JPH0820401B2 - Phosphate sensor - Google Patents
Phosphate sensorInfo
- Publication number
- JPH0820401B2 JPH0820401B2 JP2294137A JP29413790A JPH0820401B2 JP H0820401 B2 JPH0820401 B2 JP H0820401B2 JP 2294137 A JP2294137 A JP 2294137A JP 29413790 A JP29413790 A JP 29413790A JP H0820401 B2 JPH0820401 B2 JP H0820401B2
- Authority
- JP
- Japan
- Prior art keywords
- sensor
- membrane
- phosphate
- immobilized
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば河川や湖沼等の水中に溶存してい
るリン酸イオンの濃度を測定するセンサに関する。Description: TECHNICAL FIELD The present invention relates to a sensor for measuring the concentration of phosphate ions dissolved in water such as rivers and lakes.
現在、水質管理上、河川や湖沼等の富栄養化の一因と
なりうるリン酸を測定することは、重要な作業となって
いる。そして、従来、水中に溶存しているリン酸イオン
濃度の定量法としては、吸光光度法、容量法、原子吸光
法、重量法等の測定方法が知られている。At present, in terms of water quality management, measuring phosphoric acid, which can contribute to eutrophication of rivers and lakes, is an important task. Conventionally, as a method for quantifying the concentration of phosphate ions dissolved in water, there are known measurement methods such as an absorptiometric method, a volumetric method, an atomic absorption method, and a gravimetric method.
まず、吸光光度法の中には、モリブドリン酸法、モリ
ブンデンブルー法、バナドモリブドリン酸法等がある。
これらの測定法は、各試薬をリン酸に反応させた後、そ
れぞれの反応物質特有な波長の吸収光を当てて吸光度を
測り、その結果からリン酸イオンの含有量を測定する方
法である。First, among the absorptiometry methods, there are a molybdophosphoric acid method, a moribunden blue method, a vanadomolybdophosphoric acid method, and the like.
These measuring methods are methods in which each reagent is reacted with phosphoric acid, and then the absorbance is measured by applying an absorption light having a wavelength peculiar to each reactant, and the content of phosphate ion is measured from the result.
また、容量法は、反応の終点まで濃度既知の塩基を加
えその容量を測定することにより、リン酸イオンの含有
量を測定する方法であって、中和滴定や、キレート滴定
等がある。The volume method is a method of measuring the content of phosphate ions by adding a base of known concentration to the end point of the reaction and measuring the volume thereof, and there are neutralization titration, chelate titration, and the like.
さらに、原子吸光法は、一旦、リン酸をモリブデン酸
アンモニウムとして沈澱させ、これを濾過し、再び溶解
させてモリブデンを原子吸光で定量する方法であり、ま
た重量法は、マグネシア混液中でマグネシウムと沈澱を
生じさせたのち、焼成してMg2P2O7を秤量する方法であ
る。Furthermore, the atomic absorption method is a method in which phosphoric acid is once precipitated as ammonium molybdate, filtered, dissolved again, and molybdenum is quantitatively determined by atomic absorption method. This is a method in which after the precipitation is generated, it is calcined and Mg 2 P 2 O 7 is weighed.
しかしながら、上記吸光光度法では、測定物質の固有
波長に近似した波長を有する他の物質の影響を受けるた
め、正確な測定値を得られ難いという不具合がある。However, the absorptiometry method has a problem that it is difficult to obtain an accurate measurement value because it is affected by another substance having a wavelength close to the characteristic wavelength of the measurement substance.
一方、容量法、原子吸光法、重量法などは正確な定量
を行えるが、同測定を行うためにはサンプルの測定設備
が整った施設が必要があるなど、リアルタイム測定が不
可能であって、測定水域の水質を即時に把握し、迅速な
対応を行う所定水域の水質管理作業には適さないという
不具合もある。On the other hand, the volumetric method, atomic absorption method, gravimetric method, etc. can perform accurate quantification, but in order to perform the same measurement, it is necessary to have a facility equipped with sample measurement equipment, so real-time measurement is impossible, There is also a problem that it is not suitable for the water quality management work of a predetermined water area, which immediately grasps the water quality of the measurement water area and takes prompt action.
そこで、この発明はこのような点を考慮してなされた
ものであり、本発明の目的は、被検査水中に溶存してい
るリン酸イオンを、他の物質の影響を受けることなく正
確に測定することができ、且つ同測定作業をリアルタイ
ムに行うことができるリン酸センサを提供することにあ
る。Therefore, the present invention has been made in consideration of such points, and an object of the present invention is to accurately measure phosphate ions dissolved in test water without being affected by other substances. Another object of the present invention is to provide a phosphoric acid sensor that can perform the measurement work in real time.
〔課題を解決するための手段〕 この発明は、検査試料を接触させる側に開口部を設け
た容器内に電極板を配置し、前記開口部を酸素を透過さ
せるガス透析膜で塞ぎ、当該電極板が浸る量の電解液を
前記容器内に封入して溶存酸素電極を構成するととも
に、前記ガス透析膜の外側には、ピルビン酸オキシダー
ゼを半透膜状に固定化したピルビン酸オキシダーゼ固定
化膜を所定の空間を開けて取り付けたことを特徴とする
リン酸センサを構成することにより、上記課題を解決し
ている。[Means for Solving the Problem] The present invention is to dispose an electrode plate in a container having an opening on the side to be contacted with a test sample, and to close the opening with a gas dialysis membrane that allows oxygen to permeate therethrough. A dissolved oxygen electrode is formed by enclosing an electrolytic solution in an amount that the plate is immersed in the container, and a pyruvate oxidase-immobilized membrane in which pyruvate oxidase is immobilized in a semipermeable membrane shape on the outside of the gas dialysis membrane. The above problem is solved by constructing a phosphoric acid sensor characterized in that a predetermined space is opened and attached.
本発明のリン酸センサを酸素及びピルビン酸を溶存さ
せている緩衝液中に浸漬し、さらに検査試料を投入す
る。The phosphate sensor of the present invention is immersed in a buffer solution in which oxygen and pyruvic acid are dissolved, and a test sample is added.
ここで、このリン酸センサのガス透析膜の外側に所定
の空間を開けて取り付けられるピルビン酸オキシダーゼ
固定化膜は、ピルビン酸オキシダーゼ(EC1.2.3.3,以
下、POPという)を半透膜に固定したものである。そし
て、同酵素は下記(1)式に示す反応を触媒する酵素で
あって、前記空間において、酸素を水素受容体としてピ
ルビン酸を酸化すると同時にリン酸化し、アセチルリン
酸、二酸化炭素、過酸化水素を生成させる作用を促進さ
せる。Here, the pyruvate oxidase-immobilized membrane, which is attached outside the gas dialysis membrane of this phosphate sensor with a predetermined space open, uses pyruvate oxidase (EC1.2.3.3, POP) as a semipermeable membrane. It is fixed. The enzyme is an enzyme that catalyzes the reaction represented by the following formula (1), and in the space, oxygen is used as a hydrogen acceptor to oxidize pyruvic acid, and at the same time, phosphorylates acetyl phosphate, carbon dioxide, and peroxidation. Promotes the action of producing hydrogen.
ここで、同固定化膜は半透膜であり、基質や水、補酵
素のような低分子を充分透過させ、酵素のような高分子
を透過させることはない。従って、酵素は半透膜から外
へ透過することはないのに対して、緩衝液および検査試
料に含まれる前記(1)式の反応物質は半透膜を容易に
透過し、もって固定化POPと前記反応物とが前記空間に
おいて接することになり、上記反応が生じて緩衝液中の
酸素が消費される。 Here, the immobilization membrane is a semipermeable membrane, and it sufficiently permeates low molecules such as substrates, water and coenzymes, but does not permeate macromolecules such as enzymes. Therefore, the enzyme does not permeate to the outside from the semipermeable membrane, while the buffer and the reaction substance of the above formula (1) contained in the test sample easily permeate through the semipermeable membrane, so that the immobilized POP is immobilized. And the reaction product come into contact with each other in the space, and the above reaction occurs to consume oxygen in the buffer solution.
一方、電極板に生じる起電力は緩衝液中の酸素の溶存
量に依存し、これに従って線型に変化する(溶存酸素が
減少すれば、電流量も減少する)から、検査試料投入に
よる溶存酸素電極の電流の減少量を測定することによ
り、検査試料中に溶存しているリン酸イオンの濃度の測
定が可能となる。On the other hand, the electromotive force generated on the electrode plate depends on the dissolved amount of oxygen in the buffer solution, and changes linearly according to this (if the dissolved oxygen decreases, the current amount also decreases). It is possible to measure the concentration of phosphate ions dissolved in the test sample by measuring the amount of decrease in the current.
なお、緩衝液中には上記反応を促進させるために、補
酵素としてフラビンアデニンジヌクレオチド(FAD)及
びデアミンピロリン酸(TPP)を適量投入しておく。In addition, flavin adenine dinucleotide (FAD) and deamine pyrophosphate (TPP) as coenzymes are appropriately added to the buffer solution in order to promote the above reaction.
次に、本発明の一実施例を第1図乃至第3図に基づい
て説明する。本実施例は、河川や湖沼透の水域の水質管
理に利用されるものであり、検査試料のリン酸イオン濃
度の測定を短時間で行うことを目的としたセンサであ
る。Next, an embodiment of the present invention will be described with reference to FIGS. This example is used for water quality control in rivers and lakes, and is a sensor for measuring the phosphate ion concentration of a test sample in a short time.
第1図に、本実施例のリン酸センサの側断面図を示
す。このリン酸センサ1は、電解液Xを封入した溶存酸
素電極2と、ピルビン酸オキシダーゼ固定化膜(以下、
POP固定化膜という)3とにより構成される。FIG. 1 shows a side sectional view of the phosphoric acid sensor of this embodiment. This phosphoric acid sensor 1 comprises a dissolved oxygen electrode 2 in which an electrolytic solution X is enclosed, a pyruvate oxidase-immobilized film (hereinafter,
(Referred to as POP immobilization film) 3.
溶存酸素電極2は、容器21を有し、この容器21は円筒
状の本体21aと、上部を覆う蓋体21bとにより構成され、
その下端の開口部21cは酸素を透過させるガス透析膜22
によって塞いでいる。また、この容器21内には、プラチ
ナ(Pt)により形成された陰極板23と、鉛(Pb)により
形成された陽極板24を配置しており、容器21内に充たさ
れた電解液Xが両電極23,24のブリッジの役割を果たし
ている。なお、電解液Xとしては、例えば30%水酸化カ
リウム溶液を用いる。The dissolved oxygen electrode 2 has a container 21, which is composed of a cylindrical main body 21a and a lid 21b that covers the upper portion of the main body 21a.
The opening 21c at the lower end is a gas dialysis membrane 22 that allows oxygen to pass therethrough.
Is blocked by. A cathode plate 23 made of platinum (Pt) and an anode plate 24 made of lead (Pb) are arranged in the container 21, and the electrolytic solution X filled in the container 21 is arranged. Serves as a bridge between both electrodes 23 and 24. As the electrolytic solution X, for example, a 30% potassium hydroxide solution is used.
また、両電極23,24に接続されるリード線23a,24aは、
容器21外部で抵抗41を介して短絡されており、この抵抗
41と並列に電圧計42を接続している。Further, the lead wires 23a, 24a connected to both electrodes 23, 24,
It is short-circuited outside the container 21 via the resistor 41.
A voltmeter 42 is connected in parallel with 41.
POP固定化膜3は、POPを定着させた円板3aの周縁に立
設部3bを形成してなり、これを前記容器21の下端に嵌め
込み、Oリング43で立設部3bを締め付けることにより溶
存酸素電極2のガス透析膜21の外側に、所定の空間5を
開けて取り付けている。この空間5において、緩衝液中
の酸素およびピルビン酸と検査試料Y中のリン酸とが反
応するようになっている。以下、この空間5を反応部5
と称する。The POP immobilization film 3 is formed by forming a standing portion 3b on the peripheral edge of a disk 3a on which POP is fixed. By fitting this into the lower end of the container 21 and tightening the standing portion 3b with an O ring 43 A predetermined space 5 is opened and attached to the outside of the gas dialysis membrane 21 of the dissolved oxygen electrode 2. In this space 5, oxygen and pyruvic acid in the buffer solution react with phosphoric acid in the test sample Y. Hereinafter, this space 5 is referred to as the reaction section 5
Called.
本実施例においては、POP固定化膜3は以下の工程に
より調製している。まず0.2mlのPOP,30Uを0.1モルTris
−malate緩衝液に溶解し、0.8mlの光架橋性ポリビニル
アルコール(商品名PVA−SbQ,東洋合成製)11%溶液と
混合し、これを透析膜上に展開する。そして、室温で、
暗所において5時間程度風乾させ、紫外線を照射してPO
P固定化膜を製造する。このように製造されたPOP固定化
膜は、半透膜状になり、基質や水、補酵素のような低分
子を充分に透過させる一方、酵素のような高分子を透過
させない。In this embodiment, the POP immobilization film 3 is prepared by the following steps. First, 0.2 ml of POP and 30 U of 0.1 mol Tris
-Dissolve in malate buffer, mix with 0.8 ml of 11% solution of photo-crosslinkable polyvinyl alcohol (trade name PVA-SbQ, manufactured by Toyo Gosei), and develop this on a dialysis membrane. And at room temperature,
Air-dry for about 5 hours in the dark and irradiate with ultraviolet rays to PO
A P-immobilized membrane is manufactured. The thus-prepared POP-immobilized membrane has a semipermeable membrane shape and is sufficiently permeable to low molecules such as substrates, water and coenzymes, but is impermeable to macromolecules such as enzymes.
なお、POPの固定化法としては、このほか共有結合
法、吸着法、包括法などの調製法が知られているが、ピ
ルビン酸オキシダーゼを半透膜状に固定化した固定化膜
が、前述のように、半透膜である透析膜などの上に従来
の固定化法で形成される固定化膜が貼り合わされた構造
のものである場合には、前記調製法を用いて半透膜上の
固定化膜を調製してもよい。Other known methods for immobilizing POP are covalent bond methods, adsorption methods, and entrapment methods. However, the immobilization membrane in which pyruvate oxidase is immobilized in a semipermeable membrane is In the case of a structure in which an immobilization membrane formed by a conventional immobilization method is laminated on a semipermeable membrane such as a dialysis membrane, the above-mentioned preparation method is used. The immobilization membrane of may be prepared.
次に、本実施例の作用を第1図乃至第3図に基づいて
説明する。Next, the operation of this embodiment will be described with reference to FIGS.
このリン酸センサ1を、酵素、10-3モルのTPP(補酵
素)、10-5モルのFAD(補酵素)、0.5mモルのピルビン
酸を含有する0.1モルTris−malate緩衝液に浸漬し、そ
の後、所定量の検査試料Yを投入すると、これら緩衝液
及び検査試料YはPOP固定化膜3を透過して反応部5に
進入する。このとき、緩衝液中の酸素分子はガス透過膜
22を通過して白金電極たる陰極板23に働きかけ、同表面
で電子が消費されるために陰極板23と陽極板24の間に酸
素の溶存量に比例した電流が流れる。The phosphate sensor 1 was dipped in a 0.1 mol Tris-malate buffer solution containing an enzyme, 10 -3 mol of TPP (coenzyme), 10 -5 mol of FAD (coenzyme), and 0.5 mmol of pyruvic acid. After that, when a predetermined amount of the test sample Y is introduced, the buffer solution and the test sample Y penetrate the POP immobilization film 3 and enter the reaction part 5. At this time, the oxygen molecules in the buffer solution are the gas permeable membrane.
It acts on the cathode plate 23, which is a platinum electrode, after passing through 22, and electrons are consumed on the surface, so that a current proportional to the dissolved amount of oxygen flows between the cathode plate 23 and the anode plate 24.
なお、抵抗41と電圧計42とを並列に接続し、且つ抵抗
41の抵抗値が既知であるから、この電圧を測定すること
により両極間の電流量は容易に求めることができる。In addition, the resistor 41 and the voltmeter 42 are connected in parallel, and
Since the resistance value of 41 is known, the amount of current between both electrodes can be easily obtained by measuring this voltage.
一方、反応部5においては前記(1)式の反応が促進
される。すなわち、緩衝液中に溶存する酸素及び検査試
料Y中のリン酸は、POP固定化膜3に含有されたPOPを触
媒としてピルビン酸を酸化及びリン酸化させ、消費され
る。On the other hand, in the reaction part 5, the reaction of the above formula (1) is promoted. That is, oxygen dissolved in the buffer solution and phosphoric acid in the test sample Y are consumed by oxidizing and phosphorylating pyruvic acid using the POP contained in the POP immobilization film 3 as a catalyst.
ここで、両電極間の電流は、酸素が消費されることに
より減少するが、上記反応によりリン酸と酸素は一定の
割合で消費される(リン酸1モルに対して酸素1モルが
消費される)ために、同電流量をモニタすれば、容易に
リン酸の含有量を検出することができる。Here, the current between the two electrodes decreases due to the consumption of oxygen, but the above reaction consumes phosphoric acid and oxygen at a constant ratio (1 mol of oxygen is consumed for 1 mol of phosphoric acid). Therefore, if the same amount of current is monitored, the content of phosphoric acid can be easily detected.
第2図は、上記作用を踏まえて実際の実験より得られ
た、リン酸イオン濃度と電流減少量との特性を示すグラ
フである。すなわち、電圧計42を用いて算出した電流減
少量を同グラフの検量線に対応させることにより、容易
にリン酸イオンの濃度を検出することができる。FIG. 2 is a graph showing the characteristics of the phosphate ion concentration and the current decrease amount, which are obtained from an actual experiment in consideration of the above action. That is, the concentration of phosphate ions can be easily detected by making the current decrease amount calculated by using the voltmeter 42 correspond to the calibration curve of the graph.
第3図は、リン酸センサの応答特性の実験結果を示す
グラフである。同実験は、リン酸イオン濃度の異なる
(10mM,20mM)の検査試料について行い、比較資料とし
てある。同図に示すように、リン酸イオン濃度が高い検
査試料の方が電流域少量が大きいことがわかるが、いず
れの場合も検査試料Yの投入時点Aから、3〜4分で電
流量は安定し、短時間でリン酸イオン濃度の検出が可能
なことがわかる。FIG. 3 is a graph showing the experimental results of the response characteristics of the phosphoric acid sensor. The same experiment was conducted on test samples with different phosphate ion concentrations (10 mM, 20 mM) and is provided as comparative data. As shown in the same figure, it can be seen that the test sample with a high phosphate ion concentration has a larger current range small amount, but in any case, the current amount is stable in 3 to 4 minutes from the time A of the test sample Y being applied. However, it can be seen that the phosphate ion concentration can be detected in a short time.
従って、本実施例によっては、同リン酸センサを緩衝
液に浸漬し、検査試料を投入するだけで容易にリン酸イ
オン濃度を検出することができ、さらにセンサの反応時
間も短いためにリアルタイムの測定が可能となる。Therefore, according to the present embodiment, the phosphate sensor can be easily detected by simply immersing the phosphate sensor in a buffer solution and adding a test sample. Further, the reaction time of the sensor is short, so that the real-time measurement is possible. It becomes possible to measure.
また、本実施例のリン酸センサ1は、ピルビン酸オキ
シダーゼ固定化膜3としてピルビン酸オキシダーゼを半
透膜状に固定化したものを使用しているため、リン酸セ
ンサ1の外側にピルビン酸オキシダーゼが透過すること
はほとんどない。その結果、前記(1)式の反応の促進
作用が長期間低下しないため、長期に渡ってリン酸イオ
ン濃度を精度良く検出することができる。Further, since the phosphate sensor 1 of the present embodiment uses the pyruvate oxidase-immobilized membrane 3 in which pyruvate oxidase is immobilized in a semipermeable membrane, the pyruvate oxidase is provided outside the phosphate sensor 1. Is rarely transmitted. As a result, the action of promoting the reaction of the formula (1) does not decrease for a long period of time, so that the phosphate ion concentration can be accurately detected over a long period of time.
なお、本実施例では、水質管理の対象となる湖沼や河
川から検査試料をサンプリングして持ち帰り、リン酸イ
オン濃度を検出する作業を行っているが、例えば、同リ
ン酸センサをpHセンサや水温センサ等と複合させてセン
サボックスに収め、このセンサボックス自体にサンプリ
ング構造を持たせれば、サンプリングと同時に同濃度を
検出することも可能である。In this example, the test sample is sampled from a lake or river subject to water quality control and brought back, and the phosphate ion concentration is detected.For example, the phosphate sensor is used as a pH sensor or water temperature. It is also possible to detect the same concentration at the same time as sampling if the sensor box itself is combined with a sensor or the like and housed in the sensor box, and the sensor box itself has a sampling structure.
以上説明したように、本発明のリン酸センサによって
は、半透膜状にピルビン酸オキシダーゼを固定化したピ
ルビン酸オキシダーゼ固定化膜が酸素及びリン酸を特定
して反応させるために、被検査水中に溶存しているリン
酸イオン濃度を他の物質の影響を受けることなく正確に
測定することができ、同時に、同センサの反応時間が短
いためにこの測定作業をリアルタイムに行うことができ
る。As described above, according to the phosphate sensor of the present invention, the pyruvate oxidase-immobilized membrane in which the pyruvate oxidase is immobilized in a semipermeable membrane specifically reacts with oxygen and phosphoric acid, so It is possible to accurately measure the concentration of phosphate ions dissolved in the sample without being affected by other substances, and at the same time, since the reaction time of the sensor is short, this measuring operation can be performed in real time.
特に、本発明のリン酸センサで使用するピルビン酸オ
キシダーゼ固定化膜がピルビン酸オキシダーゼを半透膜
状に固定化したものであるため、センサの外側にピルビ
ン酸オキシダーゼが透過することはほとんどない。その
結果、前記(1)式の反応の促進作用が長期間低下しな
いため、本発明のリン酸センサを用いれば、長期に渡っ
てリン酸イオン濃度を精度良く検出することができる。In particular, since the pyruvate oxidase-immobilized membrane used in the phosphate sensor of the present invention is the one in which pyruvate oxidase is immobilized in a semipermeable membrane, the pyruvate oxidase hardly permeates outside the sensor. As a result, since the action of promoting the reaction of the formula (1) does not decrease for a long period of time, the phosphate ion concentration of the present invention can be accurately detected over a long period of time by using the phosphate sensor of the present invention.
第1図は実施例のリン酸センサの側断面図、第2図はリ
ン酸イオン濃度と電流減少量との特性を示すグラフ、第
3図はリン酸センサの応答特性の実験結果を示すグラフ
である。 1……リン酸センサ、2……溶存酸素電極、21……容
器、21c……容器の開口部、23……陰極板(電極板)、2
4……陽極板(電極板)、3……ピルビン酸オキシダー
ゼ固定化膜、5……反応部(空間)、X……電解液、Y
……検査試料FIG. 1 is a side sectional view of a phosphoric acid sensor of an embodiment, FIG. 2 is a graph showing characteristics of phosphate ion concentration and current decrease amount, and FIG. 3 is a graph showing experimental results of response characteristics of the phosphoric acid sensor. Is. 1 ... Phosphoric acid sensor, 2 ... Dissolved oxygen electrode, 21 ... Container, 21c ... Opening of container, 23 ... Cathode plate (electrode plate), 2
4 ... Anode plate (electrode plate), 3 ... Pyruvate oxidase-immobilized film, 5 ... Reaction part (space), X ... Electrolyte, Y
...... Inspection sample
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C12Q 1/26 6807−4B G01N 31/00 N G01N 27/46 ZAB ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // C12Q 1/26 6807-4B G01N 31/00 N G01N 27/46 ZAB
Claims (1)
容器内に電極板を配置し、前記開口部を酸素を透過させ
るガス透析膜で塞ぎ、当該電極板が浸る量の電解液を前
記容器内に封入して溶存酸素電極を構成するとともに、
前記ガス透析膜の外側には、ピルビン酸オキシダーゼを
半透膜状に固定化したピルビン酸オキシダーゼ固定化膜
を所定の空間を開けて取り付けたことを特徴とするリン
酸センサ。1. An electrode plate is placed in a container having an opening on the side to be contacted with a test sample, and the opening is closed with a gas dialysis membrane that allows oxygen to permeate therethrough. Enclosed in the container to form a dissolved oxygen electrode,
A phosphate sensor, wherein a pyruvic acid oxidase-immobilized membrane in which pyruvic acid oxidase is immobilized in a semipermeable membrane shape is attached outside the gas dialysis membrane with a predetermined space opened.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2294137A JPH0820401B2 (en) | 1990-10-31 | 1990-10-31 | Phosphate sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2294137A JPH0820401B2 (en) | 1990-10-31 | 1990-10-31 | Phosphate sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04168355A JPH04168355A (en) | 1992-06-16 |
JPH0820401B2 true JPH0820401B2 (en) | 1996-03-04 |
Family
ID=17803790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2294137A Expired - Fee Related JPH0820401B2 (en) | 1990-10-31 | 1990-10-31 | Phosphate sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0820401B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4690122B2 (en) * | 2005-06-22 | 2011-06-01 | 株式会社テクノメディカ | Electrode structure and enzyme sensor for measuring phosphate in body fluid containing the same |
RU2483288C2 (en) * | 2011-07-08 | 2013-05-27 | Оао "Союзцветметавтоматика" | Acid vapour signalling device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59180353A (en) * | 1983-03-31 | 1984-10-13 | Toshiba Corp | Measuring device for pyruvic acid |
JPS59216586A (en) * | 1983-05-24 | 1984-12-06 | Mitsubishi Petrochem Co Ltd | Immobilized enzyme and production thereof |
-
1990
- 1990-10-31 JP JP2294137A patent/JPH0820401B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04168355A (en) | 1992-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Davis et al. | Electrochemical detection of nitrate and nitrite at a copper modified electrode | |
Privett et al. | Electrochemical nitric oxide sensors for physiological measurements | |
US6251260B1 (en) | Potentiometric sensors for analytic determination | |
Martorell et al. | Amperometric determination of pesticides using a biosensor based on a polishable graphie-epoxy biocomposite | |
US4127448A (en) | Amperometric-non-enzymatic method of determining sugars and other polyhydroxy compounds | |
Zen et al. | Square-wave voltammetric determination of uric acid by catalytic oxidation at a perfluorosulfonated ionomer/ruthenium oxide pyrochlore chemically modified electrode | |
EP2228645B1 (en) | Method, device and apparatus for measuring the concentration of creatinine, and method, device and apparatus for measuring the amount of salt using the same | |
Gilmartin et al. | Fabrication and characterization of a screen-printed, disposable, amperometric cholesterol biosensor | |
US7632393B2 (en) | Total organic carbon (TOC) analyzer | |
US7198708B2 (en) | Electrochemical biosensor | |
Zhao et al. | A study on the adsorption voltammetry of the iron (III)-2-(5'-bromo-2'-pyridylazo)-5-diethylaminophenol system | |
US11092585B2 (en) | Electrochemical method for detection and quantification of organic compounds in water | |
Salimi et al. | Disposable amperometric sensor for neurotransmitters based on screen-printed electrodes modified with a thin iridium oxide film | |
Campanella et al. | Superoxide dismutase biosensors working in non-aqueous solvent | |
US20070259262A1 (en) | Electrochemical Sensing Method | |
JPH0820401B2 (en) | Phosphate sensor | |
Milardović et al. | Determination of oxalate in urine, using an amperometric biosensor with oxalate oxidase immobilized on the surface of a chromium hexacyanoferrate-modified graphite electrode | |
Shi et al. | The study of Nafion/xanthine oxidase/Au colloid chemically modified biosensor and its application in the determination of hypoxanthine in myocardial cells in vivo | |
Santoni et al. | Enzyme electrode for glucose determination in whole blood | |
Shankaran et al. | Evaluation of a mechanically immobilized nickel hexacyanoferrate electrode as an amperometric sensor for thiosulfate determination | |
East et al. | Determination of mercury in hair by square-wave anodic stripping voltammetry at a rotating gold disk electrode after microwave digestion | |
Kalaycı | Preparation of New Uric Acid Sensors Based onIodide Selective Electrode | |
Kuntawong et al. | A Prussian Blue Modified Electrode Based Amperometric Sensor for Lactate Determination | |
Ito et al. | The detection of lactate using the repeated application of stepped potentials to a micro-planar gold electrode | |
Uygun et al. | Development of potentiometric lactate biosensor based on composite pH sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090304 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |