JPS59179073A - Bacteria counter - Google Patents

Bacteria counter

Info

Publication number
JPS59179073A
JPS59179073A JP5157783A JP5157783A JPS59179073A JP S59179073 A JPS59179073 A JP S59179073A JP 5157783 A JP5157783 A JP 5157783A JP 5157783 A JP5157783 A JP 5157783A JP S59179073 A JPS59179073 A JP S59179073A
Authority
JP
Japan
Prior art keywords
bacteria
measurement
amount
fluorescence
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5157783A
Other languages
Japanese (ja)
Inventor
Mitsuru Ikeda
満 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP5157783A priority Critical patent/JPS59179073A/en
Publication of JPS59179073A publication Critical patent/JPS59179073A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:A device capable of measuring an amount of bacteria in a short time, by irradiating a measurement solution of a reaction product of a specific reagent and bacteria in water with exciting light rays to emit fluorescence, calculating the fluorescence in terms of fluorescent output per bacterium. CONSTITUTION:Acridine Orange (derivative) 4 is added to measruement water which is fed from the extremely pure water line 1 through the branched pipe 3, and is reacted with DNA of bacteria in the reaction chamber 3 to give a substance to produce fluorescence by exciting light irradiation. The reaction solution for measurement is introduced to the measuring chamber 5. The solution for measurement in the measurement chamber 5 is irradiated with the exciting light from the light source 7 through the interference filter 8, the condenser 9 and the chopper 10. Flouorescence is produced depending upon an amount of the reaction product, output of the photomultiplier 12 having received the fluorescence is inputted through the lock-in amplifier 13 to the calculator 14, and an output value corresponding to the amount of bacteria is displayed on the indicator 15. Measurement of the amount of bacteria requiring a long time conventionally can be done in an extermely short time.

Description

【発明の詳細な説明】 本発明はバクテリアカウンタに関するものであり、特に
半導体製造等に用いられる超純水中のバクテリア量を測
定するためのバクテリアカウンタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bacteria counter, and particularly to a bacteria counter for measuring the amount of bacteria in ultrapure water used in semiconductor manufacturing and the like.

水質検査においては測定水に含まれるバクテリアの種類
等を検査することの他に、単位水量当りどの位の量のバ
クテリアが存在するかを検査することが重要である。こ
のバクテリアの量の検査は例えば医桑品等の製造におい
て極めて少ないバクテリア量のみしか許容されない場合
や、半導体(特に超LSI半導体)素子の製造に、  
おいて1.cc当り100個以下程度のバクテリアの量
のみしか許容されない場合の如く超紳1水を必要とする
分野においては欠くことのできない検査であると言える
In water quality testing, in addition to testing the types of bacteria contained in the sample water, it is important to test how many bacteria are present per unit amount of water. This inspection of the amount of bacteria is used, for example, when only an extremely small amount of bacteria is allowed in the production of medical products, or in the production of semiconductor (particularly VLSI semiconductor) elements.
1. It can be said that this test is indispensable in fields that require extremely clean water, such as cases where only an amount of bacteria of about 100 or less per cc is allowed.

Cr来、この単位水量当りのバクテリア量を検査する方
法としては、製造された超純水を採取し、この中に含ま
れるバクテリアを倍養して増殖した後、これをフィルタ
個過されたバクテリアを染色し、しかるのち染色された
バクチリアシ[を顕微鏡によって鯖察して計数する方法
が一般的である。
Since Cr, the method of testing the amount of bacteria per unit amount of water is to collect the produced ultrapure water, double the bacteria contained therein, multiply it, and then pass it through a filter. A common method is to stain the bacteria, then observe and count the stained bacteria using a microscope.

しかしながら、この種の検査法を用いると超純水の採取
からバクテリア量の計数まで1遊間程度の時[1を要す
ることから、この検査によつて水質の不適格が判明した
としてもこの検査期間中に製造された半導体素子等は不
良品となってしまい、その結果生産コストの上昇をまね
いてしまう恐れが大きい。
However, when using this type of testing method, it takes about one hour from sampling ultrapure water to counting the amount of bacteria, so even if the water quality is found to be unsuitable by this test, this testing period will be There is a great possibility that the semiconductor elements and the like manufactured therein will be defective, resulting in an increase in production costs.

そこで本発明は極めて短時間で測定水中のバクテリア量
を検出することができ、且つ常時このバクテリア量を監
視することにより半導体等の生産コストを低減させるこ
とが可能なバクテリアカウンタを品1供することを目的
とするものである。
Therefore, the present invention aims to provide a bacteria counter that can detect the amount of bacteria in measurement water in an extremely short period of time, and that can reduce the production cost of semiconductors and the like by constantly monitoring the amount of bacteria. This is the purpose.

かかる目的を達成するために本発1す」は、アクリノン
オレンジ又はその誘導体が添加さえ1、含有するバクテ
リアとの反応生成物を生成芒ぜた測定水が導かれた透光
性の測定室、この7tl11窓室中の測定水に励起光を
照射して該反応生成物から螢光を発生させろための励起
光源、該螢光を受光するための光Tに変換器、この光′
1);変換器の出力を単位バクテリア当りの螢光出力で
ii;”EI して出力するための演算器を有すること
を特徴とするバクテリアカウンタである。
In order to achieve this purpose, the present invention has been developed by introducing a translucent measuring chamber into which the measuring water containing acrinon orange or its derivatives is added, which produces a reaction product with the bacteria it contains. , an excitation light source for irradiating the measurement water in the 7tl11 window chamber with excitation light to generate fluorescence from the reaction product; a converter for receiving the fluorescence into light T; and a converter for receiving the fluorescence;
1) A bacteria counter characterized in that it has an arithmetic unit for outputting the output of the converter as a fluorescence output per unit bacterium.

以下、図面を参照して本発明を更に詳細に説明する。第
1図は、本発明の一実施例を示すものであり、lは例え
ば半導体製造設備に導かれる超純水のラインであり、3
は上記超純水ライン1から分岐省゛路2を通って供給さ
れる測定水にアクリジンオレンジ又はその誘導体(例え
ば3−アミノ−6−メドキシアクリジン等)を供給する
染色剤室4から供給はれるアクリノンオレンジ又はその
誘導体を添加して反応させる反応室テある。アクリジン
オレンジ又はその誘導体は測定水中のバクテリアのDN
A (蛋白質の核であるジオキシボ・ニークリア・アシ
ッド)と反応して反応生成物を生成し、この生成物は励
起光の照射によって螢光を発生させる物質となる。
Hereinafter, the present invention will be explained in more detail with reference to the drawings. FIG. 1 shows an embodiment of the present invention, where l is a line for ultrapure water led to, for example, semiconductor manufacturing equipment, and 3
Acridine orange or a derivative thereof (for example, 3-amino-6-medoxyacridine, etc.) is supplied from the stain chamber 4 to the measurement water supplied from the ultrapure water line 1 through the branch channel 2. There is a reaction chamber in which acrinon orange or its derivatives are added and reacted. Acridine orange or its derivatives are the DNA of bacteria in the measurement water.
It reacts with A (dioxybo niclear acid, which is the core of the protein) to produce a reaction product, and this product becomes a substance that generates fluorescence when irradiated with excitation light.

例えば励起光としては約440乃至500 nm(ビー
クイ16約485nrn)が用いられ、約500乃全5
80nm(ビーク値約530nm)の螢光を発生させる
。5は反応室に供給される超純水及びアクリジンオレン
ジ又はその誘導体の供給をi1i制御するための弁であ
る。
For example, as excitation light, approximately 440 to 500 nm (BQ16 approximately 485 nm) is used, and approximately 500 nm to approximately 500 nm
Fluorescence of 80 nm (peak value approximately 530 nm) is generated. 5 is a valve for controlling the supply of ultrapure water and acridine orange or its derivatives to the reaction chamber.

反応生成物が生成(1〜2分程度で生成される)された
測定水は次に測定堅5に導かれた後排出される。測定室
5は」二記反応中成、物か生成された測定水に励起光を
igi射して螢光を)・−光きせ、この螢光量を測定す
るためのものでj−)す、少なくとも部分的に手記励起
光及び螢光の波長域の光に対して透光性である必要があ
り、例えば石英チューブか用いられる。
The measurement water in which reaction products have been produced (produced in about 1 to 2 minutes) is then led to the measurement tube 5 and then discharged. The measurement chamber 5 is for measuring the amount of fluorescence produced by irradiating excitation light onto the measurement water produced during the reaction described above to emit fluorescence. It must be at least partially transparent to light in the wavelength range of manual excitation light and fluorescent light, and for example, a quartz tube is used.

7は励起光源であり、例えば水銀ランfNか用いられ、
干渉フィルタ8、集光レンズ9及び例えば反応生成物の
螢光寿命より知い男1:”rllのみ励起光を照射する
ためのチョッパ10を介して測定室5中の測定水に励起
光を照射する。12は測定水中の反応生成物に励起光が
照射されることによって発生した螢光を受光して、この
螢光強度に基いた出力を発生するためのフォトマルチグ
ライヤである。11はフォトマルチグライヤ−12の入
射側に配された干渉フィルタである。第1図において干
渉フィルタ11及びフォトマルチプライヤ12は励起光
の光軸方向に配されているように描かれているか、励起
光の入射を防ぐy’cめに励起光の光軸と直角な方向(
紙面にスt して(1「直な方向)に配されろことか好
貰しい。
7 is an excitation light source, for example, a mercury run fN is used;
Excitation light is irradiated to the measurement water in the measurement chamber 5 through the interference filter 8, the condensing lens 9, and the chopper 10 for irradiating only the excitation light from the fluorescence lifetime of the reaction product. 12 is a photomultiglayer for receiving the fluorescent light generated by irradiating the reaction product in the measurement water with excitation light and generating an output based on the intensity of this fluorescent light. This is an interference filter placed on the incident side of the photomultiplier 12. In FIG. In order to prevent light from entering, the direction perpendicular to the optical axis of the excitation light (
It would be better if they were placed in the straight direction (1) on the paper.

このようにして1ijli定寥5の反応生成物の犀に応
した螢光を受光し、たフォトマルチン0ライヤ12の出
力はロックインアンプ13を介して演算器14に入力き
れる。この演算器14は測定水中のバクテリアの′id
に相当するフォトマルチグライヤ12の出力を、単位バ
クテリア当りの出力で挟tar−してバクテリアの情を
゛ −−F−所出するためのものであり、例えば、7オ
ト了ルチブ′ライア12からの出力の振幅値を単位、<
クチリア当りの振幅値で換算することによって油j定水
中に含t ;i’Lるバクテリアの量を算出させること
ができる。
In this way, the output of the photomartin layer 12 which receives the fluorescent light corresponding to the reaction product of the reaction product 5 is inputted to the arithmetic unit 14 via the lock-in amplifier 13. This calculator 14 is used to determine the 'id' of bacteria in the measurement water.
This is to obtain information about bacteria by interpolating the output of the photomultiglare 12 corresponding to The amplitude value of the output from <
The amount of bacteria contained in the constant oil water can be calculated by converting it into the amplitude value per cutiaria.

ここで、演p器14に予め設定きれる115位ノククテ
リ了当りの出力値について言及する0前述したアクリノ
ンオレンジ又はその誘導体は水中に含まれるほとんど全
てのバクテリアに対して一様に反応する物質であり、更
にその反応生成物はそのバクテリアの種類によらずに特
定の波長域(例えばアクリジンオレンジでは530 n
rnにそのピーク波長を有する)の螢光を発光する性質
を有する。又、バクテリアの種類は20数種類存在する
が1一定の環境条件下においては2種類以上のバクテリ
アが生存することは極めて少ないという性質がある。従
って、あらかじめ測定水の単位バクテリア当りの螢光強
度を設定することは容易であわ、更にこの値を一担設定
しておくたけで高い精度の演算を行なうことが可能であ
る。
Here, we will refer to the output value for the 115th position that can be preset in the operator 14. The aforementioned acrinon orange or its derivatives are substances that react uniformly to almost all bacteria contained in water. Furthermore, the reaction product is produced in a specific wavelength range (for example, 530 nm for acridine orange), regardless of the type of bacteria.
It has the property of emitting fluorescent light whose peak wavelength is at rn. Furthermore, although there are over 20 types of bacteria, it is extremely rare for two or more types of bacteria to survive under certain environmental conditions. Therefore, it is easy to set the fluorescence intensity per unit of bacteria in the sample water in advance, and furthermore, it is possible to perform highly accurate calculations just by setting this value once.

15は演算器14で得られたバクテリアbj、に相当す
る出力値を表示するための表示器である。
15 is a display device for displaying an output value corresponding to bacteria bj obtained by the calculator 14;

16は電源であり、17はチョッパー101フオトマル
チシライヤ12及びロックインアンプ13を同期して作
動させるだめの制御器である。
16 is a power supply, and 17 is a controller for operating the chopper 101, the photomultislier 12, and the lock-in amplifier 13 in synchronization.

上記の実施例においては、例えば測定水中1ec当り1
00個以下程度のバクテリアしか含捷ない超純水におけ
るこのバクテリア量を精密に検出するため忙、外部から
の迷光の影響を無くして螢光のみを検出するために、同
期的に駆動されるチョッパーlO及びロックインアンプ
13を設けているがこれらは必ずしも必要でなく、例え
ば光量7、測定室5及びフォトマルチプライヤ−12を
暗箱内に収納すればよい。又、迷31%等が一定焔であ
るならば演算器14で、この迷光出力を除去するように
してもよい。このようにチョッパー1o及びロックイン
アンf13を用いない枦、@には、フォトマルチプライ
ヤ12からの積算出力を積算時間及び単位バクテリア当
りの出力で換所するように演算器14を設定してもよい
In the above embodiment, for example, 1 ec per 1 ec of the measuring water
In order to accurately detect the amount of bacteria in ultrapure water that contains less than 0.00 bacteria, a chopper that is driven synchronously is used to eliminate the influence of stray light from the outside and detect only fluorescent light. Although lO and a lock-in amplifier 13 are provided, these are not necessarily necessary, and for example, the light amount 7, the measurement chamber 5, and the photomultiplier 12 may be housed in a dark box. Furthermore, if the stray light output such as 31% is a constant flame, the arithmetic unit 14 may remove this stray light output. In cases where the chopper 1o and the lock-in amplifier 13 are not used, the computing unit 14 may be set to convert the integrated output from the photo multiplier 12 into integrated time and output per unit bacteria. .

第2図は本発明の他の実施例を下すものであり、バクテ
リア路の検出の精度を更に向上させろために零レベルを
検出する機構を設けたものである。第2図において第1
図と同一の部分には同−勾号を付し説明を省略する。第
2図において、第1図に示した測定室5、フォトマルチ
ン0ライヤ12及び干渉フィルタ11と並列に同様の測
定室18、フォトマルチプライヤ19及び干渉フィルタ
20が設けられている。この測定室18にはアクリジン
オレンジ又はその誘導体が添加されない測宇水が導かれ
ており、零レベル分の光量を検出するようになっている
。21及び22はこれら測定用及び零レベル検出用の測
定室5及び18にそれぞれ励起光源7からの励起光を照
射するためのハーフミラ−及びミラーである。23は2
つのフォトマルチプライヤ−12及び19からの出力を
入力とする差分に1幅器である。この差分増幅器23に
よって零レベル分が除去された出力は前述の実施例と同
様にロックインアンプ13及び演算器14を経て表示器
15で表示される。
FIG. 2 shows another embodiment of the present invention, in which a mechanism for detecting the zero level is provided in order to further improve the accuracy of bacterial path detection. In Figure 2, the first
Parts that are the same as those in the drawings are marked with the same sign and their explanation will be omitted. In FIG. 2, a similar measurement chamber 18, photomultiplier 19, and interference filter 20 are provided in parallel with the measurement chamber 5, photomultiplier 12, and interference filter 11 shown in FIG. Measurement water to which acridine orange or its derivatives are not added is introduced into the measurement chamber 18, and the amount of light corresponding to the zero level is detected. 21 and 22 are half mirrors and mirrors for irradiating excitation light from the excitation light source 7 to the measurement chambers 5 and 18 for measurement and zero level detection, respectively. 23 is 2
It is a differential amplifier that receives outputs from two photomultipliers 12 and 19 as inputs. The output from which the zero level has been removed by the differential amplifier 23 is displayed on the display 15 via the lock-in amplifier 13 and the arithmetic unit 14, as in the previous embodiment.

次に本発明に基いて、測定水中のバクテリアの数に対し
て、この測定水中に一定のアクリジンオレンジを添加し
て反応生成物を得た徒に490 nmビークの励起光を
与えたときの吸光度及び螢光強度の一例を示すグラフを
第3図及び第4図に示す。第3図及び第4図に示す如く
、測定水中におけるバクテリア量に応じて螢光強度が異
なり、この螢光強度に基づく出力によって測定水中のバ
クテリア量を検出し得ることが!′11ろ。
Next, based on the present invention, the number of bacteria in the measurement water is determined by the absorbance when 490 nm peak excitation light is applied to the reaction product obtained by adding a certain amount of acridine orange to the measurement water. Graphs showing an example of the fluorescence intensity and fluorescence intensity are shown in FIGS. 3 and 4. As shown in Figures 3 and 4, the fluorescence intensity varies depending on the amount of bacteria in the measurement water, and the amount of bacteria in the measurement water can be detected by the output based on this fluorescence intensity! '11ro.

以上詳細に説、明した如く、本発明によれば従来長’J
b I’ljをかけてバクテリア量を計数することによ
っていた測定水中のバクテリア路を極めて旬時間で行な
いことができるので、例えば半導体製造において製品の
歩留りを向上させることができ、生Prコストを低下さ
せることに寄与することができる。
As explained and explained in detail above, according to the present invention, the conventional length 'J
Bacteria in the measurement water, which was previously calculated by multiplying I'lj by counting the amount of bacteria, can be carried out in a very short period of time, which can improve the yield of products in semiconductor manufacturing, for example, and reduce raw Pr costs. can contribute to the development of

【図面の簡単な説明】[Brief explanation of drawings]

明に用いられる螢光特性を示すグラフである。 図面中、 1は超純水ライン、 2は分岐管路、 3は反応室、 4は染色剤室、 5.18は測定室、 7は励起光源、 8.11.20は干渉フィルタ、 10はヂョツパ、 12.19はマルチプライヤ、 13はロックインアンプ、 14は演算器である。 特許u−1願人 富士写真フィルム株式会社 代理人 弁理士 光 石 士 部(他]名) 第1図 第2図 1ogN(ハ゛り丁1)rで交ン 第4図 10、of 日 ・肝 擲2 1oqN(バクテリアしJ 1 is a graph showing fluorescent properties used in bright light. In the drawing, 1 is the ultrapure water line, 2 is a branch pipe, 3 is a reaction chamber; 4 is the dye room, 5.18 is the measurement room, 7 is an excitation light source, 8.11.20 is an interference filter, 10 is Jotsupa, 12.19 is the multiplier, 13 is a lock-in amplifier, 14 is a computing unit. Patent u-1 applicant Fuji Photo Film Co., Ltd. agent Patent Attorney Hikari Ishibe (and others) Figure 1 Figure 2 Intersect at 1ogN (high 1)r Figure 4 10, of Day ·liver Sword 2 1oqN (bacteria)

Claims (1)

【特許請求の範囲】[Claims] アクリジンオレンジ又はその誘導体か添加され、含有す
るバクテリアとの反応生成物を生成させた測定水が導か
れた透光性の測定室、この測定室中の測定水に励起光を
照射して該反応生成物から螢光を発生させるための励起
光源、該螢光を受光するための光電変換器、この光電変
換器の出力を単位バクテリア当りの螢光出力で換算して
出力するための演算器を有することを特徴とするバクテ
リアカウンタ。
A translucent measurement chamber into which the measurement water containing acridine orange or its derivatives was added and produced a reaction product with the bacteria contained therein, and the measurement water in this measurement chamber was irradiated with excitation light to cause the reaction. An excitation light source for generating fluorescent light from the product, a photoelectric converter for receiving the fluorescent light, and an arithmetic unit for converting the output of the photoelectric converter into a fluorescent output per unit bacterium and outputting the result. A bacteria counter comprising:
JP5157783A 1983-03-29 1983-03-29 Bacteria counter Pending JPS59179073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5157783A JPS59179073A (en) 1983-03-29 1983-03-29 Bacteria counter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5157783A JPS59179073A (en) 1983-03-29 1983-03-29 Bacteria counter

Publications (1)

Publication Number Publication Date
JPS59179073A true JPS59179073A (en) 1984-10-11

Family

ID=12890795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5157783A Pending JPS59179073A (en) 1983-03-29 1983-03-29 Bacteria counter

Country Status (1)

Country Link
JP (1) JPS59179073A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02242159A (en) * 1989-03-15 1990-09-26 Jeol Ltd Light emission detector of immunity measuring apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3684377A (en) * 1970-07-13 1972-08-15 Bio Physics Systems Inc Method for analysis of blood by optical analysis of living cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3684377A (en) * 1970-07-13 1972-08-15 Bio Physics Systems Inc Method for analysis of blood by optical analysis of living cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02242159A (en) * 1989-03-15 1990-09-26 Jeol Ltd Light emission detector of immunity measuring apparatus

Similar Documents

Publication Publication Date Title
Parker et al. Some experiments with spectrofluorimeters and filter fluorimeters
Li et al. Portable flow-injection analyzer with liquid-core waveguide based fluorescence, luminescence, and long path length absorbance detector
US4698308A (en) Device for measuring the number of bacteria in superpure water
US5094958A (en) Method of self-compensating a fiber optic chemical sensor
US3849654A (en) Fluorescence cuvette
Holland et al. A unique computer centered instrument for simultaneous absorbance and fluorescence measurements
US5198871A (en) Laser-induced-fluorescence inspection of jet fuels
US5061075A (en) Optical method and apparatus for diagnosing human spermatozoa
KR920704126A (en) Measurement method of color reaction by monitor of fluorescence change
WO2004095009A1 (en) Optical inspection device
Twyman et al. Conditions for securing accuracy in spectrophotometry
Moss An improved spectrofluorimeter for biochemical analysis
US4877583A (en) Fluorescent analyzer
JP2004157018A (en) Sensitivity calibration method of fluorescence detection apparatus and fluorescence detection apparatus
JPS59179073A (en) Bacteria counter
Clyne et al. Kinetic studies of ground-state phosphorus atoms
Taylor et al. Light intensity measurements II: luminescent quantum counter comparator and evaluation of some luminescent quantum counters
SU950682A1 (en) Device for automatically controlling toxicity of liquids
JPS62278436A (en) Fluorescence light measuring method and apparatus
Kirby Fluorescence instrumentation and methodology
Wokes et al. Some experiments with the Spekker photo-electric absorptiometer and fluorimeter
Thiers et al. Simple ultraviolet photometer
JPS6121084A (en) Bacteria counter
US5225351A (en) Reducing phosphorescent emissions from substances
JPS57147039A (en) Data discriminating device for photometer