JP2007003265A - Electrode structure and enzyme sensor including it for measuring phosphoric acid in body fluids - Google Patents
Electrode structure and enzyme sensor including it for measuring phosphoric acid in body fluids Download PDFInfo
- Publication number
- JP2007003265A JP2007003265A JP2005181717A JP2005181717A JP2007003265A JP 2007003265 A JP2007003265 A JP 2007003265A JP 2005181717 A JP2005181717 A JP 2005181717A JP 2005181717 A JP2005181717 A JP 2005181717A JP 2007003265 A JP2007003265 A JP 2007003265A
- Authority
- JP
- Japan
- Prior art keywords
- enzyme
- electrode
- phosphoric acid
- electrode structure
- hydrogen peroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
本発明は、体液中のリン酸測定用酵素センサー及びそれに含まれる電極構造体に関する。 The present invention relates to an enzyme sensor for measuring phosphate in body fluid and an electrode structure included therein.
リン酸は、生体内で各種のリン酸エステルとして糖質代謝に、また高エネルギーリン酸化合物としてエネルギー代謝に必須の物質である。また、核酸、リン脂質、タンパク質、ヌクレオチドなどの構成分として重要であり、生体にとって必要不可欠な構成要素の一種である。血清中のリン酸は腸管から吸収、骨からの動員、細胞内外の移行、腎からの排泄などの機序によって変動し、臨床診断上有用な測定対象物質である。特に、腎機能に障害のある場合には定期的にモニター、管理の必要な測定項目である。 Phosphoric acid is an essential substance for carbohydrate metabolism in the living body as various phosphate esters and as a high energy phosphate compound for energy metabolism. In addition, it is important as a constituent of nucleic acids, phospholipids, proteins, nucleotides, and the like, and is a kind of constituent element indispensable for a living body. Phosphoric acid in serum varies depending on mechanisms such as absorption from the intestinal tract, mobilization from bone, translocation inside and outside cells, and excretion from the kidney, and is a useful measurement substance for clinical diagnosis. In particular, when renal function is impaired, it is a measurement item that needs to be monitored and managed regularly.
体液中のリン酸の測定方法としては、検体にモリブデン酸塩を加えてモリブデン酸を生成させ、これを還元剤で還元してモリブデン青とし、この青色を光学的に定量する、いわゆる「モリブデン青法」や、リン酸を消費する反応を触媒する、スクロースホスホリラーゼやヌクレオシドホスホリラーゼのようなホスホリラーゼ類やピルビン酸オシキダーゼを用いて、検体中のリン酸を消費する酵素反応を行ない、反応生成物を光学的に定量する、酵素法と総称される方法が用いられている。 As a method for measuring phosphoric acid in body fluids, a molybdate is added to a specimen to produce molybdic acid, which is reduced with a reducing agent to form molybdenum blue, and this blue is optically quantified. Method, and phosphorylases such as sucrose phosphorylase and nucleoside phosphorylase that catalyze the reaction that consumes phosphoric acid and pyruvate oxidase are used to carry out the enzymatic reaction that consumes phosphoric acid in the sample, and the reaction product is optical In general, a method collectively called an enzymatic method is used.
一方、膜に固定化したピルビン酸オキシダーゼによる過酸化水素生成反応を過酸化水素電極を用いて電気的に測定する方法を用いて、河川水中のリン酸を測定するリン酸センサーも知られている(非特許文献1、特許文献1)。 On the other hand, a phosphoric acid sensor that measures phosphoric acid in river water using a method of electrically measuring the hydrogen peroxide production reaction by pyruvate oxidase immobilized on a membrane using a hydrogen peroxide electrode is also known. (Non-patent document 1, Patent document 1).
従来の体液中のリン酸の測定方法は、いずれもリン酸が関与する反応の生成物を光学的に定量する方法である。光学的な定量のためには、光学系を含む装置が必要になるため、装置が複雑化して高価になるのみならず、全血は着色しているため検体として全血を用いることもできない。 Conventional methods for measuring phosphoric acid in body fluids are methods for optically quantifying products of reactions involving phosphoric acid. Since optical quantification requires an apparatus including an optical system, the apparatus becomes complicated and expensive, and whole blood is colored, and thus whole blood cannot be used as a specimen.
本発明の目的は、光学的な定量を必要とせず、体液中のリン酸を簡便に測定することが可能な、体液中のリン酸を測定するための手段を提供することである。 The objective of this invention is providing the means for measuring the phosphoric acid in a bodily fluid which does not require optical fixed_quantity | quantitative_assay and can measure the phosphoric acid in a bodily fluid simply.
体液中のリン酸を電気的に測定することができれば、光学系を必要とせず、測定の自動化も容易である。しかしながら、体液中のリン酸を電気的に測定する方法は全く知られていない。一方、非特許文献1及び特許文献1に記載されているように、ピルビン酸オキシダーゼによる過酸化水素生成反応を過酸化水素電極で測定することにより河川水中のリン酸を測定する方法は知られているが、河川水と血液や尿のような体液とでは、含まれるリン酸濃度の範囲が大きく異なり、また、体液中には過酸化水素電極を用いた測定に影響を与える妨害物質が種々含まれているため、公知のリン酸センサーを用いて体液中のリン酸を測定することは全くできない。 If phosphoric acid in a body fluid can be electrically measured, an optical system is not required, and automation of the measurement is easy. However, there is no known method for electrically measuring phosphoric acid in body fluids. On the other hand, as described in Non-Patent Document 1 and Patent Document 1, a method for measuring phosphoric acid in river water by measuring a hydrogen peroxide generation reaction by pyruvate oxidase with a hydrogen peroxide electrode is known. However, the range of phosphate concentrations contained in river water and body fluids such as blood and urine is greatly different, and body fluids contain various interfering substances that affect the measurement using hydrogen peroxide electrodes. Therefore, it is impossible to measure phosphoric acid in body fluids using a known phosphoric acid sensor.
本願発明者は、鋭意研究の結果、驚くべきことに、ピルビン酸オキシダーゼを固定化した酵素固定化膜の外側に、多孔膜を配置することにより全血中のリン酸が定量可能になることを見出し、本発明を完成した。 As a result of earnest research, the present inventor has surprisingly found that phosphate in whole blood can be quantified by arranging a porous membrane outside the enzyme-immobilized membrane on which pyruvate oxidase is immobilized. The headline and the present invention were completed.
すなわち、本発明は、過酸化水素電極と、該過酸化水素電極を被覆し、リン酸を消費して過酸化水素を生成する反応を触媒する酵素を固定化した酵素固定化膜と、該酵素固定化膜の外側に配置され、該酵素固定化膜を被覆する多孔膜とを具備する、体液中のリン酸濃度測定用酵素センサーの電極構造体を提供する。また、本発明は、電極構造体と、参照電極と、前記過酸化水素電極と前記参照電極の間に電圧を印加する手段と、前記電極構造体及び前記参照電極を収容するセンサー本体と、該センター本体内に収容される、電解質液とを含む、体液中のリン酸濃度測定用酵素センサーを提供する。さらに、本発明は、酵素センサーを使用して、生体から分離した体液中のリン酸濃度を電流変化として検出することにより該リン酸濃度を測定することを含む、体液中のリン酸濃度の測定方法を提供する。 That is, the present invention relates to a hydrogen peroxide electrode, an enzyme-immobilized membrane that covers the hydrogen peroxide electrode and immobilizes an enzyme that catalyzes a reaction that consumes phosphoric acid to generate hydrogen peroxide, and the enzyme Provided is an electrode structure for an enzyme sensor for measuring a phosphoric acid concentration in a body fluid, comprising a porous membrane disposed outside the immobilized membrane and covering the immobilized enzyme membrane. The present invention also provides an electrode structure, a reference electrode, a means for applying a voltage between the hydrogen peroxide electrode and the reference electrode, a sensor body that houses the electrode structure and the reference electrode, Provided is an enzyme sensor for measuring a phosphoric acid concentration in a body fluid, including an electrolyte solution housed in a center body. Furthermore, the present invention provides a measurement of a phosphate concentration in a body fluid, comprising measuring the phosphate concentration in a body fluid separated from a living body by detecting the phosphate concentration as a current change using an enzyme sensor. Provide a method.
本発明の酵素センサーにより、体液中のリン酸を電気的に測定することが初めて可能になった。本発明の酵素センサーによれば、希釈や血球分離等の前処理を行なうことなく全血中のリン酸を測定することが可能であり、また、光学系を必要としないので、測定装置をより単純、安価なものとすることができ、さらに、電気的な値を測定するので、測定の自動化も容易である。 The enzyme sensor of the present invention makes it possible for the first time to electrically measure phosphoric acid in body fluids. According to the enzyme sensor of the present invention, it is possible to measure phosphoric acid in whole blood without performing a pretreatment such as dilution or blood cell separation, and since an optical system is not required, a measuring device can be used. It can be simple and inexpensive, and since the electrical value is measured, the measurement can be easily automated.
本発明の体液中のリン酸濃度測定用酵素センサーは、過酸化水素電極の電極構造体に特徴がある。上記の通り、本発明の電極構造体は、過酸化水素電極と、該過酸化水素電極を被覆し、リン酸を消費して過酸化水素を生成する反応を触媒する酵素を固定化した酵素固定化膜と、該酵素固定化膜の外側に配置され、該酵素固定化膜を被覆する多孔膜とを具備する。この構造の1例を図1に模式的に示す。 The enzyme sensor for measuring a phosphoric acid concentration in a body fluid of the present invention is characterized by an electrode structure of a hydrogen peroxide electrode. As described above, the electrode structure of the present invention includes a hydrogen peroxide electrode and an enzyme immobilization in which the hydrogen peroxide electrode is coated and an enzyme that catalyzes a reaction that consumes phosphoric acid to generate hydrogen peroxide is immobilized. And a porous membrane disposed outside the enzyme-immobilized membrane and covering the enzyme-immobilized membrane. An example of this structure is schematically shown in FIG.
図1に模式的に示す電極構造体10は、ガラス管12の底部を利用して構成されたものであり、ガラス管12の底部を貫通して、例えば白金から成る過酸化水素電極14が配置されている。電極14の先端部14aは、ガラス管12の底部から露出しており、この部分が過酸化水素電極として機能する。過酸化水素電極14の下部は、溶融後、固化したガラス16により固着されている。リン酸を消費して過酸化水素を生成する反応を触媒する酵素を固定化した酵素固定化膜18が過酸化水素電極の先端部14aを被覆している。さらに、多孔膜20が酵素固定化膜18の外側に配置され、該酵素固定化膜18を被覆している。酵素固定化膜18及び多孔膜20は、Oリング22によりガラス管12の底部に固着される。なお、図1は、単純な1例を模式的に示すものであり、要は、過酸化水素電極が、酵素固定化膜及び多孔膜によってこの順序で被覆されていればよい。また、図1は模式図であるので、各部材のサイズの比率も正確に記載しているものではない。
An
過酸化水素電極自体は周知であり、白金がよく用いられているが、他の金属を採用することも可能である。 The hydrogen peroxide electrode itself is well known and platinum is often used, but other metals can also be used.
酵素固定化膜に固定化する酵素は、リン酸を消費して過酸化水素を生成する反応を触媒する酵素であれば特に限定されるものではなく、ピルビン酸オキシダーゼを好ましい例として挙げることができる。酵素固定化膜は、液体を通すが固定化される酵素のような高分子は通さない、多孔性の半透膜であることが好ましい。このような半透膜は、多孔性の高分子膜から構成することができ、高分子膜を構成する高分子の例としては、酢酸セルロース等のセルロース類、塩化ビニル樹脂、ポリビニルアルコール、Azide-unit Pendant Water-soluble Photopolymer (AWP)、ポリカーボネート樹脂、ナイロン、ポリプロピレン、ポリエチレン、テフロン(登録商標)等を挙げることができる。これらの多孔性膜に酵素を固定化する方法自体は周知であり、周知の方法により容易に酵素を半透膜に固定化することができる。下記実施例にも好ましい方法が具体的に記載されている。酵素固定化膜の厚さは、特に限定されないが、通常、1μm〜30μm程度である。 The enzyme to be immobilized on the enzyme-immobilized membrane is not particularly limited as long as it is an enzyme that catalyzes a reaction that consumes phosphoric acid to generate hydrogen peroxide. Pyruvate oxidase can be mentioned as a preferred example. . The enzyme-immobilized membrane is preferably a porous semipermeable membrane that allows liquid to pass through but does not allow a polymer such as an enzyme to be immobilized to pass through. Such a semipermeable membrane can be composed of a porous polymer membrane. Examples of polymers constituting the polymer membrane include celluloses such as cellulose acetate, vinyl chloride resin, polyvinyl alcohol, Azide- Unit Pendant Water-soluble Photopolymer (AWP), polycarbonate resin, nylon, polypropylene, polyethylene, Teflon (registered trademark) and the like can be mentioned. Methods for immobilizing enzymes on these porous membranes are known per se, and enzymes can be easily immobilized on semipermeable membranes by known methods. The preferred methods are also specifically described in the following examples. The thickness of the enzyme-immobilized membrane is not particularly limited, but is usually about 1 μm to 30 μm.
前記酵素固定化膜の外側に配置され、該酵素固定化膜を被覆する多孔膜を構成する材料としては、多孔性の膜を形成することができ、必要な機械的強度を有する材料であれば特に限定されず、ポリカーボネート、セルロース混合エステル、ポリテトラフルオロエチレン、ガラス繊維等を例示することができる。多孔膜の孔径は、血球による目詰まりが起きないように、血球のサイズよりも小さいことが好ましく、また、測定の信頼性向上や測定範囲域の拡大の観点から、孔径(直径)は、0.01μmないし1μmが好ましく、さらに0.1μmないし0.6μmが好ましい。「多孔性」は、スポンジ状のものであってもよいが、測定の信頼性や再現性をより高くする観点から、平膜に円筒状の貫通孔が多数開口したものが好ましい。この場合、貫通孔の密度は、測定の信頼性や再現性をより高くする観点から、107〜109個/cm2程度が好ましく、さらには108〜109個/cm2程度が好ましい。また、多孔膜の厚さは、特に限定されないが、通常、3μmないし50μm程度、好ましくは、5μmないし15μm程度である。なお、ポリカーボネートフィルムに、上記の範囲の孔径を有する円筒状の貫通孔が上記の密度に形成された膜が米国Sterlitech社から「Nuclepore」(登録商標)という商品名で市販されており、本発明における多孔膜としては、この市販のNuclepore(登録商標)を1枚から5枚積層して利用することができる。 As a material constituting the porous membrane that is disposed outside the enzyme-immobilized membrane and covers the enzyme-immobilized membrane, a material that can form a porous membrane and has a required mechanical strength is used. It does not specifically limit, A polycarbonate, cellulose mixed ester, polytetrafluoroethylene, glass fiber etc. can be illustrated. The pore size of the porous membrane is preferably smaller than the size of blood cells so that clogging by blood cells does not occur. From the viewpoint of improving measurement reliability and expanding the measurement range, the pore size (diameter) is 0.01 μm to 1 μm are preferable, and 0.1 μm to 0.6 μm are more preferable. “Porosity” may be in the form of a sponge, but from the viewpoint of increasing the reliability and reproducibility of measurement, a porous membrane having a large number of cylindrical through holes is preferable. In this case, the density of the through holes is preferably about 10 7 to 10 9 pieces / cm 2 , more preferably about 10 8 to 10 9 pieces / cm 2 from the viewpoint of further improving the reliability and reproducibility of the measurement. . The thickness of the porous film is not particularly limited, but is usually about 3 μm to 50 μm, preferably about 5 μm to 15 μm. A film in which a cylindrical through hole having a pore diameter in the above-mentioned range is formed in the above density on a polycarbonate film is commercially available from Sterlitech, Inc. under the trade name “Nuclepore” (registered trademark). As the porous membrane in, one to five of this commercially available Nuclepore (registered trademark) can be laminated and used.
なお、酵素固定化膜を多孔膜で被覆することにより全血等の体液中のリン酸が、過酸化水素電極により測定可能になる理由は必ずしも明らかではないが、多孔膜によって、基質溶液が保持されると同時に検体中のリン酸の拡散が制限され、酵素には低減された量のリン酸が接触せず、また、血球をはじめとする妨害物質の酵素膜への接触も多孔膜によって防止されるか又はその拡散が制限される結果、全血中のリン酸であっても過酸化水素電極により測定可能になるのではないかと推測される。 The reason why phosphoric acid in body fluids such as whole blood can be measured with a hydrogen peroxide electrode by covering the enzyme-immobilized membrane with a porous membrane is not necessarily clear, but the substrate solution is retained by the porous membrane. At the same time, the diffusion of phosphate in the sample is limited, the enzyme does not come into contact with a reduced amount of phosphate, and the porous membrane prevents contact of interfering substances such as blood cells with the enzyme membrane. It is speculated that even phosphoric acid in whole blood can be measured by a hydrogen peroxide electrode as a result of being restricted or diffusion thereof.
本発明の体液中のリン酸測定用酵素センサーは、上記した過酸化水素電極構造体を具備する点を特徴としており、他の構成は、公知のリン酸センサーと同様でよい。すなわち、本発明のリン酸測定用酵素センサーは、上記本発明の電極構造体と、参照電極と、前記過酸化水素電極と前記参照電極の間に電圧を印加する手段と、前記電極構造体及び前記参照電極を収容するセンサー本体と、該センター本体内に収容される、電解質液とを含む。この構造の1例を図2に模式的に示す。 The enzyme sensor for measuring phosphoric acid in a body fluid according to the present invention is characterized in that it comprises the above-described hydrogen peroxide electrode structure, and the other configuration may be the same as a known phosphoric acid sensor. That is, the enzyme sensor for measuring phosphoric acid of the present invention comprises the electrode structure of the present invention, a reference electrode, means for applying a voltage between the hydrogen peroxide electrode and the reference electrode, the electrode structure, A sensor main body for storing the reference electrode; and an electrolyte solution stored in the center main body. An example of this structure is schematically shown in FIG.
図2中、10は上記した本発明の電極構造体であり、24は参照電極である。センサー本体26内に電極構造体10及び参照電極24が収容されている。センサー本体26内には、電解質液28が収容されており(液面が破線で示されている)、過酸化水素電極14及び参照電極24は電解質液28中に浸漬されている。また、電池30により、過酸化水素電極14には、参照電極24に対して正の電圧が印加されている。なお、参照電極としては、Ag/AgCl電極がよく用いられている。また、電解質液としては、食塩を含む緩衝液等を用いることができる。また、酵素反応に必要な基質並びに酵素が補酵素の供給を必要とする場合には該補酵素を電解質液に添加しておくことができる。例えば、固定化する酵素がピルビン酸オキシダーゼである場合には、基質としてピルビン酸、補酵素としてFAD及びチアミンピロリン酸(チアミン2リン酸、TPP)が必要になるが、これらは電解質液に添加しておくことができる。
In FIG. 2, 10 is the above-described electrode structure of the present invention, and 24 is a reference electrode. The
使用時には、電極構造体10の多孔膜を検体と接触させる。酵素センサーが自動化装置に組み込まれている場合、検体は図2に矢印で示す方向に流れている。検体の一部は、電極構造体の多孔膜を介して酵素固定化膜に至る。一方、電解質液に含まれる基質及び必要な補酵素も酵素固定化膜に到達し、酵素の触媒作用により、ここで酵素反応が起きる。酵素反応により、検体中のリン酸が消費され、過酸化水素が生成する。例えば、酵素がピルビン酸オキシダーゼである場合には、次の反応が起きる。
ピルビン酸+H2O + O2 + リン酸→アセチルリン酸 + CO2 + H2O2
このように、検体中のリン酸が消費されて、それと等モルの過酸化水素が生成する。従って、この時の過酸化水素の生成量は、検体中のリン酸濃度に依存して変化し、検体中のリン酸濃度が高くなるほど過酸化水素の生成量が増大する。このため、生じた過酸化水素を過酸化水素電極を用いて定量することにより、検体中のリン酸濃度を電気的な数値として測定することができる。なお、生成した過酸化水素は、過酸化水素電極上で、次のように分解されて、この際に電流を生じる。
H2O2 → 2H+ + O2 + 2e-
過酸化水素の定量は、過酸化水素電極を流れるこの電流を測定することにより行うことができる。、これは例えば、過酸化水素が酸化する電位を作用極である過酸化水素電極に参照電極の電位に対して印加して、過酸化水素濃度に応じた電流量を作用極である過酸化水素電極と参照極に接続した電流計で計測することにより行うことができる。予め既知濃度のリン酸を含む標準試料を複数用いて検量線を作成しておくと、測定された電流値から未知検体中のリン酸濃度を知ることができる。
In use, the porous membrane of the
Pyruvate + H 2 O + O 2 + Phosphate → Acetyl phosphate + CO 2 + H 2 O 2
In this way, phosphoric acid in the specimen is consumed, and equimolar hydrogen peroxide is generated. Accordingly, the amount of hydrogen peroxide produced at this time varies depending on the phosphoric acid concentration in the specimen, and the amount of hydrogen peroxide produced increases as the phosphoric acid concentration in the specimen increases. Therefore, by quantifying the generated hydrogen peroxide using a hydrogen peroxide electrode, the phosphoric acid concentration in the specimen can be measured as an electrical value. The generated hydrogen peroxide is decomposed on the hydrogen peroxide electrode as follows, and an electric current is generated at this time.
H 2 O 2 → 2H + + O 2 + 2e -
Hydrogen peroxide can be quantified by measuring this current flowing through the hydrogen peroxide electrode. This is because, for example, the potential at which hydrogen peroxide is oxidized is applied to the hydrogen peroxide electrode, which is the working electrode, with respect to the potential of the reference electrode, and the amount of current corresponding to the hydrogen peroxide concentration is This can be done by measuring with an ammeter connected to the electrode and the reference electrode. If a calibration curve is created using a plurality of standard samples containing phosphoric acid at a known concentration in advance, the phosphoric acid concentration in the unknown sample can be known from the measured current value.
本発明のリン酸測定用酵素センサーを用いたリン酸測定に供される体液は特に限定されず、全血、血清、血漿、尿等を挙げることができる。これらの中でも、全血や尿を、希釈や血球分離等の何らの前処理を行なうことなく、測定に供することができることは本発明の大きな利点である。 The body fluid used for the phosphoric acid measurement using the phosphoric acid measurement enzyme sensor of the present invention is not particularly limited, and examples thereof include whole blood, serum, plasma, and urine. Among these, it is a great advantage of the present invention that whole blood and urine can be subjected to measurement without any pretreatment such as dilution or blood cell separation.
なお、酵素の基質及び補酵素は、上記の通り、電解質液に含めておくこともできるが、基質及び補酵素を含む液を別途酵素固定化膜に導入することもできる。基質及び補酵素を含む液を供給する供給路を有する酵素センサーを装着する測定システムの1例を模式的に図3に示す。図3中、基質および補酵素を含む液を保持した試薬槽40に繋がる流路位置にサンプリングノズルを移動させ、ペリスタリックポンプ(送液ポンプ)38により基質および補酵素を含む液をリン酸センサー部に導入する。次にサンプリングノズルを測定検体が吸引できる位置に移動させ、ペリスタリックポンプ38により測定検体を吸引、リン酸センサー部32に導入する。なお、図3中、34は三方バルブ、40は基質液(補酵素も含む)、42は検体、44は電流−電圧転換器、46はA/Dコンバーター、48はコンピューター、50はプリンター、54は廃液タンクである。
The enzyme substrate and coenzyme can be included in the electrolyte solution as described above, but a solution containing the substrate and coenzyme can also be separately introduced into the enzyme-immobilized membrane. FIG. 3 schematically shows an example of a measurement system equipped with an enzyme sensor having a supply path for supplying a liquid containing a substrate and a coenzyme. In FIG. 3, the sampling nozzle is moved to a flow path position connected to the
なお、基質や必要な補酵素は、十分な量供給することが好ましい。特に、酵素としてピルビン酸オキシダーゼを用いる場合、その基質となるピルビン酸は血液等の体液中にも含まれているので、体液中のピルビン酸の濃度によって測定値が実質的に変化しないように、体液中のピルビン酸量に比べて十分大きな量のピルビン酸を供給することが好ましい。酵素としてピルビン酸オキシダーゼを用い、基質液を図3に示すような供給路を介して別途供給する場合、基質液中のピルビン酸濃度は、好ましくは1〜10mmol/L程度、TPP濃度は好ましくは0.1〜2mmol/L程度、FAD濃度は好ましくは0.1〜100μmol/L程度である。 It is preferable to supply a sufficient amount of the substrate and necessary coenzyme. In particular, when pyruvate oxidase is used as an enzyme, pyruvate as its substrate is also contained in body fluids such as blood, so that the measured value does not substantially change depending on the concentration of pyruvate in the body fluid. It is preferable to supply a sufficiently large amount of pyruvic acid compared to the amount of pyruvic acid in the body fluid. When pyruvate oxidase is used as an enzyme and the substrate solution is separately supplied via a supply channel as shown in FIG. 3, the pyruvate concentration in the substrate solution is preferably about 1 to 10 mmol / L, and the TPP concentration is preferably About 0.1 to 2 mmol / L, and the FAD concentration is preferably about 0.1 to 100 μmol / L.
体液中には、アスコルビン酸、尿酸等の、過酸化水素電極による測定に影響を与える妨害物質が種々含まれている。上記した本発明の酵素センサーでは、これらの妨害物質が共存していても体液中のリン酸濃度を測定することが可能であるが、本発明はさらに、妨害物質の影響をさらに排除してより正確な測定値を得ることができる酵素センサー(以下、便宜的に「第2の酵素センサー」)をも提供する。第2の酵素センサーは、上記した本発明の酵素センサー(以下、便宜的に「第1の酵素センサー」ということがある)の構成要素に加え、さらに第2の過酸化水素電極構造体を具備する。第2の電極構造体は、上記した本発明の電極構造体(以下、便宜的に「第1の電極構造体」ということがある)から固定化酵素膜を除いたものである。この第2の電極構造体も、第1の電極構造体と同様、参照電極との間で電圧を印加され、また、上記した電解質液に浸漬されている。第2の電極構造体の参照電極は、第1の電極構造体の参照電極と共用することもできるし、別途設けてもよい。第2の電極構造体も、上記したセンサー本体内に収容され、その多孔膜は、第1の電極構造体の多孔膜と隣接して配置され、同時に検体に接触する。 The body fluid contains various interfering substances such as ascorbic acid and uric acid that affect the measurement with the hydrogen peroxide electrode. In the enzyme sensor of the present invention described above, it is possible to measure the phosphoric acid concentration in the body fluid even when these interfering substances coexist, but the present invention further eliminates the influence of the interfering substances. An enzyme sensor capable of obtaining an accurate measurement value (hereinafter referred to as “second enzyme sensor” for convenience) is also provided. The second enzyme sensor includes a second hydrogen peroxide electrode structure in addition to the constituent elements of the enzyme sensor of the present invention described above (hereinafter sometimes referred to as “first enzyme sensor” for convenience). To do. The second electrode structure is obtained by removing the immobilized enzyme membrane from the above-described electrode structure of the present invention (hereinafter sometimes referred to as “first electrode structure” for convenience). Similarly to the first electrode structure, this second electrode structure is also applied with a voltage between the reference electrode and immersed in the above-described electrolyte solution. The reference electrode of the second electrode structure can be shared with the reference electrode of the first electrode structure, or may be provided separately. The second electrode structure is also accommodated in the sensor body described above, and the porous film is disposed adjacent to the porous film of the first electrode structure and simultaneously contacts the specimen.
使用時には、第1の酵素センサーの場合と同様、第1及び第2の電極構造体を検体と接触させ、各電極構造体の過酸化水素電極を流れる電流値を測定し、それらの差をとる。この電流値の差を真の電流値として検量線を作成し、未知検体中のリン酸濃度の測定を行う。 At the time of use, as in the case of the first enzyme sensor, the first and second electrode structures are brought into contact with the specimen, the value of the current flowing through the hydrogen peroxide electrode of each electrode structure is measured, and the difference between them is taken. . A calibration curve is created using the difference between the current values as a true current value, and the phosphate concentration in the unknown sample is measured.
第2の酵素センサーでは、第2の電極構造体が固定化酵素膜を有さないので、検体中のリン酸を消費して過酸化水素を生成する酵素反応が起きない。したがって、理想的には第2の電極構造体の過酸化水素電極には電流は流れないはずであるが、流れる場合には、それはアスコルビン酸や尿酸等の、リン酸以外の妨害物質に起因するものである。第2の酵素センサーでは、このように妨害物質に起因する電流値を別途測定することができ、これを差し引くことにより、検体中のリン酸に起因する真の電流値を測定することができる。このため、妨害物質の影響を排除してより正確な測定が可能になる。 In the second enzyme sensor, since the second electrode structure does not have an immobilized enzyme film, an enzyme reaction that consumes phosphoric acid in the sample to generate hydrogen peroxide does not occur. Therefore, ideally, no current should flow through the hydrogen peroxide electrode of the second electrode structure, but if it does, it is due to interfering substances other than phosphoric acid, such as ascorbic acid or uric acid. Is. In the second enzyme sensor, the current value caused by the interfering substance can be separately measured as described above, and the true current value caused by the phosphoric acid in the sample can be measured by subtracting the current value. This eliminates the influence of interfering substances and enables more accurate measurement.
なお、第2の電極構造体は、第1の電極構造体を含む酵素センサーと同じ酵素センサーのセンサー本体内に収容してもよいが、第2の電極構造体を単独で含む酵素センサーを別途構成し、それで妨害物質に起因する電流値を測定するようにしてもよい。すなわち、本発明は、上記本発明の酵素センサーと、上記本発明の酵素センサーから酵素固定膜を除いた構造を有する無酵素センサーとを具備する体液中のリン酸濃度測定用酵素センサーをも提供するものである。 The second electrode structure may be accommodated in the same sensor body of the enzyme sensor as the enzyme sensor including the first electrode structure, but an enzyme sensor including the second electrode structure alone is separately provided. It may be configured so that the current value resulting from the interfering substance is measured. That is, the present invention also provides an enzyme sensor for measuring a phosphate concentration in a body fluid, comprising the enzyme sensor of the present invention and an enzyme-free sensor having a structure obtained by removing the enzyme-fixed membrane from the enzyme sensor of the present invention. To do.
以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.
1. 電極構造体の作製
図1に示す構造を有する過酸化水素電極構造体を次のようにして作製した。すなわち、 ガラス管の底部をバーナーで加熱溶融し、直径0.3mmの白金棒を貫通させた。室温に冷却すると、ガラス管の底部から白金棒の先端が露出し、かつ、白金棒が、溶融、固化したガラス(図1中の16)で固着された基本構造が得られた。次に、酵素固定化膜(製法は後述)及び多孔性ポリカーボネート膜(米国Sterlitech社製「Nuclepore」(登録商標)、孔径0.2μm、孔密度3 x 108個/cm2、厚さ10μm)を重ねたものを、酵素固定化膜が白金電極と接する側にくるように上記ガラス管の側部にOリングで固着し、本発明の電極構造体を得た。
1. Production of Electrode Structure A hydrogen peroxide electrode structure having the structure shown in FIG. 1 was produced as follows. That is, the bottom of the glass tube was heated and melted with a burner, and a platinum rod having a diameter of 0.3 mm was penetrated. Upon cooling to room temperature, a basic structure was obtained in which the tip of the platinum rod was exposed from the bottom of the glass tube, and the platinum rod was fixed with molten and solidified glass (16 in FIG. 1). Next, an enzyme-immobilized membrane (manufacturing method will be described later) and a porous polycarbonate membrane (“Nuclepore” (registered trademark) manufactured by Sterlitech, USA, pore diameter 0.2 μm, pore density 3 × 10 8 / cm 2 ,
用いた酵素固定化膜は次のようにして作製した。先ず、2%酢酸セルロース水溶液を調製した。該溶液の500μLを採取し、基板上の7 x 10cmの範囲に展開した。展開後、10秒以内に基板をヘキサン槽に浸漬して酢酸セルロース膜を得た。ビルビン酸オキシダーゼの160U/150μL MES緩衝液 + 2% GA(グルタルアルデヒド) 30μLを、上記酢酸セルロース膜上(5cm x 8cm)に広げ、4℃で1時間放置し、酵素固定化膜を得た。なお、得られた酵素固定化膜は、MES緩衝液で繰返し洗浄した後、上記Nuclepore(登録商標)膜を1枚載せ、4℃にて一夜乾燥後、上記のように電極構造体の作製に供した。 The enzyme-immobilized membrane used was prepared as follows. First, a 2% cellulose acetate aqueous solution was prepared. 500 μL of the solution was taken and spread over a 7 × 10 cm area on the substrate. After the development, the substrate was immersed in a hexane tank within 10 seconds to obtain a cellulose acetate film. 30 μL of 160 U / 150 μL MES buffer + 2% GA (glutaraldehyde) of biruvate oxidase was spread on the cellulose acetate membrane (5 cm × 8 cm) and allowed to stand at 4 ° C. for 1 hour to obtain an enzyme-immobilized membrane. The obtained enzyme-immobilized membrane was washed repeatedly with MES buffer, and then loaded with the above Nuclepore (registered trademark) membrane and dried overnight at 4 ° C. Provided.
2. 酵素センサーの作製
1で作製した電極構造体を用い、図2に示す構造を有する酵素センサーを作製した。なお、参照電極としては、Ag/AgCl電極を用い、過酸化水素電極には、参照電極に対して+0.6Vを印加した。電解質液として、NaClを0.2630g/100mL、Na2HPO4を0.4216g/100mL、NaH2PO4を0.1836g/100mLの濃度で含む水溶液を調製し、これをセンサー本体内に約0.3mL充填して白金電極及び参照電極を電解質液中に浸漬した。
2. Production of enzyme sensor Using the electrode structure produced in 1, an enzyme sensor having the structure shown in FIG. 2 was produced. Note that an Ag / AgCl electrode was used as the reference electrode, and +0.6 V was applied to the hydrogen peroxide electrode with respect to the reference electrode. As the electrolyte solution, NaCl and 0.2630g / 100mL, the Na 2 HPO 4 to prepare an aqueous solution containing 0.4216g / 100mL, the NaH 2 PO 4 at a concentration of 0.1836g / 100mL, which was approximately 0.3mL filled in the sensor main body Then, the platinum electrode and the reference electrode were immersed in the electrolyte solution.
リン酸の測定
1. 測定装置
実施例1で作製した酵素センサーを、自動化装置に組み込んだ。自動化装置は、図4に示す構成を有するものである。図4中、酵素センサーは32である。34は三方バルブ、36は定量シリンジ、38は送液ポンプ、40は基質液(補酵素も含む)、42は検体、44は電流−電圧転換器、46はA/Dコンバーター、48はコンピューター、50はプリンター、52は廃液ポンプ、54は廃液タンクである。
Measurement of phosphoric acid Measuring device The enzyme sensor produced in Example 1 was incorporated into an automated device. The automation apparatus has the configuration shown in FIG. In FIG. 4, the number of enzyme sensors is 32. 34 is a three-way valve, 36 is a metering syringe, 38 is a liquid feed pump, 40 is a substrate solution (including coenzyme), 42 is a specimen, 44 is a current-voltage converter, 46 is an A / D converter, 48 is a computer, 50 is a printer, 52 is a waste liquid pump, and 54 is a waste liquid tank.
測定時には、送液ポンプ38とこれに連結しているノズルで検体20を吸引し、酵素センサー32に移送した。また、定量シリンジ36で基質溶液40を吸引した。酵素センサーの信号出力を計測しながら、基質溶液を酵素センサーの酵素固定化膜近傍に導入、混合した。ここで発生した過酸化水素水の濃度の測定を、過酸化水素電極を流れる電流値に基づいて自動的に行なった。なお、基質液は、1mmol/Lのピルビン酸、10μMのFAD及び200μMのTPPを含むMOPS緩衝溶液(0.2M, pH7.0)であった。
At the time of measurement, the specimen 20 was aspirated by the
2. 検量線
検体として、各種濃度のリン酸水溶液(標準試料)を用いて作成した検量線を図5に示す。図5から、リン酸の濃度が大きくなるほど電流値が大きくなっており、本発明の酵素センサーで検体中のリン酸濃度が測定できることがわかる。ここで、菱形マークは基質液を予め検体と今後した状態で酵素センサー部に導入したときの検量線を表し、丸マークおよび三角マークはそれぞれ基質溶液を導入したあと検体を導入して測定した1回目の検量線と2回目の検量線を表している。
2. Calibration curve Fig. 5 shows calibration curves prepared using various concentrations of phosphoric acid aqueous solutions (standard samples) as specimens. FIG. 5 shows that the current value increases as the phosphoric acid concentration increases, and the phosphoric acid concentration in the specimen can be measured by the enzyme sensor of the present invention. Here, the rhombus mark represents a calibration curve when the substrate solution is introduced into the enzyme sensor part in the future with the sample in advance, and the circle mark and the triangle mark are respectively measured by introducing the sample after introducing the substrate solution 1 The second calibration curve and the second calibration curve are shown.
3. 実際の検体を用いた測定
検体試料として血清及び全血を使用して測定した場合に得られた結果が表1に示されている。表1に示す結果は、これらの検体についての同時再現性の結果である。全血および血清のサンプル1及び2は、異なる提供者から採取した試料である。なお、表1中のnは測定回数であり、SDは標準偏差であり、CV%は変動係数である。
3. Measurement using actual specimen Table 1 shows the results obtained when measurement was performed using serum and whole blood as specimen specimens. The results shown in Table 1 are the results of simultaneous reproducibility for these specimens. Whole blood and serum samples 1 and 2 are samples taken from different donors. In Table 1, n is the number of measurements, SD is the standard deviation, and CV% is the coefficient of variation.
これらの結果から、本発明の酵素センサーによれば、正確に体液中のリン酸濃度を測定できることがわかる。 From these results, it can be seen that according to the enzyme sensor of the present invention, the phosphoric acid concentration in the body fluid can be accurately measured.
10 電極構造体
12 ガラス管
14 過酸化水素電極
16 固化したガラス
18 酵素固定化膜
20 多孔膜
22 Oリング
24 参照電極
26 センサー本体
28 電解質液
30 電池
32 酵素センサー
34 三方バルブ
36 定量シリンジ
38 送液ポンプ
40 試薬液
42 被検試料
44 電流−電圧転換器
46 A/Dコンバーター
48 コンピューター
50 プリンター
52 廃液ポンプ
54 廃液タンク
DESCRIPTION OF
Claims (14)
A bodily fluid comprising measuring the phosphoric acid concentration by detecting the phosphoric acid concentration in a bodily fluid separated from a living body as a current change using the enzyme sensor according to any one of claims 9 to 13. Of measuring the concentration of phosphoric acid in water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005181717A JP4690122B2 (en) | 2005-06-22 | 2005-06-22 | Electrode structure and enzyme sensor for measuring phosphate in body fluid containing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005181717A JP4690122B2 (en) | 2005-06-22 | 2005-06-22 | Electrode structure and enzyme sensor for measuring phosphate in body fluid containing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007003265A true JP2007003265A (en) | 2007-01-11 |
JP4690122B2 JP4690122B2 (en) | 2011-06-01 |
Family
ID=37689055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005181717A Expired - Fee Related JP4690122B2 (en) | 2005-06-22 | 2005-06-22 | Electrode structure and enzyme sensor for measuring phosphate in body fluid containing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4690122B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2062979A1 (en) * | 2007-11-22 | 2009-05-27 | Nitto Boseki Co., Ltd. | Method for measuring phosphoric acid |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59180353A (en) * | 1983-03-31 | 1984-10-13 | Toshiba Corp | Measuring device for pyruvic acid |
JPS6117948A (en) * | 1984-07-05 | 1986-01-25 | Fuji Electric Corp Res & Dev Ltd | Immobilized enzyme film for enzyme electrode |
JPS63262555A (en) * | 1987-04-20 | 1988-10-28 | Toyobo Co Ltd | Enzyme membrane for enzyme electrode using novel heat-resistant pyrvic acid oxydase |
JPH04168355A (en) * | 1990-10-31 | 1992-06-16 | Dam Suigenchi Kankyo Seibi Center | Phosphoric acid sensor |
WO2005073399A1 (en) * | 2004-01-28 | 2005-08-11 | National Institute Of Advanced Industrial Science And Technology | Method of qualitatively/quantatively determining phosphate ion and phosphate ion sensor |
JP2007003280A (en) * | 2005-06-22 | 2007-01-11 | Techno Medica Co Ltd | Electrode structure and enzyme sensor including it for measuring phosphoric acid in body fluids |
-
2005
- 2005-06-22 JP JP2005181717A patent/JP4690122B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59180353A (en) * | 1983-03-31 | 1984-10-13 | Toshiba Corp | Measuring device for pyruvic acid |
JPS6117948A (en) * | 1984-07-05 | 1986-01-25 | Fuji Electric Corp Res & Dev Ltd | Immobilized enzyme film for enzyme electrode |
JPS63262555A (en) * | 1987-04-20 | 1988-10-28 | Toyobo Co Ltd | Enzyme membrane for enzyme electrode using novel heat-resistant pyrvic acid oxydase |
JPH04168355A (en) * | 1990-10-31 | 1992-06-16 | Dam Suigenchi Kankyo Seibi Center | Phosphoric acid sensor |
WO2005073399A1 (en) * | 2004-01-28 | 2005-08-11 | National Institute Of Advanced Industrial Science And Technology | Method of qualitatively/quantatively determining phosphate ion and phosphate ion sensor |
JP2007003280A (en) * | 2005-06-22 | 2007-01-11 | Techno Medica Co Ltd | Electrode structure and enzyme sensor including it for measuring phosphoric acid in body fluids |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2062979A1 (en) * | 2007-11-22 | 2009-05-27 | Nitto Boseki Co., Ltd. | Method for measuring phosphoric acid |
US8440422B2 (en) | 2007-11-22 | 2013-05-14 | Nitto Boseki Co., Ltd. | Method for measuring phosphoric acid |
Also Published As
Publication number | Publication date |
---|---|
JP4690122B2 (en) | 2011-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Buerk | Biosensors: Theory and applications | |
Davies et al. | Polymer membranes in clinical sensor applications: I. An overview of membrane function | |
EP0086108B1 (en) | Method of measuring lactic acid in a liquid | |
US5171689A (en) | Solid state bio-sensor | |
US4655880A (en) | Apparatus and method for sensing species, substances and substrates using oxidase | |
EP0136362A1 (en) | Biosensor | |
US20100096276A1 (en) | Multicomponent analysis sensor and method of measuring multiple components | |
WO1994008236A1 (en) | Gas permeable membranes for amperometric gas electrodes and uses thereof | |
Walters et al. | Fiber-optic biosensor for ethanol, based on an internal enzyme concept | |
Wang et al. | Study on the kinetics of homogeneous enzyme reactions in a micro/nanofluidics device | |
CN101883982A (en) | Method, device and apparatus for measuring the concentration of creatinine, and method, device and apparatus for measuring the amount of salt in urine using the same | |
WO2007000596A1 (en) | Electrode preconditioning | |
Xu et al. | Phosphate assay kit in one cell for electrochemical detection of intracellular phosphate ions at single cells | |
Turner | Biosensors | |
JP2007003280A (en) | Electrode structure and enzyme sensor including it for measuring phosphoric acid in body fluids | |
Fiore et al. | Paper card-like electrochemical platform as a smart point-of-care device for reagent-free glucose measurement in tears | |
JP4690122B2 (en) | Electrode structure and enzyme sensor for measuring phosphate in body fluid containing the same | |
US20070259262A1 (en) | Electrochemical Sensing Method | |
Santoni et al. | Enzyme electrode for glucose determination in whole blood | |
WO2019045647A1 (en) | Sensing device, methods and uses thereof | |
JP4755097B2 (en) | Electrochemical measurement of phosphoric acid and / or phosphate ester | |
US5741709A (en) | Multiple injection analysis | |
JP2007000033A (en) | Method and apparatus for measuring phosphoric acid | |
TW201432258A (en) | Electrochemical-based analytical test strip with soluble acidic material coating | |
JP2543057B2 (en) | Biosensor manufacturing method and biosensor electrode plate manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080513 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100831 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101101 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110118 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110217 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4690122 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140225 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |