JPS5840876A - Oscillator for vertical-current carbonic acid gas laser - Google Patents

Oscillator for vertical-current carbonic acid gas laser

Info

Publication number
JPS5840876A
JPS5840876A JP13774181A JP13774181A JPS5840876A JP S5840876 A JPS5840876 A JP S5840876A JP 13774181 A JP13774181 A JP 13774181A JP 13774181 A JP13774181 A JP 13774181A JP S5840876 A JPS5840876 A JP S5840876A
Authority
JP
Japan
Prior art keywords
laser
tube
gas
pipe
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13774181A
Other languages
Japanese (ja)
Other versions
JPS5840353B2 (en
Inventor
Reiji Sano
河内義和
Minoru Kimura
佐野令而
Yoshikazu Kawachi
木村実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13774181A priority Critical patent/JPS5840353B2/en
Publication of JPS5840876A publication Critical patent/JPS5840876A/en
Publication of JPS5840353B2 publication Critical patent/JPS5840353B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To increase the efficiency of oscillation and laser output per unit discharge length remarkably by forming a gas supply section to the oscillator and a laser pipe in double-pipe structure by using a cylindrical anode electrode and selecting the bore and length of the cylindrical electrode. CONSTITUTION:A laser gas introduced by a glass pipe 21 collides with an inner pipe 22 and is changed into turbulence, and flows to the outside in a clearance with an outer pipe 24, but it is further turned into turbulence after it passes through anodes 23 because terminals are blocked, and flows into the laser pipe from the holes 20 of the inner pipe 22 in the vicinity of the electrodes 23. One parts of the holes 20 must be formed while being opposed to the anodes 23 at that time. Since the laser gas of turbulence has various velocity distribution, velocity distribution in the section of the laser pipe is flattened, and glow discharge in the pipe is not biased in the specified direction. Glow discharge between the electrodes is extended uniformly in the pipe 24 in a gas current at high speed. The gas, discharge thereof is completed, is rapidly discharged 26, laser beams are resonated between a total reflector 27 and a semi-reflector 28, and output is extracted from the reflector 28 side.

Description

【発明の詳細な説明】 本光明はW、原炭酸ガスレーザー発振器に関し、ji、
!I“に高速で循環するレーザーガスが共振器内の放電
領域を通過する際に、乱流を発生させ安定した放電を得
ることを目的とする。
[Detailed Description of the Invention] The present invention relates to W, raw carbon dioxide laser oscillator, ji,
! The purpose is to generate a turbulent flow when the laser gas circulating at high speed passes through the discharge area in the resonator to obtain a stable discharge.

第1図d−従来のレーザ発振器の概略図である。FIG. 1d - Schematic diagram of a conventional laser oscillator.

ガス給入部117)%ら入ってきたレーザーガスは間隙
12から共賑器内の放電領域13に入って、ピン状の陽
極14と円筒状陰極15間で放電してガス損出部16か
ら共振器外へと出ていく。この構成は、ガス給入部11
と間隙12によってガス流に乱流を発生させ放電の安定
化をねらったものであるが、陽極14はビン状であり、
更に共1辰器外に存在するだめに陽極14と陰極16間
の放電で、レーザー発振に寄与しない無効な放電領域が
存在する。
The laser gas that has entered the gas supply section 117) enters the discharge region 13 in the resonator through the gap 12, is discharged between the pin-shaped anode 14 and the cylindrical cathode 15, and resonates from the gas loss section 16. It goes out of the vessel. In this configuration, the gas supply section 11
The purpose is to stabilize the discharge by generating turbulence in the gas flow through the gap 12, but the anode 14 is bottle-shaped.
Furthermore, there is an ineffective discharge region that does not contribute to laser oscillation due to the discharge between the anode 14 and the cathode 16, which exists outside the laser beam.

すなわちこの構成では陽極14がピン状であるために陰
極16付近でレーザー管17内いつげいに広がっていた
グロー放電は、高速で循環するレーザーガスによって吹
き飛ばされることとあいまって、ピン状の陽極14に近
づくにつ力て細くなっていき、第1図に点線で示17だ
ように々る。レーザー出力の増大化を図るには放電体積
を増やすということが一つの犬き々要因と々るのである
が、ビン状の陽極電極14を用いることによって、レー
ザー管内に放電しない領1威が生ずるとその分だけ出力
の低下は捷ぬがれ得ない。
In other words, in this configuration, since the anode 14 is pin-shaped, the glow discharge that had been spreading in the laser tube 17 near the cathode 16 is blown away by the laser gas circulating at high speed, and the glow discharge is caused by the pin-shaped anode. As it approaches 14, it becomes thinner and thinner, like 17 shown by the dotted line in Figure 1. Increasing the discharge volume is one of the most important factors in increasing the laser output, but by using the bottle-shaped anode electrode 14, an area where no discharge occurs is created within the laser tube. Therefore, a decrease in output cannot be avoided.

本発明は上記した電極間での無効放電領域を無くそうと
するものであり、陽極として円筒電極を用いて、レーザ
ーガスの共振器への給入部とレーザー管を二重管構造と
したものであり、円筒型、極の開口径と、円筒長とを最
適に選ぶことにより発振効率及び?−1′L位放電長当
りのレーザー出力を飛躍的に増大さぜることかできるよ
うにしたものであるO 第2図は本発明の一実施例における縦流炭酸ガスレーザ
ー発振8にの共振器部の構成の概略を示[7/こもので
ある。丁字形のガラス管21によって導び71)れ/ζ
レーザーガスは外管24と内管22−f))ら々る二重
管構造のレーザー管の内管22に衝突して最初の乱流を
発生し、外管24と内管22の間を内管22の外側に沿
って流れる。レーザー管の外管24と内管22とで形成
される間隙は、レーザー管の端部で閉塞されており、そ
のため陽極23を通過したレーザーガスは更に乱流を発
生し、内管22の電極23の近傍に設けられた開孔部2
0よりレーザー管内に流れ込む。すなわち、レーザー管
d1外管24と内管22の二重管構造をしておりガス流
の風土が開いており風下は閉じているため、外管24と
内管22の間を通って流れてきたレーザーガスは、いっ
たんレーザー管の外管24と内管22の間にはいってい
くが押しもどされて、内管22に設けられた開孔部20
から共振器中央部へと入っていくことになシ、レーザー
ガスの流れは種々の方向の成分が発生して乱流となる。
The present invention aims to eliminate the above-mentioned ineffective discharge area between the electrodes, and uses a cylindrical electrode as the anode, and has a double tube structure between the laser gas inlet to the resonator and the laser tube. Yes, cylindrical shape, oscillation efficiency and efficiency can be improved by optimally selecting the pole opening diameter and cylinder length. It is possible to dramatically increase the laser output per discharge length by -1'L. Figure 2 shows the resonance of longitudinal carbon dioxide laser oscillation 8 in an embodiment of the present invention. The outline of the structure of the organ part is shown [7/ Komono. Guided by a T-shaped glass tube 21 71)
The laser gas collides with the outer tube 24 and the inner tube 22-f)) of the laser tube with a double tube structure and generates an initial turbulent flow, causing a flow between the outer tube 24 and the inner tube 22. It flows along the outside of the inner tube 22. The gap formed between the outer tube 24 and the inner tube 22 of the laser tube is closed at the end of the laser tube, so that the laser gas passing through the anode 23 generates further turbulence, and the electrode of the inner tube 22 Opening part 2 provided near 23
0 into the laser tube. That is, the laser tube d1 has a double tube structure consisting of the outer tube 24 and the inner tube 22, and the gas flow is open and the leeward side is closed, so the gas flows through between the outer tube 24 and the inner tube 22. The laser gas enters between the outer tube 24 and the inner tube 22 of the laser tube, but is pushed back and passes through the opening 20 provided in the inner tube 22.
As the laser gas enters the center of the resonator, components in various directions occur in the flow of the laser gas, resulting in a turbulent flow.

この場合開孔部20は少なくともその一部が陽極23に
対向するように設ける必要がある。
In this case, the opening 20 needs to be provided so that at least a part thereof faces the anode 23.

レーザー管は二つの径の異なるパイレックス管(外管2
4と内管22)の−り111を溶着し、他端は内管22
に設けられた開孔部2oにより開いた状態となっている
。このよう々レーザー管を、開いている方をガス流の風
上に、閉じている方を風下にして使用することにより、
レーザーガスば、レーザー管中央部に入っていくときに
乱流となる0乱流となったレーザーガスはレーザー管内
を通過する際、種々の速度成分を持っているため、レー
ザー管の断面における速度分布は平らになる。従って、
レーザー管内のグロー放電は、特定な方向へ流されてか
たよるということがなくなる。このとき円筒状の陽極2
3と陰極26の間でのグロー放電は高速なガス流に押し
流されながらも、狭いgl域に力)たよることがなく、
レーザー管24の中管の内側で1んべんなく広がる。放
電の終ったレーザーガスはすみやかに排出部26よシ共
振器外に取シ去られる。レーザー光は全反射鏡27と部
分反射鏡28の間で共振し、部分反射鏡28側から工[
Yり出される。
The laser tube has two different diameter Pyrex tubes (outer tube 2).
4 and the inner tube 22), and the other end is attached to the inner tube 22).
It is in an open state with an opening 2o provided in the. In this way, by using the laser tube with the open end upwind of the gas flow and the closed end downwind,
The laser gas becomes turbulent when it enters the center of the laser tube.The laser gas, which has become a turbulent flow, has various velocity components as it passes through the laser tube, so the velocity at the cross section of the laser tube The distribution becomes flat. Therefore,
The glow discharge inside the laser tube will no longer flow in a particular direction and be skewed. At this time, the cylindrical anode 2
Although the glow discharge between 3 and the cathode 26 is swept away by the high-speed gas flow, it does not depend on the narrow GL range,
It spreads evenly inside the middle tube of the laser tube 24. After the discharge, the laser gas is immediately removed from the resonator through the discharge section 26. The laser beam resonates between the total reflection mirror 27 and the partial reflection mirror 28, and is emitted from the partial reflection mirror 28 side.
Y is pulled out.

第2図の実施例では左右対称の構造になっているが、左
右対称でない構造でも同様の効果がある。
Although the embodiment shown in FIG. 2 has a bilaterally symmetrical structure, the same effect can be obtained even if the structure is not bilaterally symmetrical.

またいずれか片(11]だけでも十分に機能する。Further, either piece (11) alone can function satisfactorily.

一般にレーザー出力Pはレーザー媒質のパラメーターに
対して次式で力えられる。
Generally, the laser output P is determined by the following equation with respect to the parameters of the laser medium.

P = r)ca□IBV ここで、ηCはレーザー出力の取シ出し効率、α0は不
飽和利得、工sは飽和パラメーター、■は放電体積であ
る。従って、レーザー出力の増大化をnするためにはこ
れらのノラメーターひとつひとつを大きくしていく工夫
が必要となる。本発明では、放電体積Vと、飽和ノ?ラ
メ−ターIsに着11 L、lT% l1wノ化をはか
ったものである。本実施例のような高速循環型レーザー
では、飽和ノtラメーターエsはガス流速VFに比例し
て増大するので、高出力を得るにはガス流速を大きくす
る必要がある0 本実施例では、円筒電極23を共振器内に設置し、円筒
径を適宜選択することによりガス流速すなわち飽和ノで
ラメータエSを直接制御するようにしている。
P=r)ca□IBV Here, ηC is the extraction efficiency of the laser output, α0 is the unsaturated gain, s is the saturation parameter, and ■ is the discharge volume. Therefore, in order to increase the laser output to n, it is necessary to devise ways to increase each of these norammeters. In the present invention, the discharge volume V and the saturation point? 11L, 1T% 1W was added to the laminator Is. In a high-speed circulation type laser like this example, the saturation parameter s increases in proportion to the gas flow rate VF, so it is necessary to increase the gas flow rate to obtain high output. The electrode 23 is installed in the resonator, and by appropriately selecting the diameter of the cylinder, the gas flow rate, that is, the saturation point, can directly control the rammeter S.

このように本発明では、電極構造を円筒にし、更に二重
管構造のレーザー管と組み合ぜて乱流を発生させること
によってレーザー管内の放電体積の増大をはかっている
As described above, in the present invention, the discharge volume within the laser tube is increased by making the electrode structure cylindrical and further combining it with a laser tube having a double tube structure to generate turbulent flow.

第4図は本発明の実施例を示す系統図である。FIG. 4 is a system diagram showing an embodiment of the present invention.

レーザーガスを高速で循環するだめの送風機31から送
り出されたレーザーガスは熱交換器32によって圧縮熱
を増られて共振器34に入っていく。
The laser gas sent out from the blower 31 that circulates the laser gas at high speed is increased in compression heat by the heat exchanger 32 and enters the resonator 34 .

共振器34から出ていったレーザーガスは放電によって
」二重した温度を熱交換器33によって冷却され、送風
機31へと循環される。本発明の17一ザー発振器にお
いて、レーザー管の外径が80mm。
The laser gas exiting from the resonator 34 is cooled by the heat exchanger 33 to a temperature that is doubled by the discharge, and is circulated to the blower 31. In the 17 laser oscillator of the present invention, the outer diameter of the laser tube is 80 mm.

内径が55mm、長さが60omm、ガス圧が30TO
rr 、 1放電長当シの放電々流220m人の時、最
大出力は1050Wと従来の10倍近い高出力がイ!1
られた。
Inner diameter is 55mm, length is 60mm, gas pressure is 30TO
rr, When the discharge current is 220m per discharge length, the maximum output is 1050W, which is nearly 10 times higher than the conventional one! 1
It was done.

以上説明したように、本発明はレーザーガス導入部に内
管を挿入し、円筒電極と組合せレーザー管は風−1−が
開いている二重管構造とするとともに電極として円筒電
極を用いることによって放電を安定化することができ、
レーザー出力を飛躍的に増大させる利点を有する。
As explained above, the present invention inserts an inner tube into the laser gas introduction part, and combines the laser tube with a cylindrical electrode to form a double-tube structure with an open air port and uses a cylindrical electrode as an electrode. can stabilize the discharge,
It has the advantage of dramatically increasing laser output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のレーザー共振器の構成を示す概略図、第
2図は本発明の一実施例におけるレーザー共振器の構成
を示す概略図、第3図は同発振器全体の構成を示す概略
図である。 20・・・・・・開孔部、21・・・・・・レーザーガ
ス給入部、22・・・・・・内管、23・・・・・・円
筒状陽極、24・・・・・・外管、25・・・・・・円
筒状陰極、26・・・・・・ガス排出部、27・・・・
・・全反射鏡、28・・・・・・部分反射鏡、31・・
・・・・送風機、32・・・・・・熱交換器、33・・
・・・・熱交換器、34・・・・・共振器。
Figure 1 is a schematic diagram showing the configuration of a conventional laser resonator, Figure 2 is a schematic diagram showing the configuration of a laser resonator in an embodiment of the present invention, and Figure 3 is a schematic diagram showing the overall configuration of the oscillator. It is. 20... Opening part, 21... Laser gas supply part, 22... Inner tube, 23... Cylindrical anode, 24...・Outer tube, 25...Cylindrical cathode, 26...Gas discharge part, 27...
...Total reflection mirror, 28...Partial reflection mirror, 31...
...Blower, 32...Heat exchanger, 33...
... Heat exchanger, 34 ... Resonator.

Claims (1)

【特許請求の範囲】 (11外管と内管とからなる二重管構造のレーザ管と、
前記レーザ管の一端に設けられたガス給入部と、前記レ
ーザ管の他端に設けられたガス損出部と、円筒状の陽極
と、円筒状の陰極とを具備し、前記ガス給入部は二重管
構造を有し、ガス流が内管と接触することに」:り乱流
を生じるごとく構成され、前記レーザ管外管と内管とで
包囲される領域はレーザガス排出部側で閉塞され、その
閉塞部の近傍に前記陰極が形成さJl、陰極とガス給入
部との間に前記陽極電極が設けられており、さらにレー
ザ管内管の前記陽極電極の近傍に開孔部が設けられてい
ることを/l’4j徴とする縦流炭酸ガスレーザ発振器
。 (2)  レーザ発振器がレーザガス給入部を共通とし
て左右対称に形成されていることを!IM′徴とする特
許請求の範囲第1項記載の縦流炭酸ガスレーザ発振器。 (3)  l/−ザ管内管に設けられた開孔部が、少な
くともその一部が陽極に対向するように設けられている
ことを特徴とする特許請求の範囲第1項まだは第2項記
載の縦流炭酸ガスレーザ発振器。 (4)ガス給入部が、レーザ管外管にT字状に接続され
たガラス管からなることを特徴とする特許請求の範囲第
1項または第2項記載の縦流炭酸ガスレーザ発振器。
[Claims] (11) A laser tube with a double tube structure consisting of an outer tube and an inner tube,
The gas supply section includes a gas supply section provided at one end of the laser tube, a gas loss section provided at the other end of the laser tube, a cylindrical anode, and a cylindrical cathode. It has a double-tube structure, and is configured so that turbulent flow occurs when the gas flow comes into contact with the inner tube, and the region surrounded by the outer tube and inner tube of the laser tube is closed on the laser gas discharge side. The cathode is formed near the closed part, the anode electrode is provided between the cathode and the gas supply part, and an opening part is provided near the anode electrode of the inner tube of the laser tube. A vertical flow carbon dioxide laser oscillator with /l'4j characteristics. (2) The laser oscillator is formed symmetrically with a common laser gas inlet! A vertical flow carbon dioxide laser oscillator according to claim 1, which has an IM' characteristic. (3) Claim 1 or 2, characterized in that the opening provided in the inner tube is provided such that at least a portion thereof faces the anode. The vertical flow carbon dioxide laser oscillator described above. (4) The vertical flow carbon dioxide laser oscillator as set forth in claim 1 or 2, wherein the gas supply section is comprised of a glass tube connected to the laser tube outer tube in a T-shape.
JP13774181A 1981-09-03 1981-09-03 Vertical flow carbon dioxide laser oscillator Expired JPS5840353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13774181A JPS5840353B2 (en) 1981-09-03 1981-09-03 Vertical flow carbon dioxide laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13774181A JPS5840353B2 (en) 1981-09-03 1981-09-03 Vertical flow carbon dioxide laser oscillator

Publications (2)

Publication Number Publication Date
JPS5840876A true JPS5840876A (en) 1983-03-09
JPS5840353B2 JPS5840353B2 (en) 1983-09-05

Family

ID=15205740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13774181A Expired JPS5840353B2 (en) 1981-09-03 1981-09-03 Vertical flow carbon dioxide laser oscillator

Country Status (1)

Country Link
JP (1) JPS5840353B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295386A (en) * 1990-04-12 1991-12-26 Sharp Corp Color television receiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295386A (en) * 1990-04-12 1991-12-26 Sharp Corp Color television receiver

Also Published As

Publication number Publication date
JPS5840353B2 (en) 1983-09-05

Similar Documents

Publication Publication Date Title
US4500998A (en) Gas laser
EP0015297B1 (en) Gas laser
US4470144A (en) Coaxial-type carbon dioxide gas laser oscillator
JPS5840876A (en) Oscillator for vertical-current carbonic acid gas laser
US4622675A (en) Forced transport molecular gas laser and method
US4771436A (en) Gas laser oscillator having a gas flow smoothing device to smooth gas flow in the electrical discharge region
JPS6342427B2 (en)
JPS5840351B2 (en) Vertical flow carbon dioxide laser oscillator
JPS5917986B2 (en) gas laser equipment
US4740980A (en) Gas laser device
US4993037A (en) High speed axial flow gas laser generator
JPS6310916B2 (en)
JPS62119990A (en) Gas laser oscillator
US4866728A (en) Electric discharge apparatus
JPS6350857Y2 (en)
JP2908808B2 (en) High-speed axial flow laser oscillator
JPS62199081A (en) Gas laser oscillator
JPH02192188A (en) Gas laser oscillation device
JPH0422179A (en) Laser oscillator
JPS6313385A (en) Transverse excitation type laser oscillator
JPS6295884A (en) Gas laser oscillator
JPS63181387A (en) Pulse gas laser
JPS61279185A (en) Laser oscillator
JPH023997A (en) Co2 gas laser device
JPS63237487A (en) Co2 laser oscillation equipment