JPH0248059B2 - - Google Patents

Info

Publication number
JPH0248059B2
JPH0248059B2 JP58053637A JP5363783A JPH0248059B2 JP H0248059 B2 JPH0248059 B2 JP H0248059B2 JP 58053637 A JP58053637 A JP 58053637A JP 5363783 A JP5363783 A JP 5363783A JP H0248059 B2 JPH0248059 B2 JP H0248059B2
Authority
JP
Japan
Prior art keywords
solution
measurement
pyruvate
immobilized
fad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58053637A
Other languages
Japanese (ja)
Other versions
JPS59180353A (en
Inventor
Yoshio Ishimori
Masako Notsuke
Masao Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58053637A priority Critical patent/JPS59180353A/en
Publication of JPS59180353A publication Critical patent/JPS59180353A/en
Publication of JPH0248059B2 publication Critical patent/JPH0248059B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明はピルビン酸測定装置に関し、更に詳し
くは、固定化ピルビン酸オキシダーゼの酵素活性
を安定化せしめたピルビン酸測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a pyruvate measuring device, and more particularly to a pyruvate measuring device in which the enzymatic activity of immobilized pyruvate oxidase is stabilized.

[発明の技術的背景とその問題点] 近年、臨床分析は急速に発展し、血液中に存在
する各種の酵素活性を測定することにより病態を
正確に知ることができるようになつた。このた
め、臨床分析は医学の進歩に多大の貢献をなすに
至つた。
[Technical background of the invention and its problems] In recent years, clinical analysis has rapidly developed, and it has become possible to accurately understand pathological conditions by measuring the activities of various enzymes present in the blood. For this reason, clinical analysis has come to make a significant contribution to the advancement of medicine.

従来の酵素活性の測定は、酵素、基質、補酵素
及び必要であれば発色試薬からなる酵素反応系に
おいて酵素反応を行わしめ、反応前後における吸
光度変化を測定して比色定量する方法が採用され
ていた。例えば、肝機能の目安になるグルタミン
酸ピルビン酸トランスアミナーゼ(GPT)の酵
素活性を測定する場合は、GPTを基質に作用さ
せてピルビン酸を生成せしめ、次いで該ピルビン
酸を乳酸脱水素酵素(LDH)により還元すると、
該反応系に共存させておいたニコチンアミド−ア
デニンジヌクレオチド(NADH)が酸化されて
NADを生成するので、340nmの波長における該
NADHの吸光度を測定することにより間接的に
GPTの酵素活性を測定することができる。しか
しながら、この吸光度測定法にあつては、
NADH、LDH及び各種の発色試薬等は高価であ
つて、かつこれらの試薬は測定後廃棄されるもの
であるため、測定原価が極めて高かつた。また、
反応系中に血小板、血球及びゴミ等の懸濁物質が
混入していると吸光度測定が困難になるため、測
定に先立つて該非測定物を除去する前処理が必要
とされた。
Conventionally, enzyme activity is measured by carrying out an enzymatic reaction in an enzymatic reaction system consisting of an enzyme, a substrate, a coenzyme, and if necessary a coloring reagent, and measuring the change in absorbance before and after the reaction for colorimetric determination. was. For example, when measuring the enzymatic activity of glutamate pyruvate transaminase (GPT), which is a measure of liver function, GPT is applied to a substrate to generate pyruvate, which is then converted to lactate dehydrogenase (LDH). When you reduce it,
Nicotinamide-adenine dinucleotide (NADH) coexisting in the reaction system is oxidized.
Since it generates NAD, its potential at a wavelength of 340 nm
indirectly by measuring the absorbance of NADH
The enzymatic activity of GPT can be measured. However, in this absorbance measurement method,
NADH, LDH, various coloring reagents, etc. are expensive, and since these reagents are discarded after measurement, the cost of measurement is extremely high. Also,
If suspended substances such as platelets, blood cells, and dust are mixed in the reaction system, it becomes difficult to measure the absorbance, so a pretreatment to remove the non-measurable substances is required prior to measurement.

そこで、このような吸光度測定法の欠点を解消
するために、GPTの酵素反応生成物であるピル
ビン酸を電極法により定量する方法が提案された
(特開昭56−122947)。これは、多孔性の高分子膜
にピルビン酸オキシダーゼを固定化してなる固定
化酵素膜を酵素電極表面に装着して、ピルビン酸
オキシダーゼによるピルビン酸の分解に伴う溶存
酸素減少量からピルビン酸の量を測定するもので
ある。しかしながら、調整した固定化酵素膜の活
性は不安定であるため、長時間の使用に耐えるこ
とができない(多くても50回)という欠点があつ
た。なお、一般的にピルビン酸オキシダーゼは不
安定な酵素であるため、各種の固定化方法及び担
体を用いても、その寿命(活性の半減期)はせい
ぜい1〜2週間であつた。
In order to overcome these drawbacks of the absorbance measurement method, a method was proposed for quantifying pyruvic acid, an enzymatic reaction product of GPT, by an electrode method (Japanese Patent Application Laid-Open No. 122947/1983). An immobilized enzyme membrane consisting of pyruvate oxidase immobilized on a porous polymer membrane is attached to the surface of the enzyme electrode, and the amount of pyruvate is calculated from the amount of dissolved oxygen decreased due to the decomposition of pyruvate by pyruvate oxidase. It is used to measure However, the activity of the prepared immobilized enzyme membrane was unstable, so it had the disadvantage that it could not be used for a long time (50 times at most). In addition, since pyruvate oxidase is generally an unstable enzyme, its lifespan (half-life of activity) was at most 1 to 2 weeks even when various immobilization methods and carriers were used.

また、GPTの酵素活性を測定する方法として、
GPTの酵素反応生成物であるグルタミン酸を脱
水素酵素により分解した際、該酵素反応に伴い還
元された補酵素を一定電圧が印加された電極で酸
化するときに流れる電流へ測定値からGPTの活
性を測定する方法があるが(特開昭56−92446)、
この方法は血液中に存在する他の還元性物質(ビ
タミン等)の妨害を受け易いため、やはり長時間
の使用に耐えることができないという欠点があつ
た。
In addition, as a method to measure the enzyme activity of GPT,
When glutamic acid, which is an enzymatic reaction product of GPT, is decomposed by dehydrogenase, the coenzyme reduced by the enzymatic reaction is oxidized with an electrode to which a constant voltage is applied. There is a method to measure the
Since this method is susceptible to interference by other reducing substances (vitamins, etc.) present in the blood, it also has the disadvantage that it cannot withstand long-term use.

[発明の目的] 本発明は、上記した欠点がなく、長寿命で、か
つ安定なピルビン酸測定装置を提供することを目
的とする。
[Object of the Invention] An object of the present invention is to provide a pyruvic acid measuring device that does not have the above-mentioned drawbacks, has a long life, and is stable.

[発明の概要] 従来は、0.01mMのFAD含有緩衝液を用いて
ピルビン酸測定を行つていたが、本発明者らは、
0.1mM以上の高濃度フラビンアデニンジヌクレ
オチド溶液を電極内に配置された固定化ピルビン
酸オキシダーゼと接触せしめることにより該ピル
ビン酸オキシダーゼの酵素活性寿命を安定化でき
ることを見い出し、本発明を完成するに至つた。
[Summary of the invention] Conventionally, pyruvate was measured using a buffer containing 0.01mM FAD, but the present inventors
It was discovered that the lifetime of the enzyme activity of pyruvate oxidase can be stabilized by bringing a high concentration flavin adenine dinucleotide solution of 0.1 mM or more into contact with the immobilized pyruvate oxidase disposed within the electrode, and this led to the completion of the present invention. Ivy.

すなわち本発明は、固定化ピルビン酸オキシダ
ーゼを用いたピルビン酸測定装置において、 0.1〜50mMのフラビンアデニンジヌクレオチ
ド溶液を該固定化ピルビン酸オキシダーゼと接触
せしめる機構を備えたことを特徴とする。
That is, the present invention is a pyruvate measuring device using immobilized pyruvate oxidase, which is characterized by having a mechanism for bringing a 0.1 to 50 mM flavin adenine dinucleotide solution into contact with the immobilized pyruvate oxidase.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明にかかるピルビン酸測定装置は、従来か
ら用いられているピルビン酸測定装置に新たに上
記した機構を備え付けたものであつて、該機構以
外の構造は全て従来と同一でよい。
The pyruvic acid measuring device according to the present invention is a conventionally used pyruvic acid measuring device newly equipped with the above-described mechanism, and all other structures other than the mechanism may be the same as the conventional device.

本発明において用いられる固定化ピルビン酸オ
キシダーゼとは、ピルビン酸オキシダーゼ
(POP)を、該酵素を保持し得る担体に固定化し
たものをいう。固定化担体は、ピルビン酸オキシ
ダーゼを固定化することができるものであれば、
いかなるものであつてもよい。その具体例として
は、例えばコラーゲン、ポリアクリルアミド、カ
ラギナン、アガロースゲル、多孔性ガラスビー
ズ、アルブミン等が挙げられる。通常、ピルビン
酸オキシダーゼは、0.01〜30重量%の範囲内で担
体に固定化される。なお、ピルビン酸オキシダー
ゼを担体に固定化する方法については格別限定さ
れない。しかしながら、固定化ピルビン酸オキシ
ダーゼをピルビン酸測定装置のフローシステムに
組込む場合には、膜状、粒状、ゲル状の担体に包
括法あるいは共有結合法により固定化することが
好ましく、更に電極表面に装着する場合には、コ
ラーゲン等の繊維性タンパク質を担体として酵素
膜を作成する包括法を適用することが好ましい。
The immobilized pyruvate oxidase used in the present invention refers to pyruvate oxidase (POP) immobilized on a carrier capable of holding the enzyme. The immobilization carrier may be one that can immobilize pyruvate oxidase.
It can be anything. Specific examples include collagen, polyacrylamide, carrageenan, agarose gel, porous glass beads, albumin, and the like. Usually, pyruvate oxidase is immobilized on a carrier in a range of 0.01 to 30% by weight. Note that the method for immobilizing pyruvate oxidase on a carrier is not particularly limited. However, when incorporating immobilized pyruvate oxidase into the flow system of a pyruvate measurement device, it is preferable to immobilize it on a membrane, granular, or gel-like carrier by an entrapment method or a covalent bonding method, and further attach it to the electrode surface. In this case, it is preferable to apply a comprehensive method in which an enzyme membrane is created using a fibrous protein such as collagen as a carrier.

次に、フラビンアデニンジヌクレオチド溶液を
固定化ピルビン酸オキシダーゼと接触せしめる機
構について説明するが、本発明においては該溶液
を供給し得るものであればいかなる機構であつて
もよい。該機構の一例を第1図に示した。図は改
良された電極部の概略図であつて、1はフローセ
ル、2は限外瀘過膜、3は緩衝液層、4はO−リ
ング、5は酸素又は過酸化水素透過性膜、6は
POP固定化膜、7は白金陰極、8は鉛陽極、9
は配管、10は小内径配管である。該図に示した
機構は、フラビンアデニンジヌクレオチド
(FAD)溶液とピルビン酸オキシダーゼとの接触
を測定時に行うための機構であるが、これらの接
触を非測定時又は洗浄液の使用により行う場合に
は、小内径配管10を具備していないこと以外は
上記と同様の機構を有する電極部を用いればよ
い。なお、電極としては、通常、ピルビン酸の酵
素分解過程における溶存酸素の減少量を測定する
酸素電極(酸素透過性膜5使用)を用いるか、又
は該過程で生成する過酸化水素量を測定する過酸
化水素電極(過酸化水素透過性膜5使用)を用い
る。
Next, a mechanism for bringing the flavin adenine dinucleotide solution into contact with immobilized pyruvate oxidase will be explained, but in the present invention, any mechanism that can supply the solution may be used. An example of this mechanism is shown in FIG. The figure is a schematic diagram of the improved electrode section, in which 1 is a flow cell, 2 is an ultrafiltration membrane, 3 is a buffer layer, 4 is an O-ring, 5 is an oxygen or hydrogen peroxide permeable membrane, and 6 teeth
POP immobilization membrane, 7 is platinum cathode, 8 is lead anode, 9
is a pipe, and 10 is a small inner diameter pipe. The mechanism shown in the figure is a mechanism for bringing the flavin adenine dinucleotide (FAD) solution into contact with pyruvate oxidase during measurement. , an electrode section having the same mechanism as above except that the small inner diameter piping 10 is not provided may be used. As the electrode, an oxygen electrode (using an oxygen permeable membrane 5) is usually used to measure the amount of reduction in dissolved oxygen during the enzymatic decomposition process of pyruvic acid, or an oxygen electrode is used to measure the amount of hydrogen peroxide generated in this process. A hydrogen peroxide electrode (using a hydrogen peroxide permeable membrane 5) is used.

本発明において、上記機構を用いてピルビン酸
オキシダーゼの酵素活性を安定化するための方法
としては、ピルビン酸測定後(非測定時)に、
FAD溶液を固定化ピルビン酸オキシダーゼと接
触せしめる方法が挙げられる。この場合には、通
常、ピルビン酸測定が終了し、配管内を洗浄した
後、FAD溶液を配管内に充填し室温でこの状態
のまま一夜保存する方法が挙げられる。また、他
の方法として、一回の測定が終了する毎に、
FAD含有洗浄液を用いて配管内を洗浄し、更に
一日の測定が終了する毎に該洗浄液を配管内に充
填し室温でこの状態まま一夜保存する方法が挙げ
られる。更に他の方法として、ピルビン酸の測定
を行つている最中に、10-9〜10-6mol/minの速
度でFAD溶液を配管内に供給する方法が挙げら
れる。この場合には測定系内の洗浄とPOP活性
の低下防止とを同時に行うことができるという利
点がある。以上の測定法においては、0.1〜50m
MのFAD溶液又はFAD含有洗浄液を用いること
が必要である。これらの溶液と固定化ピルビン酸
オキシダーゼとの接触時間は、長くなる程好まし
い結果が得られ、接触処理を一回のみで終らせる
のではなく、連日接触処理を行うことが望まし
い。なお、上記した方法は単独で又は組合せて行
われる。ちなみに、従来の0.01mM程度の低濃度
FAD含有緩衝液を使用しただけでは、FADは透
過膜5を十分に拡散できずに測定系外に排出され
てしまうため、本発明効果を奏し得ない。
In the present invention, as a method for stabilizing the enzymatic activity of pyruvate oxidase using the above mechanism, after measuring pyruvate (when not measuring),
Examples include a method in which a FAD solution is brought into contact with immobilized pyruvate oxidase. In this case, the usual method is to fill the pipe with FAD solution after the pyruvic acid measurement is completed and to clean the inside of the pipe, and to store it overnight in this state at room temperature. In addition, as another method, each time one measurement is completed,
An example of this method is to clean the inside of the pipe using a cleaning solution containing FAD, and then fill the pipe with the cleaning solution every time a day's measurement is completed and store the pipe in this state overnight at room temperature. Still another method is to supply the FAD solution into the pipe at a rate of 10 -9 to 10 -6 mol/min while pyruvic acid is being measured. In this case, there is an advantage that the measurement system can be cleaned and the POP activity can be prevented from decreasing at the same time. In the above measurement method, 0.1 to 50m
It is necessary to use a FAD solution of M or a washing solution containing FAD. The longer the contact time between these solutions and the immobilized pyruvate oxidase, the more preferable results will be obtained, and it is desirable to carry out the contact treatment on consecutive days rather than completing the contact treatment only once. Note that the above methods may be performed alone or in combination. By the way, the conventional low concentration of about 0.01mM
If only an FAD-containing buffer solution is used, the effects of the present invention cannot be achieved because FAD cannot be sufficiently diffused through the permeable membrane 5 and is discharged outside the measurement system.

次に、ピルビン酸測定装置の具体例を示し、該
装置の使用方法を説明する。非測定時にFAD溶
液を固定化ピルビン酸オキシダーゼと接触せしめ
ることにより該ピルビン酸オキシダーゼの酵素活
性を安定化せしめた本発明ピルビン酸測定装置の
一例を第2図にブロツク図で示した。図中、11
は緩衝液又は基質溶液の貯液槽、12は濃厚
FAD溶液の貯液槽、13は自動溶媒切換器、1
4は試料注入口、15は電極部、16は定流量ポ
ンプ、17は自動三方バルブ、18a及び18b
は配管、19は排液槽、20は記録計、21はコ
ントローラー、22はスターラー、23は撹拌子
である。
Next, a specific example of the pyruvic acid measuring device will be shown and a method of using the device will be explained. An example of the pyruvate measuring device of the present invention, in which the enzymatic activity of pyruvate oxidase is stabilized by bringing the FAD solution into contact with immobilized pyruvate oxidase during non-measurement periods, is shown in a block diagram in FIG. In the figure, 11
is a storage tank for buffer or substrate solution, 12 is a concentrated
FAD solution storage tank, 13 is automatic solvent changer, 1
4 is a sample injection port, 15 is an electrode section, 16 is a constant flow pump, 17 is an automatic three-way valve, 18a and 18b
1 is a pipe, 19 is a drain tank, 20 is a recorder, 21 is a controller, 22 is a stirrer, and 23 is an agitator.

該測定装置においては、通常次のようにして測
定が行われる。まず、21のコントローラーから
測定指令が出されて(実際の操作では、コントロ
ーラー21の表示パネル上の測定開始スイツチを
押すだけである)自動溶媒切換器13においてB
又はFのバルブとAとが接続され、自動三方バル
ブ17が配管18aに接続された後、定流量ポン
プ16が作動して測定系内に緩衝液が満たされ
る。完全に満たされるとコントローラー21の表
示パネル上にRUNの表示が点灯する。緩衝液は、
測定時に常時一定の流量で流れている。この状態
では試料注入口14より適当量の試料液を注入
(図中、矢印は注入方向を示す)すると、電極部
15により試料中のピルビン酸が検知され、その
信号は記録計20に送られて記録される。通常、
試料注入から記録計における記録まで約5分間で
終了する(流速:0.6ml/minの場合)。なお、検
出又は定量の終了した排液は配管18aを経て排
液槽19に貯蔵される。
In this measuring device, measurements are normally performed as follows. First, a measurement command is issued from the controller 21 (in actual operation, simply press the measurement start switch on the display panel of the controller 21), and the automatic solvent changer 13
Alternatively, after the valve F and A are connected and the automatic three-way valve 17 is connected to the pipe 18a, the constant flow pump 16 is operated to fill the measurement system with the buffer solution. When it is completely filled, the RUN display lights up on the display panel of the controller 21. The buffer solution is
It always flows at a constant flow rate during measurement. In this state, when an appropriate amount of sample liquid is injected from the sample injection port 14 (the arrow in the figure indicates the injection direction), pyruvic acid in the sample is detected by the electrode section 15, and the signal is sent to the recorder 20. recorded. usually,
It takes about 5 minutes from sample injection to recording on the recorder (at a flow rate of 0.6 ml/min). Incidentally, the waste liquid that has been detected or quantified is stored in the waste liquid tank 19 via the pipe 18a.

次に、測定が終了した後は、コントローラー2
1の表示パネル上の測定終了スイツチを押すと、
コントローラー21から指令が出て、自動溶媒切
換器13のC、E、G又はIのいずれかのバルブ
がAと接続され、系内に充填されていた緩衝液及
び試料液が全て排出される。一定時間後(緩衝液
が完全に排出されるのに要する時間)、自動溶媒
切換器13のバルブがD又はHに切換えられ、そ
れと同時に自動三方バルブ17も切換えられて、
該バルブ17は配管18bに接続される。以上の
操作により、測定系内に濃厚FAD溶液が満たさ
れ、電極部15の酵素膜の失活が防止される。
Next, after the measurement is completed, controller 2
When you press the measurement end switch on the display panel 1,
A command is issued from the controller 21, and any one of valves C, E, G, or I of the automatic solvent changer 13 is connected to A, and the buffer solution and sample solution filled in the system are all discharged. After a certain period of time (the time required for the buffer to be completely drained), the valve of the automatic solvent changer 13 is switched to D or H, and at the same time the automatic three-way valve 17 is also switched,
The valve 17 is connected to a pipe 18b. By the above operations, the measurement system is filled with a concentrated FAD solution, and the enzyme membrane of the electrode section 15 is prevented from being deactivated.

測定後の洗浄液中にFADを含有せしめること
により固定化ピルビン酸オキシダーゼの酵素活性
を安定化せしめた本発明ピルビン酸測定装置の一
例を第3図にブロツク図で示した。図中、12a
は濃厚FAD含有洗浄液の貯液槽であるが、その
他の構成は第2図に示した装置とほぼ同様であ
る。
An example of the pyruvate measuring device of the present invention, in which the enzymatic activity of immobilized pyruvate oxidase is stabilized by containing FAD in the washing solution after measurement, is shown in a block diagram in FIG. In the figure, 12a
is a storage tank for a cleaning solution containing concentrated FAD, but the other configuration is almost the same as the device shown in FIG.

該測定装置においては、通常次のようにして測
定が行われる。測定が終了し、系内に充填されて
いた緩衝液及び試料液が排出された後に自動溶媒
切換器13のバルブをD又はHに切換え、しかる
後貯液槽12a内のFAD含有洗浄液を測定装置
内に流すことにより酵素膜の失活を防止すること
ができる。
In this measuring device, measurements are normally performed as follows. After the measurement is completed and the buffer solution and sample solution filled in the system are discharged, the valve of the automatic solvent changer 13 is switched to D or H, and then the FAD-containing cleaning solution in the liquid storage tank 12a is transferred to the measuring device. Inactivation of the enzyme membrane can be prevented by flowing the enzyme into the membrane.

測定時に、FAD含有洗浄液を固定化ピルビン
酸オキシダーゼと接触せしめることにより該ピル
ビン酸オキシダーゼの酵素活性を安定化せしめた
本発明ピルビン酸測定装置の一例を第4図にブロ
ツク図で示した。図中、12は濃厚FAD溶液の
貯液槽、24は微量送液ポンプ、10は小内径配
管であるが、その他の構成は第2図に示した装置
とほぼ同様である。
An example of the pyruvate measuring device of the present invention, in which the enzymatic activity of pyruvate oxidase is stabilized by bringing the FAD-containing washing solution into contact with immobilized pyruvate oxidase during measurement, is shown in a block diagram in FIG. In the figure, 12 is a storage tank for concentrated FAD solution, 24 is a micro-liquid pump, and 10 is a small inner diameter pipe, but the other configurations are almost the same as the apparatus shown in FIG.

該測定装置においては、通常次のようにして測
定が行われる。定流量ポンプ16が作動して測定
系内に緩衝液及び濃厚FAD溶液が常時一定の流
量で流れ始めた後、試料注入口14より適当量の
試料液を注入すると、電極部15により試料中の
ピルビン酸が検知される。
In this measuring device, measurements are normally performed as follows. After the constant flow pump 16 is activated and the buffer solution and concentrated FAD solution begin to flow into the measurement system at a constant flow rate, when an appropriate amount of sample solution is injected from the sample injection port 14, the electrode section 15 Pyruvate is detected.

[発明の効果] 本発明によれば、固定化ピルビン酸オキシダー
ゼの酵素活性を安定化することができるため、長
寿命で、かつ安定なピルビン酸測定装置を提供す
ることが可能となる。また、ピルビン酸測定にあ
たつて、測定値の再現性も著しく向上する。
[Effects of the Invention] According to the present invention, the enzymatic activity of immobilized pyruvate oxidase can be stabilized, so it is possible to provide a long-life and stable pyruvate measuring device. Furthermore, when measuring pyruvic acid, the reproducibility of measured values is also significantly improved.

[発明の実施例] 実施例 1 以下に示した装置、試薬を用いて、非測定時に
固定化ピルビン酸オキシダーゼをFAD溶液と接
触させた。
[Examples of the Invention] Example 1 Using the apparatus and reagents shown below, immobilized pyruvate oxidase was brought into contact with a FAD solution during non-measurement.

(A) 装置(第2図参照) (1) 自動溶媒切換器:ガスクロ工業(株)製、モデ
ルSV−5008A (2) 自動三方バルブ:ガスクロ工業(株)製、モデ
ルMPV−3A (3) コントローラー:東京芝浦電気(株)製、(マ
イクロコンピユータ搭載) (B) 試薬 ピルビン酸オキシダーゼは東洋醸造(株)製のも
のを使用した。チアミンピロリン酸及びFAD
は東京化成(株)製のものを使用した。その他の試
薬は市販品(特級)を精製せずにそのまま使用
した。また、コラーゲンは牛皮より調製し、凍
結保存したものを使用時に解凍して使用した。
なお、全操作を通じてイオン交換水を使用し
た。
(A) Equipment (see Figure 2) (1) Automatic solvent changer: Model SV-5008A, manufactured by Gascro Industries Co., Ltd. (2) Automatic three-way valve: Model MPV-3A, manufactured by Gascro Industries Co., Ltd. (3) Controller: manufactured by Tokyo Shibaura Electric Co., Ltd. (equipped with a microcomputer) (B) Reagent Pyruvate oxidase manufactured by Toyo Jozo Co., Ltd. was used. Thiamine pyrophosphate and FAD
The one manufactured by Tokyo Kasei Co., Ltd. was used. Other reagents were commercially available products (special grade) and were used as they were without purification. In addition, collagen was prepared from cowhide, stored frozen, and thawed before use.
Note that ion-exchanged water was used throughout the entire operation.

(C) 緩衝液、POP固定化コラーゲン膜、電極部
及び試料溶液の調製 緩衝液としては、0.05Mリン酸塩緩衝液(PH
7.5)の中に、0.01mM FAD、0.045mM塩化
マンガン及び0.1mMチアミンピロリン酸を含
有せしめたものを使用した。
(C) Preparation of buffer solution, POP-immobilized collagen membrane, electrode part, and sample solution As the buffer solution, 0.05M phosphate buffer (PH
7.5) containing 0.01mM FAD, 0.045mM manganese chloride, and 0.1mM thiamine pyrophosphate was used.

POP固定化コラーゲン膜を次のようにして
調製した。0.6%コラーゲン懸濁液(PHを4.0)
10gをよく撹拌した後、POP(21units/mg)
100mgを混合し軽く撹拌してから真空ポンプを
用いて1分間脱泡した。次に、得られた懸濁液
をテフロン(登録商標名)板(4cm×5cm)上
に展開し、28℃で3時間風乾した。次いで、テ
フロン板から剥離した膜を1cm×1cmに裁断
し、これを0.1%グルタルアルデヒド水溶液
(PHを8.0)を用いて気相中28℃で10分間架橋処
理することによりPOP固定化コラーゲン膜を
調製した。
A POP-immobilized collagen membrane was prepared as follows. 0.6% collagen suspension (PH 4.0)
After stirring 10g well, POP (21units/mg)
After mixing 100 mg and stirring lightly, defoaming was performed for 1 minute using a vacuum pump. Next, the obtained suspension was spread on a Teflon (registered trademark) plate (4 cm x 5 cm) and air-dried at 28°C for 3 hours. Next, the membrane peeled from the Teflon plate was cut into 1 cm x 1 cm pieces, and this was cross-linked in a gas phase at 28°C for 10 minutes using a 0.1% glutaraldehyde aqueous solution (PH 8.0) to form a POP-immobilized collagen membrane. Prepared.

電極部は過酸化水素透過性膜で白金電極を被
覆してなるポーラログラフ式過酸化水素電極の
感応面を、POP固定化コラーゲン膜(厚み:
約60μm、酵素活性:約100IU/cm2)で被覆し、
更にその上をセルロースアセテート製限外瀘過
膜(厚み:約48μm)の粗密層で被覆したもの
を使用した。この電極部をプラスチツク製のフ
ローセルに装着し、これを測定システムに組込
んだ。
The electrode part is a polarographic hydrogen peroxide electrode consisting of a platinum electrode covered with a hydrogen peroxide permeable membrane, and the sensitive surface is covered with a POP-immobilized collagen membrane (thickness:
coated with about 60 μm, enzyme activity: about 100 IU/cm 2 ),
Furthermore, the membrane was covered with a dense layer of cellulose acetate ultrafiltration membrane (thickness: about 48 μm). This electrode part was attached to a plastic flow cell, and this was incorporated into a measurement system.

試料溶液としては、上記緩衝液に0.5mMピ
ルビン酸ナトリウムを添加したものを用いた。
The sample solution used was the above buffer solution to which 0.5 mM sodium pyruvate was added.

(D) 操作 コントローラーの表示パネル上の測定開始ス
イツチを入れて系内に緩衝液を満たした後、シ
リンジポンプのスイツチを入れて200μlの試料
溶液を注入した。測定時の反応温度は37℃、流
速は0.6ml/minであつた。次いで、反応によ
り生成した過酸化水素を電極部で検出し、その
値を記録計で記録した。測定は一日約30回行つ
た。測定終了後はコントローラーの表示パネル
上の測定終了スイツチを入れて系内の緩衝液を
排出してから1mM FAD溶液を充填し、室
温でこの状態のまま一夜保存した。翌日は、コ
ントローラーの測定開始スイツチを入れて系内
のFAD溶液を貯液槽に回収した後、再び系内
に緩衝液を流下せしめて上記と同様の操作を行
つた。
(D) Operation After turning on the measurement start switch on the display panel of the controller and filling the system with buffer, the syringe pump was turned on and 200 μl of the sample solution was injected. The reaction temperature at the time of measurement was 37°C, and the flow rate was 0.6 ml/min. Next, hydrogen peroxide produced by the reaction was detected with the electrode section, and the value was recorded with a recorder. Measurements were performed approximately 30 times a day. After the measurement was completed, the measurement end switch on the display panel of the controller was turned on, the buffer solution in the system was discharged, the system was filled with 1mM FAD solution, and the system was stored in this state overnight at room temperature. The next day, after turning on the measurement start switch on the controller and collecting the FAD solution in the system into the storage tank, the buffer solution was allowed to flow into the system again and the same operation as above was performed.

以上の操作を5日間繰返し行つた。得られた電
極応答値の結果を第5図のAに示した。図から明
らかなように応答値の減少は殆ど認められなかつ
た。また、一日の応答値の偏差も5%以内であつ
た。なお、図示しなかつたが、以上の測定を1ケ
月間行つたところ、1ケ月後の電極応答値は初期
応答値の約90%であつた。
The above operation was repeated for 5 days. The obtained electrode response values are shown in A of FIG. As is clear from the figure, almost no decrease in response value was observed. Furthermore, the deviation of daily response values was within 5%. Although not shown in the figure, when the above measurements were carried out for one month, the electrode response value after one month was approximately 90% of the initial response value.

実施例 2 0.1mMのFAD溶液を用いたこと以外は、実施
例1と同様にして測定を行つた。1週間後の電極
応答値は初期応答値の約90%であつた。
Example 2 Measurement was carried out in the same manner as in Example 1, except that a 0.1 mM FAD solution was used. The electrode response value after one week was approximately 90% of the initial response value.

実施例 3 グルタミン酸オキザロ酢酸トランスアミナーゼ
(GOT)は、α−ケトグルタル酸をオキザロ酢酸
に変換し、オキザロ酢酸デカルボキシラーゼ
(OAC)はこのオキザロ酢酸を分解してピルビン
酸とする。そこで、OACをアミノアルキル多孔
性ガラスビーズを固定化し、これをガラス製カラ
ム(直径3mm、長さ50mm)に充填して、OAC固
定化カラムを調製した。このカラムを第2図に示
した装置の試料注入口と電極部の間に挿入して
GOTの酵素活性を繰返し測定した。
Example 3 Glutamate-oxaloacetate transaminase (GOT) converts α-ketoglutarate to oxaloacetate, and oxaloacetate decarboxylase (OAC) degrades this oxaloacetate to pyruvate. Therefore, an OAC-immobilized column was prepared by immobilizing OAC on aminoalkyl porous glass beads and packing the beads into a glass column (diameter 3 mm, length 50 mm). Insert this column between the sample injection port and the electrode section of the device shown in Figure 2.
The enzymatic activity of GOT was measured repeatedly.

なお、本実施例では、緩衝液の代りに、0.05M
リン酸塩緩衝液(PH7.5)の中に0.01mM FAD、
0.045mM塩化マンガン、0.1mMチアミンピロリ
ン酸、2.1mM α−ケトグルタル酸及び30mM
L−アラニンを含有させた基質溶液を用い、こ
れを貯液槽に貯留させた。
In this example, 0.05M was used instead of the buffer solution.
0.01mM FAD in phosphate buffer (PH7.5),
0.045mM manganese chloride, 0.1mM thiamine pyrophosphate, 2.1mM α-ketoglutarate and 30mM
A substrate solution containing L-alanine was used and stored in a liquid storage tank.

また、試料溶液としては、上記基質溶液に、
10、50、100、並びに500units/LのGOT、0.9%
NaCl及び1%アルブミンを含有させたものを用
いた。実施例1と同様にしてGOT活性を1ケ月
間測定したところ、1ケ月後の電極応答値は初期
応答値の約80%であつた。また、一日の応答値の
偏差も5%以内であつた。
In addition, as a sample solution, in the above substrate solution,
10, 50, 100, and 500 units/L GOT, 0.9%
A solution containing NaCl and 1% albumin was used. When GOT activity was measured for one month in the same manner as in Example 1, the electrode response value after one month was about 80% of the initial response value. Furthermore, the deviation of daily response values was within 5%.

比較例 1 FAD溶液の代りに、実施例1で用いられた
0.01mMのFADを含有する緩衝液を非測定時に
系内に充填したこと以外は、実施例1と同様に測
定を行つた。測定結果を第5図中、Bで示した。
図から明らかなように、測定開始後、3日目から
徐々に電極応答値が減少し、5日後には初期応答
値の約30%の値しか示さなかつた。
Comparative Example 1 Instead of the FAD solution used in Example 1
Measurement was carried out in the same manner as in Example 1, except that a buffer containing 0.01 mM FAD was filled into the system during non-measurement periods. The measurement results are shown as B in FIG.
As is clear from the figure, the electrode response value gradually decreased from the 3rd day after the start of the measurement, and after 5 days only showed a value of about 30% of the initial response value.

比較例 2 0.05mM FAD溶液を非測定時に系内に充填
したこと以外は、実施例1と同様に測定を行つた
ところ、比較例1と同様の結果が得られた。
Comparative Example 2 The same results as in Comparative Example 1 were obtained when measurements were carried out in the same manner as in Example 1, except that the 0.05 mM FAD solution was filled into the system during non-measurement periods.

実施例 4 以下に示した装置、試薬を用いてFAD含有洗
浄液を固定化ピルビン酸オキシダーゼと測定後に
接触させた。
Example 4 Using the apparatus and reagents shown below, a washing solution containing FAD was brought into contact with immobilized pyruvate oxidase after measurement.

(A) 装置(第3図参照) (1) 自動溶媒切換器:ガスクロ工業(株)製、モデ
ルSV−5008A (2) 定流量ポンプ:フルエ科学(株)製、ローラー
ポンプ (3) コントローラー、サンプルインジエクタ
ー:自家製 (B) 試薬 実施例1と同様のものを使用した。
(A) Equipment (see Figure 3) (1) Automatic solvent changer: Model SV-5008A, manufactured by Gascro Kogyo Co., Ltd. (2) Constant flow pump: Roller pump, manufactured by Flue Scientific Co., Ltd. (3) Controller, Sample injector: Homemade (B) Reagent The same one as in Example 1 was used.

(C) 緩衝液、POP固定化コラーゲン膜、電極部
及び試料溶液の調製 緩衝液及びPOP固定化コラーゲン膜として
は、実施例1と同様のものを使用した。電極部
としては、過酸化水素透過性膜の代りに酸素透
過性膜を用いたこと以外は、実施例1と同様の
ものを使用した。また、試料溶液としては、
0.5mMのピルビン酸ナトリウムを添加した全
血及びGPTを適当量添加した全血を使用した。
(C) Preparation of buffer solution, POP-immobilized collagen membrane, electrode part, and sample solution The same buffer solution and POP-immobilized collagen membrane as in Example 1 were used. The same electrode part as in Example 1 was used except that an oxygen permeable membrane was used instead of the hydrogen peroxide permeable membrane. In addition, as a sample solution,
Whole blood supplemented with 0.5 mM sodium pyruvate and whole blood supplemented with an appropriate amount of GPT were used.

(D) 操作 酵素反応の結果減少する溶存酸素量を測定し
て酵素活性を測定したこと以外は、実施例1と
同様に操作した。なお、測定が終了する度毎
に、0.5mMのFAD含有洗浄液(0.01%トリト
ン溶液)で系内を洗浄し、次いで配管内に緩衝
液を流下せしめて、次の測定を行つた。また1
日の測定が終了した後は、洗浄液を系内に充填
しておき、室温でこの状態のまま一夜保存し
た。
(D) Operation The same procedure as in Example 1 was performed except that the enzyme activity was measured by measuring the amount of dissolved oxygen that decreased as a result of the enzyme reaction. Each time a measurement was completed, the inside of the system was washed with a washing solution containing 0.5 mM FAD (0.01% Triton solution), and then the buffer solution was allowed to flow down into the piping, and the next measurement was performed. Also 1
After the day's measurements were completed, the system was filled with a cleaning solution and stored in this state overnight at room temperature.

以上の操作を5日間繰返し行つた。得られた電
極応答値の結果を第6図中、Aで示した。図から
明らかなように応答値の減少は殆ど認められなか
つた。また、一日の応答値の偏差も5%以内であ
つた。なお、以上の測定を1ケ月間行つたとこ
ろ、1ケ月後の電極応答値は初期応答値の約90%
であつた。
The above operation was repeated for 5 days. The obtained electrode response values are shown as A in FIG. As is clear from the figure, almost no decrease in response value was observed. Furthermore, the deviation of daily response values was within 5%. When the above measurements were carried out for one month, the electrode response value after one month was approximately 90% of the initial response value.
It was hot.

実施例 5 0.1mMのFAD洗浄液を用いたこと以外は、実
施例4と同様にして測定を行つた。5日間測定後
の電極応答値は初期応答値の約80%であつた。
Example 5 Measurements were carried out in the same manner as in Example 4, except that a 0.1 mM FAD washing solution was used. The electrode response value after 5 days of measurement was about 80% of the initial response value.

実施例 6 アラニンケトグルタル酸アミノトランスフエラ
ーゼ(GPT)はL−アラニンをピルビン酸に変
換する酵素である。そこで、本実施例では、緩衝
液の代りに、0.05Mリン酸塩緩衝液(PH7.5)中
に0.01mM FAD、0.045mM塩化マンガン、0.1
mMチアミンピロリン酸、0.02M α−ケトグル
タル酸及び0.3M L−アラニンを含有させた基質
溶液を用い、これを貯液槽に貯留させて、全血中
のGPT活性を測定した。
Example 6 Alanine Ketoglutarate Aminotransferase (GPT) is an enzyme that converts L-alanine to pyruvate. Therefore, in this example, instead of the buffer, 0.01mM FAD, 0.045mM manganese chloride, 0.1
A substrate solution containing mM thiamine pyrophosphate, 0.02M α-ketoglutaric acid, and 0.3M L-alanine was used and stored in a reservoir to measure GPT activity in whole blood.

なお、試料溶液としては、上記基質溶液に10、
50、100、200及び500units/LのGPTを含有さ
せた全血を用いた。
In addition, as a sample solution, add 10% to the above substrate solution.
Whole blood containing 50, 100, 200 and 500 units/L of GPT was used.

実施例4と同様にしてGPT活性を測定したと
ころ、GPT活性と電極応答値は上記の範囲内で
直線関係にあつた。そこで、100units/Lの
GPTを含有する全血を用いて1ケ月間測定した
ところ、1ケ月後の電極応答値は初期応答値の約
75%であつた。また、一日の応答値の偏差も5%
以内であつた。
When GPT activity was measured in the same manner as in Example 4, there was a linear relationship between GPT activity and electrode response value within the above range. Therefore, 100 units/L
When measurements were taken for one month using whole blood containing GPT, the electrode response value after one month was approximately the initial response value.
It was 75%. Also, the deviation of the daily response value is 5%.
It was within

比較例 3 洗浄液中のFAD濃度を0.01mMとしたこと以
外は、実施例4と同様に測定を行つた。測定結果
を第6図中、Bで示した。図から明らかなよう
に、測定開始後、3日目から徐々に電極応答値が
減少し、5日後には初期応答値の約25%の値しか
示さなかつた。
Comparative Example 3 Measurement was carried out in the same manner as in Example 4, except that the FAD concentration in the washing solution was 0.01 mM. The measurement results are shown as B in FIG. As is clear from the figure, the electrode response value gradually decreased from the 3rd day after the start of the measurement, and after 5 days only showed a value of about 25% of the initial response value.

比較例 4 洗浄液中のFAD濃度を0.05mMとしたこと以
外は、実施例4と同様に測定を行つたところ、比
較例3と同様の結果が得られ、5日後の電極応答
値は初期の約30%に減少した。
Comparative Example 4 Measurements were carried out in the same manner as in Example 4, except that the FAD concentration in the washing solution was 0.05mM, and the same results as in Comparative Example 3 were obtained, and the electrode response value after 5 days was about the same as the initial value. decreased to 30%.

実施例 7 以下に示した装置、試薬を用いて、測定時に固
定化ピルビン酸オキシダーゼをフラビンアデニン
ジヌクレオチド溶液と接触させた。
Example 7 Immobilized pyruvate oxidase was brought into contact with a flavin adenine dinucleotide solution during measurement using the apparatus and reagents shown below.

(A) 装置(第4図参照) 微量送液ポンプ:島津製作所(株)製、LC−5A (B) 試薬 実施例1と同様のものを使用した。(A) Equipment (see Figure 4) Micro-liquid pump: Manufactured by Shimadzu Corporation, LC-5A (B) Reagent The same material as in Example 1 was used.

(C) 緩衝液、POP固定化コラーゲン膜、電極部
及び試料溶液の調製 緩衝液及びPOP固定化コラーゲン膜として
は、実施例1と同様のものを使用した。電極部
としては、過酸化水素透過性膜の代りに酸素透
過性テフロン膜を用いたこと以外は、実施例1
と同様のものを使用した。また、試料溶液とし
ては、実施例1と同様のものを使用し、試料注
入口4からマイクロシリンジで100μずつ注
入した。
(C) Preparation of buffer solution, POP-immobilized collagen membrane, electrode part, and sample solution The same buffer solution and POP-immobilized collagen membrane as in Example 1 were used. Example 1 except that an oxygen permeable Teflon membrane was used instead of the hydrogen peroxide permeable membrane as the electrode part.
I used something similar. Further, the same sample solution as in Example 1 was used, and 100 microns of each solution was injected from the sample injection port 4 with a microsyringe.

(D) 操作 まず、定流量ポンプ(流速:0.6ml/min)
及び微量送液ポンプ(流速:10μ/min)を
始動し、系内に緩衝液及び1mM FAD溶液
を注入した。電極部の応答が安定したことを記
録計上で確認した後、試料注入口から上記試料
溶液100μを注入した。1日の測定が終了し
た後は、各装置を停止し、室温でこの状態のま
ま一夜保存した。
(D) Operation First, constant flow pump (flow rate: 0.6ml/min)
Then, the micro-liquid pump (flow rate: 10 μ/min) was started, and the buffer solution and 1 mM FAD solution were injected into the system. After confirming on the recorder that the response of the electrode part was stable, 100 μ of the above sample solution was injected from the sample injection port. After one day's measurements were completed, each device was stopped and stored overnight in this state at room temperature.

1日に30回以上測定し、以上の操作を7日間
繰返し行つた。得られた電極応答値の結果を第
7図中、Aで示した。図から明らかなように応
答値の減少は殆ど認められなかつた。また、一
日の応答値の偏差も5%以内であつた。なお、
以上の測定を1ケ月間行つたところ、1ケ月後
の電極応答値は初期応答値の約90%であつた。
Measurements were taken at least 30 times a day, and the above operations were repeated for 7 days. The obtained electrode response values are shown as A in FIG. As is clear from the figure, almost no decrease in response value was observed. Furthermore, the deviation of daily response values was within 5%. In addition,
When the above measurements were carried out for one month, the electrode response value after one month was about 90% of the initial response value.

実施例 8 1mMのFAD溶液の代りに0.1mMのFAD溶液
(流速:10mol/min)を用いたこと以外は、実
施例7と同様にして測定を行つた。5日間繰返し
測定を行つたところ、電極応答値は初期の約80%
であつた。また、一日の応答値の偏差も10%以内
であつた。
Example 8 Measurement was carried out in the same manner as in Example 7 except that 0.1 mM FAD solution (flow rate: 10 mol/min) was used instead of 1 mM FAD solution. After repeated measurements for 5 days, the electrode response value was approximately 80% of the initial value.
It was hot. Furthermore, the deviation of daily response values was within 10%.

実施例 9 実施例3と同様に、OACをアミノアルキル多
孔性ガラスビーズを固定化し、これをガラス製カ
ラム(直径3mm、長さ50mm)に充填して、OAC
固定化カラムを調製した。このカラムを第4図に
示した装置の試料注入口と電極部の間に挿入して
GOTの酵素特性を繰返し測定した。
Example 9 In the same manner as in Example 3, OAC was immobilized on aminoalkyl porous glass beads, which were packed into a glass column (diameter 3 mm, length 50 mm), and OAC
An immobilized column was prepared. Insert this column between the sample injection port and the electrode section of the device shown in Figure 4.
The enzymatic properties of GOT were repeatedly measured.

なお、本実施例では、緩衝液の代りに、0.05M
リン酸塩緩衝液(PH7.5)中に0.01mM FAD、
0.045mM 塩化マンガン、0.1mM チアミンピ
ロリン酸、2.1mM α−ケトグルタル酸及び30
mM L−アラニンを含有させた基質溶液を用
い、これを貯液槽に貯留させた。
In this example, 0.05M was used instead of the buffer solution.
0.01mM FAD in phosphate buffer (PH7.5),
0.045mM manganese chloride, 0.1mM thiamine pyrophosphate, 2.1mM α-ketoglutarate and 30
A substrate solution containing mM L-alanine was used and stored in a storage tank.

また、試料溶液としては、上記基質溶液に10、
50、100、及び500units/LのGOTと、更に0.9%
NaCl及び1%アルブミンを含有させたものを用
いた。実施例7と同様にしてGOT活性を1ケ月
間測定したところ、1ケ月後の電極応答値は初期
応答値の約75%であつた。また、一日の応答値の
偏差も8%以内であつた。
In addition, as a sample solution, 10,
50, 100, and 500 units/L GOT and additional 0.9%
A solution containing NaCl and 1% albumin was used. GOT activity was measured for one month in the same manner as in Example 7, and the electrode response value after one month was approximately 75% of the initial response value. Furthermore, the deviation of daily response values was within 8%.

比較例 5 微量送液ポンプを作動させなかつたこと以外
は、実施例7と同様に測定を行つた。測定結果を
第7図中、Bで示した。図から明らかなように、
測定開始後、3日目から徐々に電極応答値が減少
し、1週間後には初期応答値の約25%の値しか示
さなかつた。
Comparative Example 5 Measurement was carried out in the same manner as in Example 7, except that the micro-liquid pump was not operated. The measurement results are indicated by B in FIG. As is clear from the figure,
The electrode response value gradually decreased from the third day after the start of the measurement, and after one week, the electrode response value showed only about 25% of the initial response value.

比較例 6 1mM FAD溶液の代りに0.05mM FAD溶
液(流速:5×10-10mol/min)を用いたこと以
外は、実施例7と同様に測定を行つたところ、比
較例5と同様の結果が得られた。
Comparative Example 6 Measurement was carried out in the same manner as in Example 7, except that 0.05mM FAD solution (flow rate: 5 × 10 -10 mol/min) was used instead of 1mM FAD solution, and the same results as in Comparative Example 5 were obtained. The results were obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置における電極部の部分断面
図、第2図は非測定時にFAD溶液を固定化POP
と接触せしめる機構を備えた本発明装置のブロツ
ク図、第3図は非測定時にFAD含有洗浄液を固
定化POPと接触せしめる機構を備えた本発明装
置のブロツク図、第4図は測定時にFAD溶液を
固定化POPと接触せしめる機構を備えた本発明
装置のブロツク図、第5〜7図は各々第2〜4図
に示した装置を用いて実施例と比較例との測定を
行つた場合の測定日数と電極応答値との関係図で
ある。 1……フローセル、2……限外瀘過膜、3……
緩衝液層、4……O−リング、5……酸素又は過
酸化水素透過性膜、6……POP固定化膜、7…
…白金陰極、8……鉛陽極、9……配管、10…
…小内径配管、11……緩衝液又は基質溶液の貯
液槽、12……濃厚FAD溶液の貯液槽、13…
…自動溶媒切換器、14……試料注入口、15…
…電極部、16……定流量ポンプ、17……自動
三方バルブ、18a及び18b……配管、19…
…排液槽、20……記録計、21……コントロー
ラー、22……スターラー、23……撹拌子、2
4……微量送液ポンプ。
Figure 1 is a partial cross-sectional view of the electrode part in the device of the present invention, and Figure 2 is a POP that immobilizes the FAD solution when not measuring.
FIG. 3 is a block diagram of the device of the present invention equipped with a mechanism for bringing the FAD-containing washing solution into contact with the immobilized POP when not in measurement, and FIG. Figures 5 to 7 are block diagrams of the device of the present invention equipped with a mechanism for bringing POP into contact with immobilized POP, and Figures 5 to 7 show the results of measurements in the example and comparative example using the devices shown in Figures 2 to 4, respectively. It is a relationship diagram between the number of measurement days and electrode response values. 1... Flow cell, 2... Ultrafiltration membrane, 3...
Buffer layer, 4... O-ring, 5... Oxygen or hydrogen peroxide permeable membrane, 6... POP immobilization membrane, 7...
...Platinum cathode, 8...Lead anode, 9...Piping, 10...
...Small inner diameter piping, 11...Liquid storage tank for buffer solution or substrate solution, 12...Liquid storage tank for concentrated FAD solution, 13...
...Automatic solvent changer, 14...Sample injection port, 15...
... Electrode part, 16 ... Constant flow pump, 17 ... Automatic three-way valve, 18a and 18b ... Piping, 19 ...
... Drainage tank, 20 ... Recorder, 21 ... Controller, 22 ... Stirrer, 23 ... Stirrer, 2
4...Minor liquid feed pump.

Claims (1)

【特許請求の範囲】 1 固定化ピルビン酸オキシダーゼを用いたピル
ビン酸測定装置において、 0.1〜50mMのフラビンアデニンジヌクレオチ
ド溶液を該固定化ピルビン酸オキシダーゼと接触
せしめる機構を備えたことを特徴とするピルビン
酸測定装置。 2 非測定時にフラビンアデニンジヌクレオチド
溶液を固定化ピルビン酸オキシダーゼと接触せし
める機構を備えた特許請求の範囲第1項記載のピ
ルビン酸測定装置。 3 フラビンアデニンジヌクレオチドを含有した
洗浄液を、測定終了後に固定化ピルビン酸オキシ
ダーゼと接触せしめる機構を備えた特許請求の範
囲第1項記載のピルビン酸測定装置。 4 測定時に、10-9〜10-6mol/minの供給速度
でフラビンアデニンジヌクレオチド溶液を固定化
ピルビン酸オキシダーゼと接触せしめる機構を備
えた特許請求の範囲第1項記載のピルビン酸測定
装置。
[Scope of Claims] 1. A pyruvate measuring device using immobilized pyruvate oxidase, characterized in that it is equipped with a mechanism for bringing a 0.1 to 50 mM flavin adenine dinucleotide solution into contact with the immobilized pyruvate oxidase. Acid measuring device. 2. The pyruvate measuring device according to claim 1, comprising a mechanism for bringing the flavin adenine dinucleotide solution into contact with the immobilized pyruvate oxidase during non-measurement. 3. The pyruvate measuring device according to claim 1, comprising a mechanism for bringing the washing solution containing flavin adenine dinucleotide into contact with the immobilized pyruvate oxidase after the measurement is completed. 4. The pyruvate measuring device according to claim 1, comprising a mechanism for bringing the flavin adenine dinucleotide solution into contact with the immobilized pyruvate oxidase at a supply rate of 10 -9 to 10 -6 mol/min during measurement.
JP58053637A 1983-03-31 1983-03-31 Measuring device for pyruvic acid Granted JPS59180353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58053637A JPS59180353A (en) 1983-03-31 1983-03-31 Measuring device for pyruvic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58053637A JPS59180353A (en) 1983-03-31 1983-03-31 Measuring device for pyruvic acid

Publications (2)

Publication Number Publication Date
JPS59180353A JPS59180353A (en) 1984-10-13
JPH0248059B2 true JPH0248059B2 (en) 1990-10-23

Family

ID=12948414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58053637A Granted JPS59180353A (en) 1983-03-31 1983-03-31 Measuring device for pyruvic acid

Country Status (1)

Country Link
JP (1) JPS59180353A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820401B2 (en) * 1990-10-31 1996-03-04 財団法人ダム水源地境環整備センター Phosphate sensor
JP4690122B2 (en) * 2005-06-22 2011-06-01 株式会社テクノメディカ Electrode structure and enzyme sensor for measuring phosphate in body fluid containing the same

Also Published As

Publication number Publication date
JPS59180353A (en) 1984-10-13

Similar Documents

Publication Publication Date Title
CA1177735A (en) Method of polarographic analysis of lactic acid and lactate
Blaedel et al. Reagentless enzyme electrodes for ethanol, lactate, and malate
JPH04233446A (en) Electrochemical enzyme sensor
US4780191A (en) L-glutamine sensor
US4024042A (en) Enzyme electrode
Clark Jr [41] The hydrogen peroxide sensing platinum anode as an analytical enzyme electrode
FI92221B (en) Amperometric method for quantitative determination of 1,4-dihydronic nicotinamide adenine dinucleotide (NADH) in solution
Kulys et al. Sensitive yeast bioelectrode to L‐lactate
CA1109374A (en) Stabilization of activated galactose oxidase enzyme
Kauffmann et al. Enzyme electrode biosensors: theory and applications
Matsumoto et al. Amperometric determination of choline with use of immobilized choline oxidase
Kihara et al. Sequential determination of glutamate-oxalacetate transaminase and glutamate-pyruvate transaminase activities in serum using an immobilized bienzyme-poly (vinyl chloride) membrane electrode
Kobos Potentiometric enzyme methods
Laurinavicius et al. Amperometric glyceride biosensor
US5306413A (en) Assay apparatus and assay method
Gulberg et al. The use of immobilized alcohol oxidase in the continuous flow determination of ethanol with an oxygen electrode
Kihara et al. Determination of glutamate-pyruvate transaminase activity in blood serum with a pyruvate oxidase/poly (vinyl chloride) membrane sensor
JPH0248059B2 (en)
Weaver et al. An O2-based enzyme electrode for whole blood lactate measurement under continuous flow conditions
Appelqvist et al. Determination of glucose in fermentation processes by means of an on-line coupled flow-injection system using enzyme sensors based on chemically modified electrodes
Santoni et al. Enzyme electrode for glucose determination in whole blood
JP3367162B2 (en) Measuring device and its activation method
Okuma et al. Biosensor system for continuous flow determination of enzyme activities. I. Determination of glucose oxidase and lactic dehydrogenase activities
JPH04326054A (en) Glucose sensor
Botrè et al. Determination of L-glutamate and L-glutamine in pharmaceutical formulations by amperometric L-glutamate oxidase based enzyme sensors