JPS59179716A - Operating method of heating furnace - Google Patents

Operating method of heating furnace

Info

Publication number
JPS59179716A
JPS59179716A JP5589083A JP5589083A JPS59179716A JP S59179716 A JPS59179716 A JP S59179716A JP 5589083 A JP5589083 A JP 5589083A JP 5589083 A JP5589083 A JP 5589083A JP S59179716 A JPS59179716 A JP S59179716A
Authority
JP
Japan
Prior art keywords
furnace
pressure
heating furnace
amount
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5589083A
Other languages
Japanese (ja)
Other versions
JPH0233775B2 (en
Inventor
Yoshiyuki Kyojima
京島 良幸
Yoshiaki Hirota
芳明 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5589083A priority Critical patent/JPH0233775B2/en
Publication of JPS59179716A publication Critical patent/JPS59179716A/en
Publication of JPH0233775B2 publication Critical patent/JPH0233775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To minimize the quantity of heat loss in a heating furnace for billets for rolling by taking the information on the atmosphere temp. in each zone of the heating furnace and the information of the pressure in the furnace into an electronic computer, calculating trially the blowing rate of combustion gas and the flow rate of intruding air and operating a flue damper. CONSTITUTION:The atmosphere temp. in each zone of a heating furnace 1 for billets for rolling is measured with an atmosphere thermometer 4 and the pressure in the furnace is measured with a furnace pressure gage 5, then the information on the respective actually measured values is taken into an electronic computer 8 in the stage of heating steel materials 3 to a prescribed temp. by burners 2 in the furnace 1. The blowing rate of combustion gas and the flow rate of intruding air are trial-calculated in the computer 8 and a flue damper 7 is operated to minimize the quantity of the heat loss owing to the blowing out and the intruding air by which the pressure in the furnace is controlled.

Description

【発明の詳細な説明】 本発明は、加熱炉操業方法に関するものであり、損失熱
量を最小にできる加熱炉操業方法を提案するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heating furnace operating method, and proposes a heating furnace operating method that can minimize the amount of heat loss.

例えば、圧延用鋼片加熱炉は、冷片もしくは熱片鋼片を
例えばコークス炉ガス等を燃料として圧延に必要な温度
まで加熱することを目的とする加熱装置である。一般に
圧延用鋼片加熱炉は、鋼片の装入口、抽出口、その他の
ぞき窓など複数個の開口部を有している。この開口部に
おいて炉内圧は、どの部位においても、0tanHpO
であることが望ましいが、実際には燃焼ガスによる浮力
、大気圧の高さ方向における圧力分布、煙道の圧力損失
等によって、01罰となることは無い。すなわち、第1
図(イ)、(ロ)に示すとお9、開口部AP(装入口、
抽出口)の高さH方向の圧力分布が、るる高姑において
、グラス(+)とマイナス(−)に変る。従って、炉内
燃焼ガスの圧力が大気圧よシも大きいと燃焼ガスGSの
吹き出しがおこ9、逆に大気圧の方が大きいと炉内への
浸入空気ARがある。なおFaは炉床、Fbは炉内、F
cは炉蓋、AIは吹出領域、A2は吸出演域である。
For example, a billet heating furnace for rolling is a heating device whose purpose is to heat a cold billet or a hot billet to a temperature necessary for rolling using coke oven gas or the like as fuel. Generally, a billet heating furnace for rolling has a plurality of openings, such as a billet charging inlet, an extraction port, and other viewing windows. In this opening, the furnace pressure is 0tanHpO at any location.
However, in reality, it will not be a 01 penalty due to buoyancy due to combustion gas, pressure distribution in the height direction of atmospheric pressure, pressure loss in the flue, etc. That is, the first
As shown in Figures (A) and (B), 9, opening AP (charging port,
The pressure distribution in the height H direction of the extraction port changes from glass (+) to minus (-) at the height of the extraction port. Therefore, if the pressure of the combustion gas in the furnace is higher than the atmospheric pressure, the combustion gas GS will blow out9, and conversely, if the atmospheric pressure is higher, air will enter the furnace AR. Note that Fa is the hearth, Fb is the inside of the furnace, and F
c is the furnace lid, AI is the blowout area, and A2 is the suction area.

従って熱量原単位5の影響は、第2図(イ)〜(ハ)の
とおシとなる。すなわち、同図(イ)は、理想状態であ
るガスの吹出しも侵入空気も無い場合を示す。
Therefore, the influence of the heat consumption unit 5 is as shown in Fig. 2 (a) to (c). In other words, FIG. 5(A) shows an ideal state in which there is no blowing out of gas or intrusion of air.

また同図(ロ)は、ガスの吹出しがある場合を示し、同
図(イ)は、侵入空気がある場合金示す。該し大空気が
あれば、浸入空気を加熱するだめに増量される燃料が排
ガスの増分となるが、一部はレキーベレターで回収可能
である。故に、これらを考慮して加熱炉の操業を行えば
損失熱量を最小にできる加熱炉操業が実施できることに
なるが省エネルギー思考に乏しいこれまでの技術では、
難しいことである。
In addition, the same figure (b) shows the case where gas is blown out, and the same figure (a) shows the case where there is intruding air. If there is a large amount of air, the amount of fuel increased to heat the infiltrated air will increase the amount of exhaust gas, but some of it can be recovered by the requive letter. Therefore, if the heating furnace is operated with these considerations in mind, it will be possible to operate the heating furnace in a way that minimizes the amount of heat loss.
It's difficult.

すなわち従来は、加熱炉内の圧力を設定し、炉圧の実測
値によるフィードバック制御を行なって5だ。′また燃
料ガス流量は、炉内雰囲気温度、もしくは鋼片温度情報
をとシこみ、設定値との差を見ながらフィードバック制
御することが一般的であった。従って、例えば、圧延条
件の変更に伴う、孔替え、圧延待ちなど、非定常操業の
場合も含めて直ちに熱損失量を最小とする加熱炉の操業
は、難かしいことである。
In other words, conventionally, the pressure inside the heating furnace is set and feedback control is performed based on the actual measured value of the furnace pressure. 'Furthermore, the fuel gas flow rate was generally feedback-controlled by inputting information about the furnace atmosphere temperature or billet temperature and checking the difference from the set value. Therefore, it is difficult to immediately operate a heating furnace to minimize the amount of heat loss, even in unsteady operations such as changing holes or waiting for rolling due to changes in rolling conditions.

本発FJAは、斯様な難点を解決することを目的とした
加熱炉操業方法を提供するものである。すなわち本発明
は、耐火物でおおわれた圧延用鋼片加熱炉において、加
熱炉各帯の雰囲気温度情報および炉内圧力・i#報を電
子計′X磯にとシこみ、該計算機によ)燃焼ガスの吹出
し量および侵入空気量を試算し、吹出しおよび侵入空気
による損失熱量を最小となるように煙道ダンパーを作動
させることを特徴とする加熱炉操業方法である。以下、
図面に示す実施例に基づき本づ6明を説明する。
The present FJA provides a heating furnace operating method aimed at solving such difficulties. That is, the present invention provides a heating furnace for rolling billets covered with refractories, in which atmospheric temperature information and furnace pressure/i# information for each zone of the heating furnace are input into an electronic meter, and the information is calculated by the computer. This heating furnace operating method is characterized by calculating the amount of combustion gas blown out and the amount of intruding air, and operating the flue damper so as to minimize the amount of heat loss due to the blown out and intruding air. below,
The present invention will be explained based on the embodiment shown in the drawings.

第3図は、本発明を実施する装置樅の説明図であシ、鋼
材加熱炉1は、図示のとおり、複数個のバーナー2及び
雰囲気温度計4、炉圧計5、レキーベレータ6、煙道の
ダンパー7などを備え、鋼材3を加熱する。8は成牛計
算機であり、9は流量制御装置、10はガスブロワ−1
11は空気プロワ−112は空燃比率設定器である。こ
れらは電気計装技術及び制御技術を満す条件で設けられ
ている。
FIG. 3 is an explanatory diagram of the apparatus for carrying out the present invention. As shown in the figure, the steel heating furnace 1 includes a plurality of burners 2, an atmosphere thermometer 4, a furnace pressure gauge 5, a requiberator 6, and a flue. It is equipped with a damper 7 and the like, and heats the steel material 3. 8 is an adult cow calculator, 9 is a flow rate control device, and 10 is a gas blower 1.
11 is an air blower, and 112 is an air-fuel ratio setter. These are provided under conditions that satisfy electrical instrumentation technology and control technology.

本発明は、周知の耐火物でおおわれた圧延用鋼片加熱炉
lにおいて、加熱炉谷帝の雰囲気温度計4の実測値情報
および炉内圧力計5の実測値情報を電子計算機8へとシ
こみ、該計算機8にょシ燃焼ガスの吹出し量および侵入
受気麓を試算し、吹出しおよび侵入空気による損失熱量
が最小となるように炉内圧力を制御するよう煙道ダンパ
ー7を作動させるものである。これによって、実質損失
熱量を把握できるので、加熱炉1の炉内圧力は、最適炉
圧を決定することができるので、損失熱量を最小とする
加熱炉操業ができ、省エネルギー効果を発揮できる。
The present invention is a heating furnace for rolling billets covered with a well-known refractory material, in which actual measurement value information from an atmosphere thermometer 4 and actual measurement value information from an in-furnace pressure gauge 5 of the heating furnace tank is transferred to an electronic computer 8. The calculator 8 calculates the amount of combustion gas blown out and the amount of incoming air, and operates the flue damper 7 to control the pressure inside the furnace so that the amount of heat lost due to the blown out and incoming air is minimized. be. As a result, the actual amount of heat loss can be grasped, and the optimum furnace pressure can be determined for the internal pressure of the heating furnace 1. Therefore, the heating furnace can be operated to minimize the amount of heat loss, and an energy saving effect can be achieved.

上述をさらに具体的に説明すると次のとおりである。The above will be explained more specifically as follows.

(1)炉圧:炉圧は、次式で示されΔP〉0で吹出し、
Δp<oで吸込みとなる。
(1) Furnace pressure: Furnace pressure is expressed by the following formula, blowing out at ΔP>0,
Suction occurs when Δp<o.

ここで、 Pp = Pt + P2 Pl:大気圧(mHzo) P2:浮力〔ll1III迅O〕 H:圧力計取付高さくm) Tg:炉内温度[U] TO:外気温度〔℃〕 P:設定圧力〔mlI〕 (2)吹き出しガス量並びに侵入空気量の算出:吹き出
しガス置皿ひに侵入空気fit V Nm3./mは下
式によって求められる。
Here, Pp = Pt + P2 Pl: Atmospheric pressure (mHzo) P2: Buoyancy [11III] H: Pressure gauge mounting height (m) Tg: Furnace temperature [U] TO: Outside temperature [℃] P: Setting Pressure [mlI] (2) Calculation of blown gas amount and intruding air amount: Intruding air fit into the blown gas placement plate V Nm3. /m is determined by the following formula.

ΔPX2g u = k ()イ ρ V:侵入・吹出しガスit (N m3/ )ir )
Tg:v人・吹出しガス温度(℃) ΔP:圧力差(順&0) を二開ロ幅(m) h:開口高さくm) U:ガス流速(m/a) k:流量係数(−) ここで、流量係数には第5図の(a)〜(f)の開口部
形状に対し次の(、)〜(f)の如く定める。
ΔPX2g u = k ( ) i ρ V: Intruding/blowing gas it (N m3/ )ir)
Tg: v person/Blowout gas temperature (℃) ΔP: Pressure difference (order & 0) Opening width (m) h: Opening height (m) U: Gas flow rate (m/a) k: Flow coefficient (-) Here, the flow coefficients are determined as shown in (,) to (f) below for the opening shapes shown in (a) to (f) in FIG.

(、)開口部の径(円径のときは直径、その他の断面で
は、水力半径をとる)が壁の厚δの2倍以上のとき、a
 = 0.38 (f =1.6 )(b)炉壁の厚さ
が開孔部径の2.5〜3倍のときa=0.67 (f=
0.5 )。なお、05〜25倍のときは(、) (b
)の中間値をとる。
(,) When the diameter of the opening (diameter for circular diameter, hydraulic radius for other cross sections) is more than twice the wall thickness δ, a
= 0.38 (f = 1.6) (b) When the thickness of the furnace wall is 2.5 to 3 times the opening diameter, a = 0.67 (f =
0.5). In addition, when it is 05 to 25 times (,) (b
).

(c)炉壁の厚さが径の3倍以上のとき、この場合は、
最初の3倍のノツ1までのfを0,5とし、それから以
後は、開孔部の壁面の摩擦損失のみを考えて計算する。
(c) When the thickness of the furnace wall is three times or more the diameter, in this case,
Let f be 0.5 up to the first three times the number 1, and thereafter calculate by considering only the friction loss on the wall surface of the opening.

したがってa < 0.67(d)ガスの入口が開いて
いる場合でA = 0.9〜0.95(f=0.1〜0
.05 ’) (d)の林側のように、溶融物が付着し
ている場合a =0.9. (f =0.1 )(e)
 (、)と(b)の中間の値をとる。
Therefore, a < 0.67 (d) when the gas inlet is open, A = 0.9 ~ 0.95 (f = 0.1 ~ 0
.. 05') When molten matter is attached, as in the Hayashi side of (d), a = 0.9. (f = 0.1) (e)
It takes a value between (,) and (b).

(f)一般のドアーのすきまで(b)又は(c)に曲が
9角の圧損を加算する。
(f) Add the pressure loss of 9 angles to (b) or (c) to the gap of a general door.

(3)吹出し及び空気の侵入に伴なう熱損失:吹き出し
に伴う熱量原単位の損失Qg41...  侵入空気に
よる熱量原単位の損失をQfi 4とすると、両者の合
計Qt愕は、 Qt = Qg 十Qa であ、!l)、”’(Qt)Δ、なるΔPを求める事に
よシ最適炉圧を決定する量ができる。
(3) Heat loss due to blowing and air intrusion: Loss in unit heat quantity due to blowing Qg41. .. .. If the loss of unit heat due to intruding air is Qfi 4, the total Qt of both is Qt = Qg + Qa, and! By determining ΔP such that ΔP is equal to ΔP, the quantity for determining the optimum furnace pressure can be obtained.

ここで、 W:吹出しガス量(Nm3/H〕 ΔF=燃料増分(Nm3/H〕 Vex :排ガス量(Nm”/Nm3)Cpg :ガス
定圧比熱〔−/Nm3℃〕Tg:炉温〔℃〕 Tg′:排ガス温度〔℃〕 TO:外気温〔℃〕 Ton :処理トン数(T/1() ηニレキュ効率〔−〕 なお侵入空気があっても、Tg′、ηは変らないものと
する。
Here, W: Blowout gas amount (Nm3/H) ΔF = Fuel increment (Nm3/H) Vex: Exhaust gas amount (Nm''/Nm3) Cpg: Gas constant pressure specific heat [-/Nm3°C] Tg: Furnace temperature [°C] Tg': Exhaust gas temperature [℃] TO: Outside temperature [℃] Ton: Processing tonnage (T/1() ηNilecu efficiency [-] Even if there is intruding air, Tg' and η are assumed to remain unchanged. .

一方、侵入空気による燃料増分ΔFNm3/hrは、V
 −Cpa −(Tg’−TO)+ΔF’VexCpg
 ’ (Tg’−TO)−1−Lt−ΔFV:侵入空気
量(Nm” /hr ’:JCpa :平均空気比熱〔
ICmI/Nm3℃〕HL:燃料真発熱量(Kcal/
Nm” 〕で求める。従って、第3図に示す炉内雰囲気
温度計4、炉圧計5の実測値を電子計算機8へ取込み、
上述の考えで計算して、吹出し及び侵入空気による損失
熱量を最小とするようにダンパー7へ制御信号を出力し
、炉内圧力を制御して行う。そこで、次の仕様からなる
プッシャー型鋼片加熱炉で試みた結果を説明する。
On the other hand, the fuel increment ΔFNm3/hr due to intruding air is V
-Cpa -(Tg'-TO)+ΔF'VexCpg
'(Tg'-TO)-1-Lt-ΔFV: Amount of intruding air (Nm"/hr': JCpa: Average specific heat of air [
ICmI/Nm3℃]HL: Fuel net calorific value (Kcal/
Therefore, the actual measured values of the furnace atmosphere temperature gauge 4 and furnace pressure gauge 5 shown in FIG. 3 are taken into the electronic computer 8,
Calculations are made based on the above idea, and a control signal is output to the damper 7 to control the furnace pressure so as to minimize the amount of heat loss due to blowing and intruding air. Therefore, the results of an experiment using a pusher-type billet heating furnace having the following specifications will be explained.

加熱炉の仕様:炉型式・・・・・・・・・プッシャー型
2帯式加熱炉。寸法・・・・・・・・・炉長 2084
6 、、炉幅19825 。
Heating furnace specifications: Furnace type: Pusher type two-zone heating furnace. Dimensions・・・・・・Furnace length 2084
6,, furnace width 19825.

炉高(max)2200o有効炉床面積・・・・−・・
・・376 m2゜炉床負荷−−−−−−−−−max
 357 r平常208 Kg/m2hr 0バーナー
・・・・−・・・・加熱帯・均熱帯共軸流バーナー61
9本。加熱能力・・・・・−・・・標準70T/H,最
大120身M0加熱材寸法・・・−・・−・120中×
18000゜操業条件 炉温   (Tg) 大気温(TO)二TO−25℃ 排ガx in度(Tg’ ) : Tg’=4500圧
力計取付は高さくf() 開口幅及び開口高さ 流量係数に:に=o、c+7 比熱Cpa、Cpg:ガス定圧比熱Cpg=0.334
 Kai/Nm”℃空気定圧比熱Cpa=0.310 
Ktal/Nm’℃排ガス量Vex : Vex = 
5.6 Nm3/Nm3燃料真発熱量HA : H1=
 4500 ”ml/Nm”レキュペレータ効率η:η
=0.3 ドアーの開時間(ビレット1本当り)二装入ロ:30秒
/向(抽出口:開放) 押出口:40秒/回 なお、装入口における圧力計の読みと、抽出口上の圧力
設定用の圧力計の読みとは原理止具なるはずであるが、
実測データからはは11等しいという結果が得られてい
るので、両者は1司じ値とした。
Furnace height (max) 2200o Effective hearth area...
・・376 m2゜Hearth load------max
357 rNormal 208 Kg/m2hr 0 burner・・・・・・・・Heating zone/soaking zone coaxial flow burner 61
9 pieces. Heating capacity: Standard 70T/H, maximum 120 pieces M0 heating material dimensions: 120 medium ×
18000° Operating conditions Furnace temperature (Tg) Atmospheric temperature (TO) -25°C Exhaust gas x in degrees (Tg'): Tg' = 4500 Pressure gauge installation height f () Opening width and opening height flow coefficient Ni: Ni=o, c+7 Specific heat Cpa, Cpg: Gas constant pressure specific heat Cpg=0.334
Kai/Nm”℃Air constant pressure specific heat Cpa=0.310
Ktal/Nm'℃ exhaust gas amount Vex: Vex =
5.6 Nm3/Nm3 Fuel net calorific value HA: H1=
4500 “ml/Nm” Recuperator efficiency η: η
= 0.3 Door opening time (per billet) 2 charging ports: 30 seconds/direction (extraction port: open) Extrusion port: 40 seconds/time The reading of the pressure gauge for pressure setting is supposed to be a stop in principle, but
Actual measurement data shows that they are equal to 11, so they are both set to have a value of 1.

この結果、第4図に示す如く、熱量原単位の1負失が最
小となる設定炉圧は1.5〜1.6 tanHx Oで
あシ、本発明ではか\る範囲W1に炉圧を設定して操業
する。その時の損失熱量原単位は、約3.18X 10
3鴫(s o T/1−i )〜2.59X10−勢(
12oT/H)である。
As a result, as shown in Fig. 4, the set furnace pressure at which the loss of one unit of heat consumption is the minimum is 1.5 to 1.6 tanHxO. Set up and operate. The basic unit of heat loss at that time is approximately 3.18X 10
3 (s o T/1-i) ~ 2.59X10- (
12oT/H).

ダンパー7は、′亀子計算機8からの出力によって、第
4図に示す最適炉圧の1.5〜1.6 ttrmHs 
Oとなるように制御される。これに対し、従来の方法で
は、加熱炉内の圧力を設定し、炉圧の実測値によるフィ
ードバック制御を行い、燃料流量は、炉内雰囲気献度ま
たは鋼片温度情報をとりこみ設定値との差を見ながらフ
ィードバック制御するものであるから、第4図の範囲W
2つ1す25〜3.0喘1(20の炉圧となる制御傾止
まっている。従って、熱搦失は本発明よりも約4倍も悪
い12 X ]、 □Kai(] zo’17H)とな
っていることがわかる。
The damper 7 adjusts the optimum furnace pressure of 1.5 to 1.6 ttrmHs as shown in FIG. 4 according to the output from the Kameko computer 8.
It is controlled to be O. On the other hand, in the conventional method, the pressure inside the heating furnace is set and feedback control is performed using the actual measured value of the furnace pressure, and the fuel flow rate is calculated based on the difference between the set value and the fuel flow rate. Since feedback control is performed while observing the range W in Fig. 4,
There is a control ramp that results in a furnace pressure of 25 to 3.0 1 (20).Therefore, the heat loss is about 4 times worse than that of the present invention. ).

以上の如く、本発明は、従来では見られない精度で炉圧
を適正に制御できるので、これまでに述べたとおシ、損
失熱量を最小にしつつ操業できる効果があり、有益であ
る。
As described above, the present invention can appropriately control the furnace pressure with a precision not seen in the past, and therefore, as described above, it is advantageous in that it can operate while minimizing the amount of heat loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)、(0)は加熱炉の開口部における空気の
侵入及びガスの吹出しを説明する図、第2図(イ)〜(
ハ)は第1図(イ)、(ロ)に基づく熱バランスを示す
図、第3図は本発明を冥蔵するだめの説明1ンj1第4
図は炉圧に伴う損失熱原単位の推移?示すグラフ、第5
図は流量計数にの説明図である。 図面で1:加熱炉、2:バーナー、3:鋼材、4:雰囲
気温度#f、5 :炉圧計、6:レキュペレータ−,7
:ダンパー、8:剖昇軟、9:流量制御装置、lO:ガ
スブロワ−y’ 1 ]、 : ]9−’Aブロワー1
12:空燃比率設定である。 出願人 新日本製鐵株式会社 代理人弁理士  青   柳       稔手続補正
書(自発) 昭和58年5月7 日 1、事件の表示 昭和58年脣許願第55890号 2、発明の名称 加熱炉操業方法 3、補正をする者 事件との関係  特許出願人 住 所 東京都千代田区大手町二丁目6査3号名称 (
665)gr日本製鐵株式会社代表者 武 1)  豊 4、代 理 人  〒101 住 H[東京都千代田区岩2IJ只丁目4査5号第←繊
ビル5、補正命令の日付  な し 6、補正により増加する発明の数  な し7、補正の
対尿 明細書の発明の詳細な説明の欄8、補正の内容 (x)明細書簡i 2 M4 行ノI”’io−」ve
 rio””/、+に補正する。
Figures 1 (a) and (0) are diagrams illustrating air intrusion and gas blowout at the opening of the heating furnace, and Figures 2 (a) to (0).
c) is a diagram showing the heat balance based on Fig. 1 (a) and (b), and Fig. 3 is an explanation of the present invention.
Is the figure showing the change in heat loss intensity with furnace pressure? Graph shown, 5th
The figure is an explanatory diagram of flow rate counting. In the drawing, 1: heating furnace, 2: burner, 3: steel, 4: ambient temperature #f, 5: furnace pressure gauge, 6: recuperator, 7
: damper, 8: autolift, 9: flow rate control device, lO: gas blower-y'1], : ]9-'A blower 1
12: Air-fuel ratio setting. Applicant Nippon Steel Corporation Patent Attorney Minoru Aoyagi Procedural Amendment (voluntary) May 7, 1988 1. Indication of the case Application No. 55890 dated 1988 2. Name of the invention Heating furnace operating method 3. Relationship with the case of the person making the amendment Patent applicant address: No. 3, 2-6 Otemachi, Chiyoda-ku, Tokyo Name (
665) gr Nippon Steel Corporation Representative Takeshi 1) Yutaka 4, Agent Address: 101 H [No. 5, Iwa 2IJ Tada-chome 4, Chiyoda-ku, Tokyo ← Sen Building 5, date of amendment order None 6, Number of inventions increased by amendment None 7, Comparison of amendment Column 8 for detailed explanation of the invention in the specification, Contents of amendment (x) Specification letter i 2 M4 line I"'io-"ve
rio""/, correct to +.

Claims (1)

【特許請求の範囲】[Claims] 耐火物でおおわれた圧延用鋼片加熱炉において、加熱炉
各帯の雰囲気温度情報および炉内圧力情報を電子計算機
にと9こみ、該計算機により燃焼ガスの吹出し量および
侵入空気量を試算し、吹出しおよび侵入空気による損失
熱量を最小となるように煙道ダンパーを作動させること
を特徴とする加熱炉操業方法。
In a steel billet heating furnace for rolling covered with refractories, atmospheric temperature information and furnace pressure information in each zone of the heating furnace are input into an electronic computer, and the computer estimates the amount of combustion gas blown out and the amount of intruding air. A heating furnace operating method characterized by operating a flue damper so as to minimize the amount of heat lost due to blowing out and intruding air.
JP5589083A 1983-03-31 1983-03-31 KANETSUROSOGYOHOHO Expired - Lifetime JPH0233775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5589083A JPH0233775B2 (en) 1983-03-31 1983-03-31 KANETSUROSOGYOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5589083A JPH0233775B2 (en) 1983-03-31 1983-03-31 KANETSUROSOGYOHOHO

Publications (2)

Publication Number Publication Date
JPS59179716A true JPS59179716A (en) 1984-10-12
JPH0233775B2 JPH0233775B2 (en) 1990-07-30

Family

ID=13011700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5589083A Expired - Lifetime JPH0233775B2 (en) 1983-03-31 1983-03-31 KANETSUROSOGYOHOHO

Country Status (1)

Country Link
JP (1) JPH0233775B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758455B1 (en) 2006-10-25 2007-09-14 주식회사 포스코 Inner pressure control method in reheating furnace of hot rolling mill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758455B1 (en) 2006-10-25 2007-09-14 주식회사 포스코 Inner pressure control method in reheating furnace of hot rolling mill

Also Published As

Publication number Publication date
JPH0233775B2 (en) 1990-07-30

Similar Documents

Publication Publication Date Title
KR0163970B1 (en) Electric arc fusion furnace
JP2002003224A5 (en)
US4394121A (en) Method of controlling continuous reheating furnace
CN105579415B (en) The method of operation of cement making equipment
JPS59179716A (en) Operating method of heating furnace
JPH0137451B2 (en)
CN114015863A (en) Self-correction algorithm for billet heating model
KR19990019040A (en) Blast Furnace Hot Air Flow Control
JPH06281364A (en) Temperature control method for heating furnace
Tucker et al. Mathematical modelling of heat transfer in a gas-fired reheating furnace operating under non-steady state conditions
JPS6365230A (en) Burning control method for hot air furnace
Chakravarty et al. Improving the Energy Efficiency in a Walking Hearth Type Reheating Furnace by Energy Balance Method and Optimizing the Resources
JPH10324919A (en) Method for designing heating furnace
JPS60256785A (en) Control method in continuous type calciner
US914226A (en) Furnace.
JP2002157023A (en) Furnace pressure control system
JPS6346386A (en) Method of controlling pressure in industrial kiln
Zhou et al. Energy efficiency evaluation of a shuttle kiln based on field test
Sonovsky et al. Equipment for control of excess blast furnace gas
JPS61199022A (en) Method for controlling continuous heating furnace
JPH10324926A (en) Method for predicting overall ratio of heat absorption in continuous heating furnace and method for predicting temperature of steel slab
Eberhardt et al. Heat Transmission in Steel-Reheating Furnaces
US883916A (en) Furnace.
JP2002212630A (en) Method for measuring atmospheric gas concentration in heating furnace, and heating furnace
JPS59107946A (en) Lime baking device