JPS5917986B2 - gas laser equipment - Google Patents

gas laser equipment

Info

Publication number
JPS5917986B2
JPS5917986B2 JP11527079A JP11527079A JPS5917986B2 JP S5917986 B2 JPS5917986 B2 JP S5917986B2 JP 11527079 A JP11527079 A JP 11527079A JP 11527079 A JP11527079 A JP 11527079A JP S5917986 B2 JPS5917986 B2 JP S5917986B2
Authority
JP
Japan
Prior art keywords
discharge
laser
gas
cathode
discharge surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11527079A
Other languages
Japanese (ja)
Other versions
JPS5640290A (en
Inventor
聖 竹森
宏之 菅原
晧二 桑原
利治 白倉
弘治 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11527079A priority Critical patent/JPS5917986B2/en
Publication of JPS5640290A publication Critical patent/JPS5640290A/en
Publication of JPS5917986B2 publication Critical patent/JPS5917986B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • H01S3/073Gas lasers comprising separate discharge sections in one cavity, e.g. hybrid lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 本発明はガスレーザ装置に関し、特に、グロー放電を励
起源とするガスレーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas laser device, and particularly to a gas laser device using glow discharge as an excitation source.

フ 一般に、ガス状レーザ媒質を用いるガスレーザ装置
においては、グロー放電を励起源としているが、高出力
化を実現するためにガス状レーザ媒質を送風機等により
強制的に循環させて冷却する方式が採用されているが、
ガスレーザ装置はレーザヲ 光軸方向、ガス流方向、あ
るいは放電方向の取り方によつて幾つかの型に分類され
る。
Generally, gas laser devices that use a gaseous laser medium use glow discharge as the excitation source, but in order to achieve high output, a method is adopted in which the gaseous laser medium is forcibly circulated using a blower or the like to cool it. Although it has been
Gas laser devices are classified into several types depending on the direction of the laser optical axis, gas flow direction, or discharge direction.

このうち、高速軸流型ガスレーザ装置は、レーザ光軸方
向に放電を行わせ、かつそれと同じ方向に高速ガス流を
循環させるもので、効率が高いこと、構造が簡0 単な
こと、レーザ光の強度分布が軸対称であること等の長所
を有し、溶接等の加工用レーザとして応用されている。
ところで、ガスレーザ装置の高出力化を実現するために
はグロー放電注入パワーを増加させなけ5 ればならな
い。
Among these, the high-speed axial flow gas laser device generates a discharge in the direction of the laser optical axis and circulates a high-speed gas flow in the same direction, and has high efficiency, simple structure, and laser light. It has advantages such as an axially symmetrical intensity distribution, and is used as a laser for processing such as welding.
By the way, in order to realize high output of a gas laser device, the glow discharge injection power must be increased.

このため従来では、電極の放電面積を拡大してグロー放
電電流を増し、その結果グロー放電注入パワーを増加さ
せていた。しかし、一般にグロー放電の電流電圧特性は
負性微分抵抗特性を示すので、電流が増加するにつ’o
れてグロー放電は不安定となりアーク放電へ移行しや
すくなる。
For this reason, in the past, the discharge area of the electrode was expanded to increase the glow discharge current, and as a result, the glow discharge injection power was increased. However, the current-voltage characteristics of glow discharge generally exhibit negative differential resistance characteristics, so as the current increases,
As a result, glow discharge becomes unstable and tends to shift to arc discharge.

また、高速ガス流中で数10Torrのガス圧下でのグ
ロー放電の放電路は細くなる傾向を示し、特に陰極放電
面ではグローが一部に集中するようになり、この結果グ
ロー放電は’5 さらに不安定となり、アーク放電へ移
行しやすくなり、グロー放電注入パワーの増加が妨げら
れる。上記の問題点を解決するために、従来では広い陰
極放電面を複数の放電区域に分割してグローの一部集中
を防いだ。しかし、放電面を分割したことによつてガス
レーザ装置の構成が複般なつた。また、放電面でのガス
流速分布の影響を受けやすくなつた。即ち、一般に陰極
放電面でのガス流速分布は完全に一様でないために、流
速の小さな放電区域で電流密度が増加しアーク放電へ移
行しやすくなつた.従つて、依然としてグロー放電の不
安定によつて放電注入パワーの増加が妨げられていた。
本発明は、大きな放電注入パワーに卦いても安定したグ
ロー放電を得ることのできるガスレーザ装置を提供する
ことを目的とするものである。
In addition, the discharge path of glow discharge under a gas pressure of several tens of Torr in a high-speed gas flow tends to become narrower, and the glow becomes concentrated in a part, especially on the cathode discharge surface.As a result, the glow discharge becomes more It becomes unstable, tends to shift to arc discharge, and prevents an increase in glow discharge injection power. In order to solve the above problems, in the past, a wide cathode discharge surface was divided into a plurality of discharge areas to prevent the glow from concentrating in some areas. However, by dividing the discharge surface, the configuration of the gas laser device has become complicated. In addition, it became more susceptible to the influence of gas flow velocity distribution on the discharge surface. That is, because the gas flow velocity distribution on the cathode discharge surface is generally not completely uniform, the current density increases in the discharge area where the flow velocity is low, making it easier to transition to arc discharge. Therefore, the instability of the glow discharge still prevents an increase in the discharge injection power.
SUMMARY OF THE INVENTION An object of the present invention is to provide a gas laser device that can produce stable glow discharge even with large discharge injection power.

この目的を達成するため、本発明のガスレーザ装置は、
陰極の放電面をレーザ管軸とほぼ共軸の円筒内面で構成
すると共に、その放電面のガス流方向の長さを0.5m
7!L以上、2m7!L以下としたことを特徴とするも
のである。以下、本発明を図面に示す実施例にしたがつ
てさらに説明する。
In order to achieve this objective, the gas laser device of the present invention includes:
The discharge surface of the cathode is composed of a cylindrical inner surface that is approximately coaxial with the laser tube axis, and the length of the discharge surface in the gas flow direction is 0.5 m.
7! L or more, 2m7! It is characterized by being less than or equal to L. The present invention will be further described below with reference to embodiments shown in the drawings.

第1図は本発明による高速軸流型ガスレーザ装置の一実
施例を示す説明図であり、本実施例は高出力炭酸ガスレ
ーザ装置として構成された例である。
FIG. 1 is an explanatory diagram showing an embodiment of a high-speed axial flow type gas laser device according to the present invention, and this embodiment is an example configured as a high-output carbon dioxide laser device.

図に訃いて、符号1はレーザ管であり、両レーザ管1,
1内にはそれぞれ陽極2,2}よび陰極3,3が設置さ
れている。
In the figure, numeral 1 is a laser tube, and both laser tubes 1,
1, anodes 2, 2} and cathodes 3, 3 are installed, respectively.

陰極3と3はそれぞれ安定化抵抗4,4を介して直流高
圧電源5の一方の出力端に接続され、該直流高圧電源5
の他方の思力端には前記陽極2,2が接続されて放電回
路を形成している。第2図訃よび第3図に示すように、
陰極3には開口比を大きくしてガス流量を増加させるた
めに8個のガス流用窓6が形成されて訃り、またレーザ
光軸と共軸の円筒内面で構成される放電面7が設けられ
ている。
The cathodes 3 and 3 are connected to one output end of a DC high voltage power supply 5 via stabilizing resistors 4, 4, respectively, and the DC high voltage power supply 5
The anodes 2, 2 are connected to the other terminal of the electrode to form a discharge circuit. As shown in Figure 2 and Figure 3,
Eight gas flow windows 6 are formed on the cathode 3 in order to increase the aperture ratio and increase the gas flow rate, and a discharge surface 7 consisting of a cylindrical inner surface coaxial with the laser optical axis is provided. It is being

な訃、第2図のtは矢印で示すガス流方向への放電面7
の長さを示す。前記レーザ管1,1内にはガス状レーザ
媒質として、CO2: N2: He=1:10:14
(全圧数+TOrr)の混合ガスが封入されて}り、こ
の混合ガスは前記放電回路によるプラズマ9,9で励起
される。
t in Fig. 2 is the discharge surface 7 in the gas flow direction shown by the arrow.
Indicates the length of Inside the laser tubes 1, 1, CO2:N2:He=1:10:14 is used as a gaseous laser medium.
A mixed gas of (total pressure number + TOrr) is sealed, and this mixed gas is excited by plasmas 9, 9 by the discharge circuit.

また、レーザ管1の各端には光共振器を構成する凹面反
射鏡10と平面出力鏡11が対向して設置され、この光
共振器内の光は両鏡10,11間を往復反射するにつれ
て誘導放出作用により増幅され、その一部は平面出力鏡
11から透過してレザ出力光12として放射される。
Further, at each end of the laser tube 1, a concave reflecting mirror 10 and a flat output mirror 11, which constitute an optical resonator, are installed facing each other, and the light within this optical resonator is reflected back and forth between the two mirrors 10 and 11. As the light is amplified by stimulated emission, a part of it is transmitted through the plane output mirror 11 and emitted as laser output light 12.

本実施例に}いては、前記レーザ出力光12の出力を高
めるために強制ガス循環方式が採られて訃り、そのため
送風機13が設けられている。
In this embodiment, a forced gas circulation system is adopted to increase the output of the laser output light 12, and a blower 13 is provided for this purpose.

この送風機13は混合ガスを連結管14を介してレーザ
管1,1の接合側から陰極側卦よび陽極側の両方向に向
けて管軸方向に高速で強制的に流す。この混合ガスはプ
ラズマ9,9により加熱された後、レーザ管1,1の端
部近くに連設された連結管15,15を経て熱交換器1
6,16で冷却され、さらに両連結管17,17訃よび
18を経て前記送風機13に戻されて矢印で示すように
強制循環させられる。前記の如きガスレーザ装置に}い
て、混合ガスを前記放電回路により励起させ、炭酸ガス
分子のエネルギー準位に逆転密度分布を生じさせること
によりレーザ光を得る場合、レーザ管1内のグロー放電
電流を増加させ、放電注入パワ一を増大させるに伴つて
放電は次第に不安定となり、放電電流の変動幅も大きく
なつてしけう。
This blower 13 forces the mixed gas to flow at high speed in the tube axis direction from the joining side of the laser tubes 1, 1 toward both the cathode side and the anode side through the connecting pipe 14. After this mixed gas is heated by the plasmas 9, 9, it passes through connecting pipes 15, 15 connected near the ends of the laser tubes 1, 1, and then passes through the heat exchanger 1.
6 and 16, and is further returned to the blower 13 through both connecting pipes 17, 17 and 18, where it is forced to circulate as shown by the arrow. When using the gas laser device as described above to obtain laser light by exciting the mixed gas through the discharge circuit and causing an inverted density distribution in the energy level of carbon dioxide molecules, the glow discharge current in the laser tube 1 is As the discharge injection power increases, the discharge gradually becomes unstable and the fluctuation range of the discharge current also increases.

したがつて、この変動幅を用いてグロー放電の安定度の
尺度とすることができる。第4図はこのようなグロー放
電電流の変動幅が4mAになる時にふ一ける、レーザ管
1本当りの放電注入パワーP。
Therefore, this fluctuation range can be used as a measure of the stability of glow discharge. Figure 4 shows the discharge injection power P per laser tube that increases when the fluctuation width of the glow discharge current becomes 4 mA.

をレーザ管内のガス圧力20T0rrと25T0rrの
場合について示したものである。同図から明らかなよう
に、陰極3の放電面7のガス流方向への長さt(対数目
盛で表わす)が2mmより大きい時には放電注人パワー
の大きさには顕著な差異は見られないが、このようにt
が2mmを超すと放電注入パワーが低下する傾向がある
is shown for the case where the gas pressure inside the laser tube is 20T0rr and 25T0rr. As is clear from the figure, when the length t (expressed on a logarithmic scale) in the gas flow direction of the discharge surface 7 of the cathode 3 is greater than 2 mm, there is no noticeable difference in the magnitude of the discharge pourer power. But like this, t
If it exceeds 2 mm, the discharge injection power tends to decrease.

このような放電注入パワーの低下の原因はグロー放電が
放電面7の全域に広がらないことにある。ところが、t
の値が2mm以下になるど放電注入パワーの大きさが急
激に上昇している。このような放電注入パワ一の上昇は
、放電面7が小さくなるほど、ガス流速分布の不均一性
等の悪影響を受けにくくなることによるものである。す
なわち、本発明に訃いては、放電面7の面積を減少させ
、すなわちtの値を小さくすることにより、グロー放電
を安定させ、放電注入パワ一の増加を図ることが可能と
なつた。しかし、第4図から明らかなように、前記放電
面7の面積があまり小さくなり過ぎると、該放電面7で
の電流密度が増加し、その結果該放電面7之の温度が上
昇してグロー放電がかえつて不可能となる傾向が見られ
た。
The reason for such a decrease in the discharge injection power is that the glow discharge does not spread over the entire discharge surface 7. However, t
The magnitude of the discharge injection power increases rapidly as the value of becomes less than 2 mm. Such an increase in the discharge injection power is due to the fact that the smaller the discharge surface 7 is, the less it is affected by adverse effects such as non-uniformity of gas flow velocity distribution. That is, according to the present invention, by reducing the area of the discharge surface 7, that is, by reducing the value of t, it has become possible to stabilize the glow discharge and increase the discharge injection power. However, as is clear from FIG. 4, if the area of the discharge surface 7 becomes too small, the current density at the discharge surface 7 increases, and as a result, the temperature of the discharge surface 7 rises and glows. There was a tendency for discharge to become impossible.

すなわち、第4図に訃いて放電注入パワーが最大になる
時はt=0.9mmの場合であり、このtの値が最適な
ものであることが明らかである。
That is, as shown in FIG. 4, the discharge injection power reaches its maximum when t=0.9 mm, and it is clear that this value of t is the optimum value.

1一方、tが0.9mmよりも小さくなると放電
注入パワ一は減少し始め、t=0.5mm未満になると
、t=2.0詣を超える時の放電注入パワ一よりも低下
し、放電注入パワーがこれよりも低くなると実用上から
も好ましくない。すなわち、tが0.5m77!1未満
になると、前記の如く放電注入パワ一が低下するのみな
らず、グロー放電が不安定となつて、アーク放電に移り
易くなつてしまうのである。上記の如く、tの値が0.
5mm以上、2m71L以下である場合には、放電注入
パワーの増大が図られる2と共に、グロー放電を安定し
た状態で維持することが可能となることが明らかとなつ
た。このように放電面のガス流方向の長さtを制限する
ことによつて安定したグロー放電が得られる理由につい
ては、以下のように放電面付近に発生 〉するガス流中
の乱流成分によるものと考えられる。
1 On the other hand, when t becomes smaller than 0.9 mm, the discharge injection power begins to decrease, and when t becomes less than 0.5 mm, the discharge injection power becomes lower than the discharge injection power when t exceeds 2.0 mm, and the discharge If the injection power is lower than this, it is not preferable from a practical point of view. That is, when t is less than 0.5 m77!1, not only does the discharge injection power decrease as described above, but also the glow discharge becomes unstable and tends to shift to arc discharge. As mentioned above, the value of t is 0.
It has become clear that when the diameter is 5 mm or more and 2 m71 L or less, the discharge injection power can be increased (2) and it is possible to maintain the glow discharge in a stable state. The reason why a stable glow discharge can be obtained by limiting the length t of the discharge surface in the gas flow direction is due to the turbulence component in the gas flow generated near the discharge surface as follows. considered to be a thing.

一般に、高速軸流型ガスレーザ装置では放電面付近のガ
ス流速vは数+m/Secから100m/Sec以上に
も達する。このような高速ガス流が陰極3に衝突した場
合には、陰極3の放電面7S付近に乱流が発生すること
が流体力学的見地から知られている。一方、放電面付近
の乱流成分は、例えば米国特許3,772,610「A
rclessElectrOdeCOnstructi
OnfOrGasTranspOrtLaserjに見
られるように、グロー放電を安定させる重要な因子であ
ることも認められている。本発明が適用される高速軸流
型ガスレーザ装置(一般にガス条件は圧力数+TOrr
、流速数+m/sから200m/s程度である)の場合
、放電面7付近の乱流成分は、ガス流方向に0.5關か
ら271Lm程度の長さの領域に発生し、これは上記ガ
ス条件一般に適合することが明らかとなつた。
Generally, in a high-speed axial flow type gas laser device, the gas flow velocity v near the discharge surface ranges from several m/Sec to more than 100 m/Sec. It is known from a hydrodynamic viewpoint that when such a high-speed gas flow collides with the cathode 3, turbulence is generated near the discharge surface 7S of the cathode 3. On the other hand, the turbulent flow component near the discharge surface is, for example, U.S. Pat.
rlessElectrOdeCONstructi
It has also been recognized that it is an important factor in stabilizing the glow discharge, as seen in OnfOrGasTranspOrtLaserj. A high-speed axial flow gas laser device to which the present invention is applied (generally gas conditions are pressure number + TOrr
, flow velocity number + m/s to about 200 m/s), the turbulent component near the discharge surface 7 occurs in a region with a length of about 0.5 Lm to 271 Lm in the gas flow direction, which is the same as above. It has become clear that it is compatible with general gas conditions.

従つて、放電面の長さtを乱流発生領域の長さと同程度
にすることによつて、第4図に示すように安定したグロ
ー放電を得ることができると考えられる。以上説明した
ように、本発明によれば、陰極の放電面のガス流方向の
長さを0.5m1L以上、2mm以下にすることにより
、放電注入パワ一の増大を図ることができ、かつ大きな
放電注入パワーに訃いても安定したグロー放電を得るこ
とが可能となり、ガスレーザ装置の高出力化を実現する
ことができる。
Therefore, it is considered that by making the length t of the discharge surface approximately equal to the length of the turbulent flow generation region, a stable glow discharge can be obtained as shown in FIG. 4. As explained above, according to the present invention, by setting the length of the discharge surface of the cathode in the gas flow direction to 0.5 m 1 L or more and 2 mm or less, it is possible to increase the discharge injection power, and to increase the It becomes possible to obtain a stable glow discharge even if the discharge injection power is insufficient, and it is possible to realize a high output gas laser device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による高速軸流型ガスレーザ装置の一実
施例を示す概略的全体構成図、第2図は第1図のガスレ
ーザ装置に訃けるレーザ管を第3図の−線で断面した拡
大詳細断面図、第3図は陰極の正面図、第4図は陰極放
電面のガス流方向長さによる放電注入パワーの変化を示
す図である.1・・・レーザ管、2・・・陽極、3・・
・陰極、5・・・高圧直流電源、7・・・放電面、9・
・・プラズマ、10・・・凹面反射鏡、11・・・平面
出力鏡、13・・・送風機。
Fig. 1 is a schematic overall configuration diagram showing an embodiment of a high-speed axial flow gas laser device according to the present invention, and Fig. 2 is a cross-section of the laser tube used in the gas laser device of Fig. 1 along the - line in Fig. 3. FIG. 3 is an enlarged detailed sectional view, FIG. 3 is a front view of the cathode, and FIG. 4 is a diagram showing changes in discharge injection power depending on the length of the cathode discharge surface in the gas flow direction. 1... Laser tube, 2... Anode, 3...
・Cathode, 5... High voltage DC power supply, 7... Discharge surface, 9.
...Plasma, 10...Concave reflecting mirror, 11...Plane output mirror, 13...Blower.

Claims (1)

【特許請求の範囲】[Claims] 1 ガス状レーザ媒質を封入したレーザ管と、このレー
ザ管内に設けた陽極および陰極と、この陽極と陰極との
間はグロー放電を維持させる直流高圧電源と、前記グロ
ー放電部を内部に含むレーザ共振器を構成するよう対向
して配置した出力鏡および反射鏡と、前記ガス状レーザ
媒質を前記レーザ管内に循環させるための送風機とを有
し、前記陰極の放電面を前記レーザ管軸とほぼ共軸の円
筒内面で構成した高速軸流型のガスレーザ装置において
、前記陰極の放電面のガス流方向の長さを0.5mm以
上、2mm以下としたことを特徴とするガスレーザ装置
1. A laser tube enclosing a gaseous laser medium, an anode and a cathode provided in the laser tube, a DC high-voltage power supply for maintaining glow discharge between the anode and the cathode, and a laser including the glow discharge section inside. It has an output mirror and a reflecting mirror that are arranged to face each other to form a resonator, and a blower for circulating the gaseous laser medium in the laser tube, and the discharge surface of the cathode is aligned approximately with the laser tube axis. A gas laser device of a high-speed axial flow type configured with coaxial cylindrical inner surfaces, characterized in that the length of the discharge surface of the cathode in the gas flow direction is 0.5 mm or more and 2 mm or less.
JP11527079A 1979-09-10 1979-09-10 gas laser equipment Expired JPS5917986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11527079A JPS5917986B2 (en) 1979-09-10 1979-09-10 gas laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11527079A JPS5917986B2 (en) 1979-09-10 1979-09-10 gas laser equipment

Publications (2)

Publication Number Publication Date
JPS5640290A JPS5640290A (en) 1981-04-16
JPS5917986B2 true JPS5917986B2 (en) 1984-04-24

Family

ID=14658502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11527079A Expired JPS5917986B2 (en) 1979-09-10 1979-09-10 gas laser equipment

Country Status (1)

Country Link
JP (1) JPS5917986B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339598U (en) * 1989-08-30 1991-04-16

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891690A (en) * 1981-11-27 1983-05-31 Hitachi Ltd Generator for gas laser
DE3323954A1 (en) * 1983-07-02 1985-01-10 Messer Griesheim Gmbh, 6000 Frankfurt GAS LASER, IN PARTICULAR FAST-FLOWING AXIAL CURRENT GAS TRANSPORT LASER
FR2588700B2 (en) * 1984-11-29 1987-12-11 Comp Generale Electricite GAS FLOW LASER GENERATOR AND METHOD FOR OPERATING THE SAME

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339598U (en) * 1989-08-30 1991-04-16

Also Published As

Publication number Publication date
JPS5640290A (en) 1981-04-16

Similar Documents

Publication Publication Date Title
US4500998A (en) Gas laser
US4331939A (en) Gas laser device
US4470144A (en) Coaxial-type carbon dioxide gas laser oscillator
JPS5917986B2 (en) gas laser equipment
US4541097A (en) Gas laser device with plural electrode members on the upper gas flow side
US4692928A (en) Method for improving the power of an axial gas laser
US3633125A (en) Gas laser with means for specifically creating and maintaining turbulence in the gaseous laser medium
EP0504652B1 (en) Gas laser oscillating device
US4596016A (en) Single mode carbon dioxide gas laser oscillator having high output power
US4740980A (en) Gas laser device
JPS5855653Y2 (en) gas laser equipment
JPS62106681A (en) Gas laser oscillator
JPS5840876A (en) Oscillator for vertical-current carbonic acid gas laser
JPS62199081A (en) Gas laser oscillator
JPS6242475A (en) Gas laser oscillation device
JPS63237487A (en) Co2 laser oscillation equipment
JPS639177A (en) Gas laser oscillator
Witteman et al. Fast Flow Systems
JPH05167133A (en) Laser oscillator
JPS6114778A (en) Gas laser generator
JPS61112389A (en) High speed axial flow type gas laser device
JPS6281781A (en) Carbon dioxide laser device
JPH01246881A (en) Gas laser oscillating device
JPS625675A (en) Gas laser device
JPH0661558A (en) Gas laser device