第3図参照) 1)自動溶媒切換器:ガスクロ工業(株)製、モデル5
V−5008A 2)定流量ポンプ:フル工科学(株)製、ローラーポン
プ 3)コントローラー、サンプルインジェクター二自家製 B)試薬 実施例1と同様のものを使用した。
A) Apparatus (see Figure 3) 1) Automatic solvent changer: Model 5 manufactured by Gascro Kogyo Co., Ltd.
V-5008A 2) Constant flow pump: Roller pump manufactured by Full Engineering Co., Ltd. 3) Controller, sample injector 2 homemade B) Reagent The same one as in Example 1 was used.

C)緩衝液、POP固定化コラーゲン膜、電極部及び試
料溶液の調製 緩衝液及びPOP固定化コラーゲン膜としては、実施例
1と同様のものを使用した。電極部としては、過酸化水
素透過性膜の代りに酸素透過性膜を用いたこと以外は、
実施例1と同様のものを使用した。また、試料溶液とし
ては、0.5mMのピルビン酪ナトリウムを添加した全
車及びGPTを適当量添加した全血を使用した。
C) Preparation of buffer solution, POP-immobilized collagen membrane, electrode section, and sample solution The same buffer solution and POP-immobilized collagen membrane as in Example 1 were used. Except that an oxygen permeable membrane was used instead of a hydrogen peroxide permeable membrane for the electrode part.
The same material as in Example 1 was used. In addition, as sample solutions, whole car supplemented with 0.5 mM sodium pyruvinbutyrate and whole blood supplemented with an appropriate amount of GPT were used.

D)操作 酵素反応の結果減少する溶存酸素量を測定して酵素活性
を測定したこと以外は、実施例1と同様に操作した。な
お、測定が終了する度毎に、0 、5+oMのFAD含
有洗浄液(0,01%トリトン溶液)で系内を洗浄し、
次いで配管内に緩衝液を流下せしめて、次の測定を行っ
た。また1日の測定が終了した後は、洗浄液を系内に充
填しておき、室温でこの状態のまま一夜保存した。
D) Operation The same procedure as in Example 1 was performed except that the enzyme activity was measured by measuring the amount of dissolved oxygen that decreased as a result of the enzymatic reaction. In addition, each time a measurement is completed, the inside of the system is cleaned with a cleaning solution containing 0.5+oM FAD (0.01% Triton solution).
Next, a buffer solution was allowed to flow down into the pipe, and the following measurements were performed. Further, after one day's measurement was completed, the system was filled with a cleaning solution and stored in this state overnight at room temperature.

以上の操作を5日間繰返し行った。得られた電極応答値
の結果を第6図中、Aで示した。図から明らかなように
応答値の減少は殆ど認められなかった。また、−日の応
答値の偏差も5%以内であった。なお、以上の測定を1
ケ月間行ったところ、1ケ月後の電極応答値は初期応答
値の約90%であった。
The above operation was repeated for 5 days. The obtained electrode response values are shown as A in FIG. As is clear from the figure, almost no decrease in response value was observed. Furthermore, the deviation of the response values on day - was also within 5%. In addition, the above measurements were performed at 1
The electrode response value after one month was approximately 90% of the initial response value.

実施例5 0.1mMのFAD洗浄液を用いたこと以外は、実施例
4と同様にして測定を行った。5日間測定後の電極応答
値は初期応答値の約80%であった。
Example 5 Measurements were carried out in the same manner as in Example 4, except that 0.1 mM FAD washing solution was used. The electrode response value after 5 days of measurement was approximately 80% of the initial response value.

実施例6 アラニンケトグルタル酸アミノトランスフェラーゼ(G
PT)はL−アラニンをピルビン酸に変換する酵素であ
る。そこで1本実施例では、緩衝液の代りに、0.05
Mリン酸塩緩衝液(pH7,5)中に0.01mM F
AD、0.045mM塩化マンガン、0.1mMチアミ
ンピロリン酸、0−02)l α−ケトグルタル酸及び
0.3 M L−アラニンを含有させた基質溶液を用い
Example 6 Alanine Ketoglutarate Aminotransferase (G
PT) is an enzyme that converts L-alanine to pyruvate. Therefore, in this example, instead of the buffer solution, 0.05
0.01mM F in M phosphate buffer (pH 7,5)
A substrate solution containing AD, 0.045 mM manganese chloride, 0.1 mM thiamine pyrophosphate, 0-02)l α-ketoglutaric acid, and 0.3 M L-alanine was used.

これを貯液槽に貯留させて、全血中のGPT活性を測定
した。
This was stored in a storage tank, and GPT activity in whole blood was measured.

なお、試料溶液としては、上記基質溶液に10.50 
、100.200及び500un i ts/LのGP
Tを含有させた全血を用いた。
In addition, as a sample solution, add 10.50% to the above substrate solution.
, 100.200 and 500un it/L GP
Whole blood containing T was used.

実施例4と同様にしてGPT活性を測定したところ、G
PT活性と電極応答値は上記の範囲内で直線関係にあっ
た。そこで、100units/LのGPTを含有する
全面を用いてIケ月間測定したところ、1ケ月後の電極
応答値は初期応答値の約75%であった。また、−日の
応答値の偏差も5%以内であった。
When GPT activity was measured in the same manner as in Example 4, GPT activity was measured in the same manner as in Example 4.
PT activity and electrode response values had a linear relationship within the above range. Therefore, measurements were carried out for I months using the entire surface containing 100 units/L of GPT, and the electrode response value after one month was about 75% of the initial response value. Furthermore, the deviation of the response values on day - was also within 5%.

比較例3 洗浄液中のFAD濃度を0.0111IMとしたこと以
外は、実施例4と同様に測定を行った。測定結果を第6
図中、Bで示した。図から明らかなように、測定開始後
、3日目から徐々に電極応答値が減少し、5日後には初
期応答値の約25%の値しか示さなかった。
Comparative Example 3 Measurement was performed in the same manner as in Example 4, except that the FAD concentration in the cleaning solution was 0.0111 IM. The measurement results are shown in the 6th
In the figure, it is indicated by B. As is clear from the figure, the electrode response value gradually decreased from the 3rd day after the start of the measurement, and after 5 days, the electrode response value showed only about 25% of the initial response value.

比較例4 洗浄液中のFAD濃度を0.05mMとしたこと以外は
、実施例4と同様に測定を行ったところ、比較例3と同
様の結果が得られ、5日後の電極応答値は初期の約30
%に減少した。
Comparative Example 4 Measurements were carried out in the same manner as in Example 4, except that the FAD concentration in the washing solution was 0.05 mM. The same results as in Comparative Example 3 were obtained, and the electrode response value after 5 days was the same as the initial value. Approximately 30
%.

実施例7 以下に示した装置、試薬を用いて、測定時に固定化ピル
ビン酸オキシダーゼをフラビンアデニンジメクレオチド
溶液と接触させた。
Example 7 Immobilized pyruvate oxidase was brought into contact with a flavin adenine dimecretide solution during measurement using the apparatus and reagents shown below.

A)装置(第4図参照) 微量送液ポンプ:島津製作所(株)製、LC−5AB)
試薬 実施例1と同様のものを使用した。
A) Device (see Figure 4) Micro-liquid pump: Shimadzu Corporation, LC-5AB)
The same reagent as in Example 1 was used.

C)緩衝液、pop固定化コラーゲン膜、電極部及び試
料溶液の調製 緩衝液及びPOP固定化コラーゲン膜としては、実施例
1と同様のものを使用した。電極部とじては、過酸化水
素透過性膜の代りに酸素透過性テフロン膜を用いたこと
以外は、実施例1と同様のものを使用した。また、試料
溶液としては、実施例1と同様のものを使用し、試料注
入口4かもマイクロシリンジで100g1ずつ注入した
C) Preparation of buffer solution, POP-immobilized collagen membrane, electrode section, and sample solution The same buffer solution and POP-immobilized collagen membrane as in Example 1 were used. The electrode part was the same as in Example 1 except that an oxygen permeable Teflon membrane was used instead of the hydrogen peroxide permeable membrane. Further, the same sample solution as in Example 1 was used, and 100 g of each solution was injected into the sample injection port 4 using a microsyringe.

D)操作 まず、定流量ポンプ(流速: 0.8ml/m1n)及
び微量送液ポンプ(流速: 107z I/win)を
始動し、系内に緩衝液及びImM FAD水溶液を注入
した。電極部の応答が安定したことを記録計上で確認し
た後、試料注入口から上記試料溶液 1007Ll を
注入した。1日の測定が終了した後は、各装置を停止し
、室温でこの状態のまま一夜保存した。
D) Operation First, the constant flow pump (flow rate: 0.8 ml/ml) and the micro-liquid pump (flow rate: 107z I/win) were started, and the buffer solution and ImM FAD aqueous solution were injected into the system. After confirming on the recorder that the response of the electrode part was stable, 1007Ll of the above sample solution was injected from the sample injection port. After one day's measurements were completed, each device was stopped and stored overnight in this state at room temperature.

10に30回以上測定し、以」二の操作を7日間繰返し
行った。得られた電極応答値の結果を第7図中、Aで示
した。図から明らかなように応答値の減少は殆ど認めら
れなかった。また、−日の応答値の偏差も5%以内であ
った。なお、以上の測定を1ケ月間行ったところ、1ケ
月後の電極応答値は初期応答値の約90%であった。
The measurement was carried out at least 30 times in October 2010, and the following two operations were repeated for 7 days. The obtained electrode response values are shown as A in FIG. As is clear from the figure, almost no decrease in response value was observed. Furthermore, the deviation of the response values on day - was also within 5%. The above measurements were carried out for one month, and the electrode response value after one month was about 90% of the initial response value.

ImHのFAD溶液の代りに0.]mMのFAII溶液
(流速+ 10  mol/m1n)を用いたこと以外
は、実施例7と同様にして測定を行った。5目間繰返し
測定を行ったところ、電極応答値は初期の約80%であ
った。また、−日の応答値の偏差も10%以内であった
0.0 in place of ImH FAD solution. ]mM FAII solution (flow rate + 10 mol/ml) was used, but the measurement was carried out in the same manner as in Example 7. When measurements were repeated for 5 times, the electrode response value was about 80% of the initial value. Furthermore, the deviation of the response values on day - was also within 10%.

実施例9 実施例3と同様に、OACをアミノアルキル多孔性カラ
スビーズに固定化し、これをカラス製カラム(直径3m
m、長さ50mm)に充填して、OAC固定化カラムを
調製した。この方ラムを第4図に示した装置の試料注入
口と電極部の間に挿入してGOTの酵素活性を繰返し測
定した。
Example 9 In the same manner as in Example 3, OAC was immobilized on aminoalkyl porous glass beads, and this was applied to a glass column (diameter 3 m).
m, length 50 mm) to prepare an OAC-immobilized column. This ram was inserted between the sample injection port and the electrode section of the apparatus shown in FIG. 4, and the enzyme activity of GOT was repeatedly measured.

なお、本実施例では、緩衝液の代りに、 0.05Mリ
ン酸塩緩衝液(pH7,5)中ニ0.01mM FAD
、0.045mM塩化マンガン、0.1mMチアミンピ
ロリン酸、2.1.mMα−ケトグルタル酸及び30m
M L−アラニンを含有させた基質溶液を用い、これを
貯液槽に貯留させた。
In this example, 0.01mM FAD in 0.05M phosphate buffer (pH 7.5) was used instead of the buffer.
, 0.045mM manganese chloride, 0.1mM thiamine pyrophosphate, 2.1. mM α-ketoglutaric acid and 30m
A substrate solution containing M L-alanine was used and stored in a storage tank.

また、試料溶液としては、上記基質溶液に10.50,
100.及び5QOunits/Lc7) coTと、
更に0.8%NaCl及び1%アルブミンを含有させた
ものを用いた。実施例7と同様にしてGOT活性を1ケ
月間測定したところ、1ケ月後の電極応答値は初期応答
値の約75%であった。また、−日の応答値の偏差も8
%以内であった。
In addition, as a sample solution, 10.50,
100. and 5QOunits/Lc7) coT,
Furthermore, a solution containing 0.8% NaCl and 1% albumin was used. When GOT activity was measured for one month in the same manner as in Example 7, the electrode response value after one month was about 75% of the initial response value. Also, the deviation of the response value on -day is 8
It was within %.

比較例5 微量送液ポンプを作動させなかったこと以外は、実施例
7と同様に測定を行った。測定結果を第7図中、Bで示
した9図から明らかなように、測定開始後、3日目から
徐々に電極応答値が減少し、1週間後には初期応答値の
約25%の値しか示さなかった。
Comparative Example 5 Measurement was carried out in the same manner as in Example 7, except that the micro-liquid pump was not operated. As is clear from the measurement results in Figure 9, indicated by B in Figure 7, the electrode response value gradually decreased from the third day after the start of the measurement, and after one week it reached a value of about 25% of the initial response value. only showed.

比較例6 IIIIM FAD溶液の代’J ニ0.05mM F
AD溶液(流速:5 X 1O−10ffiat/+i
n)を用いたこと以外は、実施例7と同様に測定を行っ
たところ、比較例5と同様の結果が得られた。
Comparative Example 6 IIIM FAD Solution 0.05mM F
AD solution (flow rate: 5 x 1O-10ffiat/+i
When measurements were carried out in the same manner as in Example 7 except that n) was used, the same results as in Comparative Example 5 were obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置における電極部の部分断面図、第2
図は非測定時にFAD溶液を固定化POPと接触せしめ
る機構を備えた本発明装置のブロック図、第3図は非測
定時にFAD含有洗浄液を固定化popと接触せしめる
機構を備えた本発明装置のブロック図、第4図は測定時
にFAD溶液を固定化POPと接触せしめる機構を備え
た本発明装置のブロック図、第5〜7図は各々第2〜4
図に示した装置を用いて実施例と比較例との測定を行っ
た場合の測定日数と電極応答値との関係図である。 1・・・フローセル   2・・・限外濾過膜3・・・
緩衝液層    4・・・0−リング5・・・酸素又は
過酸化水素透過性膜 6・・・POP固定化膜  7・・・白金陰極8・・・
鉛陽極     9・・・配管10・・・小内径配管 11・・・緩衝液又は基質溶液の貯液槽12・・・濃厚
FAD溶液の貯液槽 13・・・自動溶媒切換器 14・・・試料注入口15
・・・電極部     16・・・定流量ポンプ17・
・・自動三方パルプ 18a及び18b・・・配管 18・・・排液槽20・
・・記録計     21・・・コントローラー22・
・・スターテ−23・・・攪拌子24・・・微量送液ボ
ンブ
Fig. 1 is a partial sectional view of the electrode section in the device of the present invention, Fig.
The figure is a block diagram of the apparatus of the present invention, which is equipped with a mechanism for bringing an FAD solution into contact with immobilized POP during non-measurement periods, and FIG. A block diagram, FIG. 4 is a block diagram of an apparatus of the present invention equipped with a mechanism for bringing the FAD solution into contact with immobilized POP during measurement, and FIGS.
FIG. 3 is a diagram showing the relationship between the number of days of measurement and the electrode response value when measurements were taken in Examples and Comparative Examples using the apparatus shown in the figure. 1...Flow cell 2...Ultrafiltration membrane 3...
Buffer layer 4...0-ring 5...Oxygen or hydrogen peroxide permeable membrane 6...POP immobilization membrane 7...Platinum cathode 8...
Lead anode 9...Piping 10...Small inner diameter piping 11...Buffer solution or substrate solution storage tank 12...Concentrated FAD solution storage tank 13...Automatic solvent changer 14... Sample injection port 15
...Electrode part 16...Constant flow pump 17.
...Automatic three-way pulp 18a and 18b...Piping 18...Drainage tank 20.
・Recorder 21 ・Controller 22 ・
... Starter 23 ... Stirrer 24 ... Trace amount liquid delivery bomb

Claims (4)

【特許請求の範囲】[Claims] (1)固定化ピルビン酸オキシダーゼを用いたピルビン
酸測定装置において、 0.1〜50a+Hのフラビンアデニンジヌクレオチド
溶液を該固定化ピルビン酸オキシダーゼと接触せしめる
機構を備えたことを特徴とするピルビン酸測定装置。
(1) A pyruvate measuring device using immobilized pyruvate oxidase, characterized in that it is equipped with a mechanism for bringing a flavin adenine dinucleotide solution of 0.1 to 50a+H into contact with the immobilized pyruvate oxidase. Device.
(2)非測定時にフラビンアデニンジヌクレオチド溶液
を固定化ピルビン酸オキシダーゼと接触せしめる機構を
備えた特許請求の範囲第1項記載のピルビン酸測定装置
(2) The pyruvate measuring device according to claim 1, comprising a mechanism for bringing the flavin adenine dinucleotide solution into contact with the immobilized pyruvate oxidase during non-measurement.
(3)フラビンアデニンジヌクレオチドを含有した洗浄
液を、測定終了後に固定化ピルビン酸オキシダーゼと接
触せしめる機構を備えた特許請求の範囲第1項記載のピ
ルビン酸測定装置。
(3) The pyruvate measuring device according to claim 1, comprising a mechanism for bringing the washing solution containing flavin adenine dinucleotide into contact with the immobilized pyruvate oxidase after the measurement is completed.
(4)測定時に、10  w 10  mol/sin
の供給速度でフラビンアデニンジヌクレオチド溶液を固
定化ピルビン酸オキシダーゼと接触せしめる機構を備え
た特許請求の範囲第1項記載のピルビン酸測定装置。
(4) At the time of measurement, 10 w 10 mol/sin
2. The pyruvate measuring device according to claim 1, comprising a mechanism for bringing the flavin adenine dinucleotide solution into contact with the immobilized pyruvate oxidase at a supply rate of .
JP58053637A 1983-03-31 1983-03-31 Measuring device for pyruvic acid Granted JPS59180353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58053637A JPS59180353A (en) 1983-03-31 1983-03-31 Measuring device for pyruvic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58053637A JPS59180353A (en) 1983-03-31 1983-03-31 Measuring device for pyruvic acid

Publications (2)

Publication Number Publication Date
JPS59180353A true JPS59180353A (en) 1984-10-13
JPH0248059B2 JPH0248059B2 (en) 1990-10-23

Family

ID=12948414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58053637A Granted JPS59180353A (en) 1983-03-31 1983-03-31 Measuring device for pyruvic acid

Country Status (1)

Country Link
JP (1) JPS59180353A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168355A (en) * 1990-10-31 1992-06-16 Dam Suigenchi Kankyo Seibi Center Phosphoric acid sensor
JP2007003265A (en) * 2005-06-22 2007-01-11 Techno Medica Co Ltd Electrode structure and enzyme sensor including it for measuring phosphoric acid in body fluids

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168355A (en) * 1990-10-31 1992-06-16 Dam Suigenchi Kankyo Seibi Center Phosphoric acid sensor
JP2007003265A (en) * 2005-06-22 2007-01-11 Techno Medica Co Ltd Electrode structure and enzyme sensor including it for measuring phosphoric acid in body fluids
JP4690122B2 (en) * 2005-06-22 2011-06-01 株式会社テクノメディカ Electrode structure and enzyme sensor for measuring phosphate in body fluid containing the same

Also Published As

Publication number Publication date
JPH0248059B2 (en) 1990-10-23

Similar Documents

Publication Publication Date Title
CA1177735A (en) Method of polarographic analysis of lactic acid and lactate
Vadgama Enzyme electrodes as practical biosensors
Blaedel et al. Reagentless enzyme electrodes for ethanol, lactate, and malate
JP2000507457A (en) Enzyme sensor
US4780191A (en) L-glutamine sensor
Clark Jr [41] The hydrogen peroxide sensing platinum anode as an analytical enzyme electrode
Lubrano et al. Glucose and l-amino acid electrodes based on enzyme membranes
US4024042A (en) Enzyme electrode
Bardeletti et al. Amperometric enzyme electrodes for substrate and enzyme activity determinations
CA1109374A (en) Stabilization of activated galactose oxidase enzyme
Kauffmann et al. Enzyme electrode biosensors: theory and applications
Kubo et al. Amperometric determination of creatinine with a biosensor based on immobilized creatininase and nitrifying bacteria
Kihara et al. Determination of glutamate-pyruvate transaminase activity in blood serum with a pyruvate oxidase/poly (vinyl chloride) membrane sensor
GB2265718A (en) Assay system employing enzymes and electrochemical detection
JPS59180353A (en) Measuring device for pyruvic acid
Beh et al. Studies on enzyme electrodes with ferrocene and carbon paste bound with cellulose triacetate
JPH04326054A (en) Glucose sensor
Huang et al. Determination of glutamine in mammalian cell cultures with a flow injection analysis/wall-jet electrode system
JPH1038844A (en) Online biosensor
JP3367162B2 (en) Measuring device and its activation method
JPH0329739Y2 (en)
JP3362509B2 (en) Mannitol measurement method
Budnikov et al. Amperometric sensors based on immobilised enzymes
JPH053797A (en) Measurement of pyruvic acid
JPH0792137A (en) Flow type measuring equipment