JPS6346386A - Method of controlling pressure in industrial kiln - Google Patents

Method of controlling pressure in industrial kiln

Info

Publication number
JPS6346386A
JPS6346386A JP19111686A JP19111686A JPS6346386A JP S6346386 A JPS6346386 A JP S6346386A JP 19111686 A JP19111686 A JP 19111686A JP 19111686 A JP19111686 A JP 19111686A JP S6346386 A JPS6346386 A JP S6346386A
Authority
JP
Japan
Prior art keywords
furnace
heat
exhaust gas
heat exchanger
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19111686A
Other languages
Japanese (ja)
Inventor
副島 豊
和幸 田代
鎌田 憲幸
小野田 正己
洋二 伊藤
河原 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19111686A priority Critical patent/JPS6346386A/en
Publication of JPS6346386A publication Critical patent/JPS6346386A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 発明が関与する技術分野 本発明は、排熱回収装置として熱交換器を設置している
加熱炉、熱処理炉等の工業窯炉において、装入扉や抽出
扉の開閉により炉内排ガスの吹出しや外部空気の侵入を
、小さくするための炉内圧力を制御する方法に関するも
のである。
[Detailed Description of the Invention] Technical field to which the invention pertains The present invention relates to the opening and closing of charging doors and extraction doors in industrial kilns such as heating furnaces and heat treatment furnaces in which a heat exchanger is installed as an exhaust heat recovery device. This invention relates to a method of controlling the pressure inside the furnace to reduce the blowout of exhaust gas and the intrusion of outside air.

先行技術 工業窯炉は一般に、炉内で燃焼した排ガスを排出するた
め煙突を設けである。炉と煙突の途中の煙道にダンパー
を設けて例えば特開昭59−182927に開示されて
いるように、その開度を調節し炉圧を制御している。と
ころで被加熱物を炉内に装入したり、また逆に炉外に抽
出する場合、当然、装入扉や抽出扉の開閉が必要となっ
て(る。
Prior art industrial furnaces are generally provided with a chimney for exhausting the exhaust gases burned within the furnace. A damper is provided in the flue between the furnace and the chimney, and its opening is adjusted to control the furnace pressure, as disclosed in, for example, Japanese Patent Laid-Open No. 59-182927. By the way, when charging the object to be heated into the furnace or conversely extracting it out of the furnace, it is naturally necessary to open and close the charging door and the extraction door.

このときに炉内圧力が高すぎると炉内への侵入空気は減
少するものの燃焼排ガスが炉外へ吹出し、外壁周辺の機
器、炉壁を構成する鉄骨、鉄皮、耐火物を焼損させるば
かりでなく、エネルギーの損失ともなる。また逆に、炉
内圧力が大気圧より低すぎると炉外から大量の空気が侵
入してその冷たい空気が炉内の熱を奪い、炉内温度低下
を起こす虞れがある。また炉内への侵入空気によって炉
内酸素濃度は増加し被加熱物の表面は必要以上に酸化物
が増加し、品質上悪影響を与えたり、成品歩留りの悪化
となったりする。また炉内と同様に煙道への侵入空気も
増加し煙道を通る排ガス温度も低下する。
If the pressure inside the furnace is too high at this time, although the amount of air entering the furnace will be reduced, the combustion exhaust gas will blow out of the furnace, causing equipment around the outer wall and the steel frame, steel shell, and refractories that make up the furnace wall to burn out. This also results in a loss of energy. On the other hand, if the pressure inside the furnace is too low than the atmospheric pressure, a large amount of air will enter from outside the furnace, and the cold air will absorb heat from inside the furnace, potentially causing a drop in the temperature inside the furnace. In addition, the oxygen concentration in the furnace increases due to air entering the furnace, and oxides increase more than necessary on the surface of the object to be heated, which adversely affects quality and reduces product yield. In addition, as in the furnace, the amount of air entering the flue increases and the temperature of the exhaust gas passing through the flue also decreases.

炉内圧力を適正に保つことは、被加熱材の品質。Maintaining the appropriate pressure in the furnace is a matter of quality of the material to be heated.

歩留り、設備の寿命やエネルギーの面でも重要なことで
ある。
This is also important in terms of yield, equipment life and energy.

ところで炉内圧力設定値は常に一定値であるとは限らず
、一般には炉を操業する運転者が定期的に炉周辺を見廻
りなから炉壁間隔からの燃焼ガスの吹出しを目視確認し
て設定値を決めていることが多い。また炉内圧力は一定
に設定していても炉内温度、燃料使用量において変化す
るばかりでなく、炉壁、扉の損傷状態や被加熱物の配置
状況等によっても変化する。またこれらの条件によって
は炉内圧力の最適値は異なるとも考えられる。
By the way, the furnace pressure setting value is not always a constant value, and is generally set by the operator who operates the furnace who periodically goes around the furnace and visually checks the blowing of combustion gas from the furnace wall space. The value is often determined. Further, even if the pressure inside the furnace is set constant, it changes not only depending on the temperature inside the furnace and the amount of fuel used, but also depending on the state of damage to the furnace walls and doors, the arrangement of the objects to be heated, etc. It is also considered that the optimum value of the furnace pressure varies depending on these conditions.

本発明は従来の工業窯炉の圧力設定方法の欠点を除去し
、改善した方法を提供するものである。
The present invention eliminates the drawbacks of conventional industrial kiln pressure setting methods and provides an improved method.

その要旨は、熱交換器を設置している工業窯炉において
、熱交換器を通過する燃焼排ガス量と熱回収物の流量の
比を適正にし、炉尻の燃焼排ガス熱量に対する熱回収物
の回収熱量比を最大にするように炉内圧力制御目標値を
最適に修正する事を持参器して詳細に説明する。
The gist of this is to optimize the ratio of the amount of flue gas passing through the heat exchanger to the flow rate of the heat recovered material in industrial furnaces equipped with a heat exchanger, and to recover the heat recovered material relative to the calorific value of the flue gas at the bottom of the furnace. We will explain in detail how to optimally modify the furnace pressure control target value so as to maximize the heat ratio.

本発明は熱交換器を設けている工業窯炉において操業す
るさい、熱交換器を通過する燃焼排ガス量と熱回収物量
の流量比は炉尻の燃焼排ガス熱量に対する熱回収物の回
収熱量の比に大きな影響を及ぼし、前記熱交換器を通る
燃焼排ガス量と熱回収物量を制御すると熱回収率が高(
なることを見出し、さらにこの熱交換器を通る燃焼排ガ
ス量と熱回収物量の比は炉内圧力を変えることにより制
御できることを見出した。
In the present invention, when operating an industrial kiln equipped with a heat exchanger, the flow rate ratio between the amount of flue gas passing through the heat exchanger and the amount of heat recovered material is the ratio of the amount of heat recovered from the heat recovered material to the amount of heat amount of the flue gas at the bottom of the furnace. The heat recovery rate is high (
They also found that the ratio of the amount of combustion exhaust gas passing through this heat exchanger to the amount of heat recovered can be controlled by changing the pressure inside the furnace.

本発明はこの新知見に基づいてなされたものであり、工
業窯炉の熱交換器を通過する燃焼排ガス量と熱回収物例
えば空気量の比を適正に維持するように炉内圧力目標値
を修正変更する事により、炉内からの燃焼排ガスの吹出
しや炉内及び煙道への外気の侵入空気を最少にすること
ができ、熱交換器での被回収物の熱量を最高にし、工業
窯炉の燃料使用量を最少で操業することができる。
The present invention was made based on this new knowledge, and aims to set the target value of the furnace pressure so as to maintain an appropriate ratio of the amount of combustion exhaust gas passing through the heat exchanger of an industrial kiln and the amount of heat recovered, such as air. By making modifications, it is possible to minimize the blowing of combustion exhaust gas from inside the furnace and the intrusion of outside air into the furnace and flue, and to maximize the amount of heat of the recovered material in the heat exchanger, making it possible to The furnace can be operated using the minimum amount of fuel.

次に本発明の1実施例について説明する。Next, one embodiment of the present invention will be described.

第1図は本発明の実施状態を示す窯炉例えば加熱炉の模
式図に信号の流れを示すブロック図を合せて示すもので
ある。まず加熱炉1は、装入扉2゜抽出扉3を設けてい
る。燃料4と燃焼用予熱空気5の供給をうけてバーナ6
で燃焼し、炉内は燃焼排ガスで充満している。その燃焼
排ガスは煙道7を通り、熱交換器8に熱を与えるととも
に、その熱交換器8を通過した燃焼排ガスは煙突9を通
って大気へ放出している。熱交換器8には、熱を回収す
る熱回収物例えば空気を通す流通管10が設けられてい
る。ところで圧力設定装置11で炉内圧力設定目標値を
設定すると、炉内圧力設定信号12は圧力演算器13に
入力される。
FIG. 1 is a schematic diagram of a kiln, such as a heating furnace, showing the implementation state of the present invention, together with a block diagram showing the flow of signals. First, the heating furnace 1 is provided with a charging door 2 and an extraction door 3. Burner 6 is supplied with fuel 4 and combustion preheated air 5.
The furnace is filled with combustion exhaust gas. The combustion exhaust gas passes through the flue 7 and gives heat to the heat exchanger 8, and the combustion exhaust gas that has passed through the heat exchanger 8 passes through the chimney 9 and is released into the atmosphere. The heat exchanger 8 is provided with a flow pipe 10 through which a heat recovery substance such as air for recovering heat passes. By the way, when the furnace pressure setting target value is set by the pressure setting device 11, the furnace pressure setting signal 12 is inputted to the pressure calculator 13.

一方、炉内圧力検出端14より検出した炉内圧力は圧力
検出器15を通り、その圧力検出信号16は圧力演算器
13に入力する。圧力演算器13゛で前述の炉内圧力設
定信号12と比較し、その差に応じ炉内圧力制御信号1
7として出力し、駆動装面18によってダンパー19を
駆動して炉内圧力を制御する。この結果は炉内圧力検出
端14で検出され、圧力検出器15を通じて圧力演算器
13にフィードバックされる。炉尻部では、燃焼排ガス
中の酸素濃度は酸素濃度検出端20aより検出され酸素
濃度検出器21aを通り、その酸素濃度信号22aは演
算処理装置23に入力される。また炉尻部の燃焼排ガス
温度は熱電対24aから温度計25aを通じてその温度
信号26aは演算処理装置23へ入力される。熱交換器
8の燃焼排ガス入口の酸素濃度は酸素濃度検出端20b
で熱交換器8を通る燃焼排ガス、熱回収物の温度は熱電
対24b、24c、24d、24eで検出され、演算処
理装置23へ人力される。炉の燃焼に供給する燃料4は
流量針例えばオリフィス27で測定され、その測定信号
は流量検出器28で流量信号29となって演算処理装置
23に入力される。この演算処理装置23では前述の入
力信号を用いて後述する演算を行い、その結果を圧力設
定装置11へ入力し、炉内圧力設定目標値を操業状態に
応じて修正変更している。
On the other hand, the furnace pressure detected by the furnace pressure detection end 14 passes through a pressure detector 15, and its pressure detection signal 16 is input to the pressure calculator 13. The pressure calculator 13' compares it with the above-mentioned furnace pressure setting signal 12, and sets the furnace pressure control signal 1 according to the difference.
7, and a damper 19 is driven by a driving surface 18 to control the pressure inside the furnace. This result is detected by the furnace pressure detection end 14 and fed back to the pressure calculator 13 through the pressure detector 15. At the bottom of the furnace, the oxygen concentration in the combustion exhaust gas is detected by the oxygen concentration detection end 20a, passes through the oxygen concentration detector 21a, and the oxygen concentration signal 22a is input to the arithmetic processing unit 23. Further, the temperature signal 26a of the combustion exhaust gas temperature at the bottom of the furnace is inputted to the arithmetic processing unit 23 from the thermocouple 24a through the thermometer 25a. The oxygen concentration at the combustion exhaust gas inlet of the heat exchanger 8 is determined by the oxygen concentration detection end 20b.
The temperatures of the combustion exhaust gas and the heat recovery material passing through the heat exchanger 8 are detected by thermocouples 24b, 24c, 24d, and 24e, and are manually input to the processing unit 23. The fuel 4 supplied for combustion in the furnace is measured by a flow rate needle, for example, an orifice 27, and the measured signal is inputted to the arithmetic processing unit 23 as a flow rate signal 29 by a flow rate detector 28. This arithmetic processing device 23 uses the above-mentioned input signals to perform arithmetic operations to be described later, and inputs the results to the pressure setting device 11 to correct and change the furnace pressure setting target value according to the operating state.

加熱炉1と熱交換器8の間の流量バランス、及びエネル
ギーバランスモデルについて、第2図を用いて説明する
。まず炉内で燃焼させる燃料使用量Ffに対し必要な空
気量Faは次の0式で求める。
The flow balance between the heating furnace 1 and the heat exchanger 8 and the energy balance model will be explained using FIG. 2. First, the amount of air Fa required for the amount of fuel used Ff to be combusted in the furnace is determined using the following equation.

F a =F f xA o xmf−・−■ここでA
oは燃料の成分によって決定される理論空気量であり、
単位燃料使用量に対し必要な空気量を示す。m(は過剰
空気比であり、炉内で燃料を燃焼させる場合理論空気量
Aoだけ供給した場合は実際の燃焼ではバーナの構造上
の問題等よりススを発生したり、未燃分を発生したりす
るので、過剰に空気を供給し効率よく燃焼させるために
過剰空気量を供給するが、その過剰空気比である。
F a =F f xA o xmf-・-■Here A
o is the theoretical air amount determined by the fuel components,
Indicates the amount of air required for unit fuel consumption. m( is the excess air ratio. When burning fuel in a furnace, if only the theoretical amount of air Ao is supplied, actual combustion may generate soot or unburned matter due to problems with the structure of the burner. Therefore, in order to supply excess air and achieve efficient combustion, an excess amount of air is supplied, but this is the excess air ratio.

今炉尻の燃焼排ガス中の測定した酸素濃度を02fとす
ると前述の過剰空気比mf は0式で求められる。
If the oxygen concentration measured in the combustion exhaust gas at the bottom of the furnace is 02f, the excess air ratio mf described above can be found by the equation 0.

m(=  21./ (21,02f )     −
−■また加熱炉1に供給した燃料4の燃焼によって発生
する燃焼排ガス量Fgfは炉内への侵入空気及び炉外へ
の吹出しがないとすれば0式で、求めることができる。
m(=21./(21,02f) −
-■Furthermore, the amount of combustion exhaust gas Fgf generated by combustion of the fuel 4 supplied to the heating furnace 1 can be determined by equation 0, assuming that there is no air entering the furnace and no air blowing out of the furnace.

Fgf=FfX  (GoX  <mr   1.)X
Ao)・・・・・・■ ここでGoは燃料の成分によって決定される理論燃焼排
ガス量というものであり、単位燃料使用量に対し理論的
に発生する排ガス量を示す。ところが実際の場合は、炉
内圧力の変動や装入扉2等の開閉によって燃焼排ガスの
吹出しや侵入空気が発生する場合がある。よって炉内か
ら炉外への燃焼排ガス吹出し量をFoとし、装入扉2等
から入り煙道7へ入る侵入空気量をFiとして熱交換器
8を通過する実際の燃焼排ガス量をFgxとすると加熱
炉1と熱交換器8の間で0式のような流量バランス式が
成立する。
Fgf=FfX (GoX <mr 1.)X
Ao)...■ Here, Go is the theoretical amount of combustion exhaust gas determined by the fuel components, and indicates the amount of exhaust gas theoretically generated with respect to the unit amount of fuel used. However, in actual cases, fluctuating pressure in the furnace or opening/closing of the charging door 2 or the like may cause combustion exhaust gas to blow out or air to enter. Therefore, if the amount of combustion exhaust gas blown from inside the furnace to the outside of the furnace is Fo, the amount of intruding air entering from the charging door 2 etc. and entering the flue 7 is Fi, and the actual amount of combustion exhaust gas passing through the heat exchanger 8 is Fgx. A flow balance equation such as equation 0 is established between the heating furnace 1 and the heat exchanger 8.

Fgl=Fgf−F o +F i        −
・・・・・■一方、熱交換器8周りで熱バランス式を考
える。
Fgl=Fgf−F o +F i −
...■On the other hand, consider the heat balance formula around heat exchanger 8.

Qglを燃焼排ガス人口頭熱、Qg2を燃焼排ガス出口
ra熱、Qa1を熱回収物例えば空気人口頭熱、 Qd
2を空気出口顕熱、Qdを熱交換器本体からの放散熱と
考えると熱バランス弐〇式が成立する。
Qgl is combustion exhaust gas human body heat, Qg2 is combustion exhaust gas outlet RA heat, Qa1 is heat recovery product such as air human body heat, Qd
Considering that 2 is the sensible heat at the air outlet and Qd is the heat dissipated from the heat exchanger body, the heat balance formula 2 is established.

Qgl+Qal=Qg2+Qa2+Qd     ・・
・−・−■ここでTglを燃焼排ガス入口温度、Tg2
を燃焼排ガス出口温度、Talを空気入口温度、Ta2
を空気出口温度、Cpgl を燃焼排ガス比熱、C9g
2を燃焼排ガス出口比熱+Cpa+を空気入口比熱、C
pa2を空気出口比熱とすると0式は0式となる。
Qgl+Qal=Qg2+Qa2+Qd...
・−・−■Here, Tgl is the combustion exhaust gas inlet temperature, Tg2
is the combustion exhaust gas outlet temperature, Tal is the air inlet temperature, Ta2
is the air outlet temperature, Cpgl is the combustion exhaust gas specific heat, C9g
2 is the combustion exhaust gas outlet specific heat + Cpa+ is the air inlet specific heat, C
If pa2 is the air outlet specific heat, the 0 equation becomes the 0 equation.

FglXTglXCI)gl  +FaXTalXCp
a、=FglXTg2XCpg2 +F a XTa2
XCpa2 +Qd・・・・・・■ 0式より熱交換器8を通過する燃焼排ガスitFglは
0式で示される。
FglXTglXCI)gl +FaXTalXCp
a, =FglXTg2XCpg2 +F a XTa2
XCpa2 +Qd...■ From equation 0, the combustion exhaust gas itFgl passing through the heat exchanger 8 is expressed by equation 0.

すなわち前記0式の演算で得られた空気流量Fa。That is, the air flow rate Fa obtained by calculating the above equation 0.

別途入力される熱交換器本体からの放散熱Qd。Dissipated heat Qd from the heat exchanger body is input separately.

それに熱交換器入口燃焼排ガス温度’r”gt、熱交換
器出口燃焼排ガス温度’rg2.熱交換器入口空気温度
T al、熱交換器出口空気温度Ta2を測定し、これ
らを演算処理装置23に入力し、演算により熱交換器8
を通る燃焼排ガスfFg1は求めることができる。ここ
で比熱は燃焼排ガス、熱回収物例えば空気とも温度に応
じ予じめわかっている。従って燃焼排ガスと熱回収物の
流量と温度を測定すると、それぞれの熱量は演算処理装
置23にて演算し求めることができる。熱交換器8を通
る熱回収物例えば空気の流量は流量検出装置30で検出
され、演算処理装置23に入力される。この流量検出に
代えて前記0式で求められる空気iFaを用いてもよい
In addition, the heat exchanger inlet combustion exhaust gas temperature 'r''gt, the heat exchanger outlet combustion exhaust gas temperature 'rg2, the heat exchanger inlet air temperature T al, and the heat exchanger outlet air temperature Ta2 are measured, and these are sent to the arithmetic processing unit 23. Heat exchanger 8 is input and calculated.
The combustion exhaust gas fFg1 passing through can be determined. Here, the specific heat is known in advance depending on the temperature of the combustion exhaust gas and the heat recovery material, such as air. Therefore, by measuring the flow rate and temperature of the combustion exhaust gas and the heat recovery material, the amount of heat of each can be calculated and determined by the arithmetic processing device 23. The flow rate of heat recovery material, such as air, passing through the heat exchanger 8 is detected by a flow rate detection device 30 and input to the arithmetic processing device 23 . Instead of this flow rate detection, the air iFa determined by the above equation 0 may be used.

得られた熱交換器8を通過する燃焼排ガス量と熱回収物
例えば空気流量の比が、熱回収物の回収熱量と炉尻の燃
焼排ガス熱量の比に及ぼす影響を第3図に示す。この図
から認められるように、熱交換器を通過する燃焼排ガス
と空気流量の比を適正に、例えばこの実施例では1.1
〜1.2とすると、回収熱量が最大になることがわかる
FIG. 3 shows the influence of the ratio of the amount of combustion exhaust gas passing through the obtained heat exchanger 8 to the flow rate of the heat recovery material, such as air, on the ratio of the amount of heat recovered from the heat recovery material to the amount of heat of the combustion exhaust gas at the bottom of the furnace. As can be seen from this figure, the ratio of the combustion exhaust gas and air flow rate passing through the heat exchanger is set appropriately, for example, 1.1 in this example.
It can be seen that when the temperature is set to 1.2, the amount of recovered heat is maximized.

この熱交換器を通過する燃焼排ガス量と熱回収物例えば
空気の流量の比は第4図に示すように、炉内圧力を変え
ることにより制御することを見出しており、この知見に
基づき回収熱量比を最大とする前記燃焼排ガス9と空気
量の流量比となるように炉内圧力の設定目標値を変更す
る。
As shown in Figure 4, we have discovered that the ratio between the amount of combustion exhaust gas passing through this heat exchanger and the flow rate of heat recovered material, such as air, can be controlled by changing the pressure inside the furnace.Based on this knowledge, the amount of recovered heat The set target value of the furnace pressure is changed so that the flow rate ratio of the combustion exhaust gas 9 and the air amount becomes the maximum ratio.

仮に何んらかの原因により熱交換器8を通過する燃焼排
ガスと熱回収物の流量比が熱交換器8の回収熱量比を最
高に発揮する流量比よりずれていたら修正し、熱交換器
の回収熱量比を最高に発揮できるように炉内圧力目標設
定値を変更し、最適炉圧を保持することによって工業窯
炉の熱量原単位を低減させることができる。
If for some reason the flow rate ratio of combustion exhaust gas and heat recovery material passing through the heat exchanger 8 deviates from the flow rate ratio that maximizes the recovered heat ratio of the heat exchanger 8, correct it and replace the heat exchanger 8. By changing the furnace pressure target set value so as to maximize the recovered heat ratio and maintaining the optimum furnace pressure, it is possible to reduce the heat consumption unit of the industrial kiln.

この実施例では熱交換はガス−ガスの熱交換例を採用し
たがガス−液体の熱交換でもよい。また演算処理装置2
3の演算方法として燃料使用量のきく低減されることは
勿論、被加熱材のスケールの発生量が少なくなり、品質
向上6歩留向上及び設備の損傷も小さくなる。
In this embodiment, a gas-gas heat exchange example was adopted for the heat exchange, but a gas-liquid heat exchange may also be used. Also, the arithmetic processing unit 2
As for calculation method 3, not only the amount of fuel used is significantly reduced, but also the amount of scale generated on the heated material is reduced, quality improvement 6. Yield is improved, and damage to equipment is also reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の加熱炉においての実施状態を示す模式
図に信号の流れを示すブロック図を重ね合せた図、 第2図は本発明の加熱炉から熱交換器までの排ガス流量
バランスモデルと排ガス中の酸素濃度バランスモデルと
熱交換器の熱バランスモデルを重ねて書いたモデル図、 第3図は熱交換器を通過する両流体の流量比と炉の炉尻
排ガス損失熱量に対する熱交換器の回収熱量の比を示す
ある燃料範囲の実績データを示すグラフ、 第4図は第3図と同一条件時の熱交換器を通過する両流
体の流量比と炉圧の関係を示すグラフである。 第1図で8は熱交換器、■は加熱炉、4は燃料、5は予
熱空気である。
Figure 1 is a schematic diagram illustrating the state of implementation in a heating furnace of the present invention, with a block diagram illustrating the flow of signals superimposed, and Figure 2 is an exhaust gas flow balance model from the heating furnace to the heat exchanger of the present invention. Figure 3 shows the flow rate ratio of both fluids passing through the heat exchanger and the heat exchange for the heat loss of the flue gas at the bottom of the furnace. Figure 4 is a graph showing the relationship between the flow rate ratio of both fluids passing through the heat exchanger and furnace pressure under the same conditions as Figure 3. be. In FIG. 1, 8 is a heat exchanger, ■ is a heating furnace, 4 is fuel, and 5 is preheated air.

Claims (1)

【特許請求の範囲】[Claims] 熱交換器を設けた工業窯炉の炉内圧力を制御するにあた
り、熱回収物の回収熱量と炉尻の燃焼排ガス熱量の比を
最大とするように熱交換器を通過する燃焼排ガスと熱回
収物の流量比を調節すべく炉内圧力の設定目標値を修正
することを特徴とする工業窯炉の炉内圧力制御方法。
In controlling the furnace pressure of an industrial kiln equipped with a heat exchanger, the combustion exhaust gas passing through the heat exchanger and heat recovery are 1. A furnace pressure control method for an industrial kiln, characterized by modifying a set target value of furnace pressure in order to adjust the flow rate ratio of a material.
JP19111686A 1986-08-14 1986-08-14 Method of controlling pressure in industrial kiln Pending JPS6346386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19111686A JPS6346386A (en) 1986-08-14 1986-08-14 Method of controlling pressure in industrial kiln

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19111686A JPS6346386A (en) 1986-08-14 1986-08-14 Method of controlling pressure in industrial kiln

Publications (1)

Publication Number Publication Date
JPS6346386A true JPS6346386A (en) 1988-02-27

Family

ID=16269131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19111686A Pending JPS6346386A (en) 1986-08-14 1986-08-14 Method of controlling pressure in industrial kiln

Country Status (1)

Country Link
JP (1) JPS6346386A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626769A (en) * 1992-05-27 1994-02-04 Niimi Sangyo Kk O2 analytical type automatic oxidation and reduction burning device and method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626769A (en) * 1992-05-27 1994-02-04 Niimi Sangyo Kk O2 analytical type automatic oxidation and reduction burning device and method therefor

Similar Documents

Publication Publication Date Title
JPH09133321A (en) Internal furnace condition forecasting method for pulverized coal combustion equipment and apparatus therefor
KR940011377A (en) Recuperative glass furnaces, methods of operation thereof, and methods of reducing the emission of harmful substances in the waste gases leaving the glass furnaces
NO934262L (en) Glass regenerator oven and method for operating the oven
JPS6346386A (en) Method of controlling pressure in industrial kiln
JPH0842813A (en) Operating method of furnace
EP0289128B1 (en) Furnace systems
JP4990668B2 (en) Hot stove operation method
US4654004A (en) Controller for clinker cooler
JP5225701B2 (en) Low NOx combustion control method and method for producing reduction product
JP3733803B2 (en) Furnace pressure control method for rotary hearth furnace
JPH09241761A (en) Method for controlling pressure in continuous annealing furnace
JPS63226524A (en) Combustion control in hot blast furnace
JPS61119987A (en) Method of controlling furnace pressure of continuous type heating furnace
JPS6233753A (en) Control method for atmospheric gas
JPH08319520A (en) Continuous annealing furnace
JP3473060B2 (en) Muffle furnace
JPH0227325Y2 (en)
JPH0233775B2 (en) KANETSUROSOGYOHOHO
JPS5865788A (en) Device for supplying preheated air
JPH0743080A (en) Mantle draft controller
JPS5896916A (en) Controlling method of hot blast stove
Davies et al. DEVELOPMENTS IN OPEN FLAME BURNERS AND FIRING RATE CONTROL SYSTEMS
JP2001033016A (en) Method for controlling furnace pressure of waste melting furnace and device for controlling furnace pressure
JPH11293309A (en) Blasting tuyere
Dyshlevich et al. Intensification of open-hearth furnace heating with recirculation of the flue gas