JPS59178383A - Magnetic access detector - Google Patents

Magnetic access detector

Info

Publication number
JPS59178383A
JPS59178383A JP58052422A JP5242283A JPS59178383A JP S59178383 A JPS59178383 A JP S59178383A JP 58052422 A JP58052422 A JP 58052422A JP 5242283 A JP5242283 A JP 5242283A JP S59178383 A JPS59178383 A JP S59178383A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic path
coil
gap
path member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58052422A
Other languages
Japanese (ja)
Inventor
Yasuo Kasahara
笠原 保雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKEI NOBUKO
Original Assignee
TAKEI NOBUKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKEI NOBUKO filed Critical TAKEI NOBUKO
Priority to JP58052422A priority Critical patent/JPS59178383A/en
Publication of JPS59178383A publication Critical patent/JPS59178383A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To secure a stable detecting operation for a long time with all of component parts fixed in the arrangement by detecting changes in a magnetic flux depending on an electromotive force generated in a coil when a mobile magnetic body approaches a gap in a magnetic path member. CONSTITUTION:A magnetic flux phi is generated in a magnetic path member 2 with a permanent magnet 1. As a mobile magnetic body 7 is inserted into a gap 3 or amply approach it, the magnetic resistance of a magnetic path adapter 2A decrease to increase the magnetic flux phi in the magnetic path 2. In interlinkage with the change in the magnetic flux, a coil 4 generate a positive pulse to allow the detection of an access of the mobile magnetic body 7, namely, a mobile member 5. When the mobile member 5 approaching is separated from the gap 3, the magnetic flux phi in the magnetic path 2 decrease and a pulse in the opposite polarity is generated in the coil 4 thereby enabling detection of the separation of the mobile member 5.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気的な近接検出器に関し、特に永久磁石に
より形成される磁束が磁性体の近接により変化すること
を利用した近接検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetic proximity detector, and more particularly to a proximity detector that utilizes the fact that the magnetic flux formed by a permanent magnet changes with the proximity of a magnetic body.

従来技11ドを 最近の自動制御、とくにロボント技術の発達にイ゛Vい
、可動機械要素の近接等を確実に検出する心霊が増大し
ている。従来、物体の近接を検出するには、電気的な近
接スイ・ンチを用いるもの、iJf動コイルその他町動
素子による電気、磁気等の物理部の変化を利用するもの
などが使われている。しかし、近接スインチを用いたも
のには接点の劣化による誤動作のおそれや寿命の制限な
どの欠点が避けられない。他方、物理部の変化を利用す
るものは構造か複雑になる欠点がある。
Conventional Technique 11 With the recent development of automatic control, especially robot technology, the need to reliably detect the proximity of moving mechanical elements is increasing. Conventionally, in order to detect the proximity of an object, methods using an electrical proximity switch, methods using changes in physical components such as electricity and magnetism caused by iJf moving coils and other moving elements have been used. However, devices using a proximity switch inevitably have drawbacks such as the risk of malfunction due to contact deterioration and a limited lifespan. On the other hand, those that utilize changes in physical parts have the disadvantage of having a complicated structure.

また、6種の監視・制御、とくに相関関係のある複数の
事象の監視・制御等のため、少なくとも2つの異なる1
1象の発生を検出する必要がしば[7ばある。従来、2
つの!jS−象の発生を検出するには2つの検出器が使
われ測定装置等が複雑になる欠点力・あった。
In addition, in order to monitor and control six types of events, especially for monitoring and controlling multiple correlated phenomena, at least two different types of
It is often necessary to detect the occurrence of an event. Conventionally, 2
Horn! Two detectors are used to detect the occurrence of jS-elements, which has the disadvantage that the measurement equipment becomes complicated.

発明の目的 従って、本発明の1」的は、従来技術の上記欠点を解決
した磁気的な近接検出器を提供するにある。
OBJECTS OF THE INVENTION Accordingly, one object of the present invention is to provide a magnetic proximity detector which overcomes the above-mentioned drawbacks of the prior art.

発明の構成 1−記1」的を達成するため、本発明においては、間隙
を有する磁路部材に永久磁石を接続し−C磁路部材内に
磁束を形成し、その磁束の変化と鎖交する様にコイルを
配置し、可動磁性体がその空隙に近接したときの磁束変
化を17記コイルに生ずる起屯力によって検出する。
In order to achieve the objective of ``Structure 1 of the Invention 1'', in the present invention, a permanent magnet is connected to a magnetic path member having a gap, a magnetic flux is formed within the C magnetic path member, and changes in the magnetic flux and interlinkage are The coils are arranged so that the magnetic flux changes when the movable magnetic body approaches the air gap, and the change in magnetic flux is detected by the repulsive force generated in the 17th coil.

回転圧動による近接を検出する場合には、1−記i+J
動磁性体を当該回転運動に連動して回転する構I告とし
、しかもその1可動磁性体と−1−記磁路部材とを適当
に結合し、」−記空隙が1−記可動磁性体と−4−記磁
路部材との対向面によって形成される様にしてもよい。
When detecting proximity due to rotational pressure, 1-i+J
The dynamic magnetic body is configured to rotate in conjunction with the rotational movement, and the first movable magnetic body and the -1 magnetic path member are appropriately coupled, so that the space between the first and second movable magnetic bodies is The magnetic path member may be formed by opposing surfaces of the magnetic path member and the magnetic path member.

2つの事象として、例えばi+1動磁性体を駆動する電
気値りの印加と可動磁性体の所要位置への近接等を単・
の検出器で検出するため、本発明はまた2つの出力コイ
ルを有する磁気的な検出器を提供する。即ち、閉磁路を
形成する磁路部材の一部に人力コイルを巻付け、−上記
磁路部材を入力コイルのある部分と他の部分に分ける如
きL記磁路部材りの2点において永久磁石を空隙を介し
て結合し、[−足固部分に夫々出力コイルを8 ((け
、上記空隙に近接自在に可動磁性体を設けて検出器を構
成し、1−記入力コイルに関連する事象と」−記可動磁
性体に関連する事象との2事象を1つの検出器により検
出しその検出結果をL記入力コイルから外部へ取出す。
Two events, for example, the application of an electric value to drive the i+1 moving magnetic body and the approach of the moving magnetic body to a desired position, etc.
For detection with a detector, the present invention also provides a magnetic detector with two output coils. That is, a human-powered coil is wound around a part of a magnetic path member forming a closed magnetic path, and permanent magnets are attached at two points of the L magnetic path member such that the magnetic path member is divided into a part where the input coil is located and another part. are coupled through a gap, and a detector is constructed by providing a movable magnetic body that can freely approach the gap, and 1 - an output coil is provided in each of the leg rigid parts, and a movable magnetic body is provided in the above gap so that an One detector detects two events, and an event related to the movable magnetic body, and the detection results are taken out from the L input coil.

実施例 本発明の−・実施例を図式的に示す第1図及び第2図に
おいて、永久磁石1が磁路部材2へ直列に接続される。
Embodiment In FIGS. 1 and 2, which schematically show an embodiment of the invention, a permanent magnet 1 is connected in series to a magnetic path member 2. FIG.

この実施例の磁路部材2は、空隙3を有する磁路アダプ
タ2Aを有する。コイル4が磁路部材2における磁束変
化と鎖交する様に設けられる。このコイル4は、上記磁
束変化と鎖交すれは足りるのであり、その巻数は1回で
もよい。
The magnetic path member 2 of this embodiment includes a magnetic path adapter 2A having an air gap 3. The coil 4 is provided so as to interlink with the magnetic flux change in the magnetic path member 2. This coil 4 is sufficient to be interlinked with the above magnetic flux change, and the number of turns may be one.

近接を検出すべき可動部材6の一部に接着剤6で可動磁
性体7を取利け、その可動磁性体を1−記空隙3に臨ま
せる。可動部材5自体が磁性体であるときは、別個の+
+f動磁性体7を要しないことは明らかである。第2図
に示す保持部材8が永久磁石1、磁路部材2、及び磁路
アダプタ2Aを一体に結合保持する。
A movable magnetic body 7 is attached to a part of the movable member 6 whose proximity is to be detected using an adhesive 6, and the movable magnetic body is made to face the gap 3 described in 1-. When the movable member 5 itself is a magnetic material, a separate +
It is clear that the +f dynamic magnetic body 7 is not required. A holding member 8 shown in FIG. 2 holds the permanent magnet 1, magnetic path member 2, and magnetic path adapter 2A together.

第3図に示す実施例においては、磁路部材2を可動部分
2B、長溝2Cを有する固定部分2D、及び接81部分
2Eによって構成する。磁路部材2の可動部分2Bを保
持する腕9の一端をピンlOで枢支し、その1r(動部
分2Bの 端をL足長溝2CにML嵌すると共にその他
端を接8i部分2Eに間隙3を介して対向させる。磁路
部材2の接極部分2Eには、磁路部材2における磁束変
化と鎖交する様にコイル4を設ける。好ましくは、磁路
部材2の可動部分2Bを被検出素子、例えばロホットの
回転腕部材(図示せず。)などに機能的に連結する。
In the embodiment shown in FIG. 3, the magnetic path member 2 is composed of a movable portion 2B, a fixed portion 2D having a long groove 2C, and a contact portion 2E. One end of the arm 9 that holds the movable part 2B of the magnetic path member 2 is pivoted by a pin 10, and the end of the arm 9 (1r) is fitted into the L leg long groove 2C, and the other end is connected to the 8i part 2E with a gap. 3. The armature portion 2E of the magnetic path member 2 is provided with a coil 4 so as to interlink with the magnetic flux change in the magnetic path member 2. Preferably, the movable portion 2B of the magnetic path member 2 is covered with a coil 4. It is operatively coupled to a sensing element, such as a rotating arm member (not shown) of a Roht.

第4図は、電気的人力と機械的入力との両者を検出する
実施例を図式的に示す。閉磁路を形成する磁路部材2の
−・部に入カコ・イル11を花信ける。磁路部材2を人
力コイル11のある部分2Fと他の部分2Gとの2部分
に分ける如き2点X1、X2の間に間隙3を介して永久
磁石1を接続する。図示例では、1−記磁路部材2の閉
磁路と永久磁石1どの間に磁路アダプタ2Aを挿入し、
この磁路アダプタ2Aに間隙3を形成する。ト記人カコ
イル1】のある部分2Fには第1出力コイル4Aを巻付
け、磁路部材2の上記他の部分2Gには第2人力コイル
4Bを花信ける。空隙3には、第1B図に示した可動部
材5が接近自在に臨む。
FIG. 4 schematically shows an embodiment for detecting both electrical and mechanical inputs. An input coil 11 is inserted into the - section of the magnetic path member 2 forming a closed magnetic path. A permanent magnet 1 is connected through a gap 3 between two points X1 and X2 such that the magnetic path member 2 is divided into two parts, a part 2F where the human-powered coil 11 is located and another part 2G. In the illustrated example, 1- a magnetic path adapter 2A is inserted between the closed magnetic path of the magnetic path member 2 and the permanent magnet 1;
A gap 3 is formed in this magnetic path adapter 2A. A first output coil 4A is wound around a certain portion 2F of the magnetic path member 2, and a second human-powered coil 4B is wound around the other portion 2G of the magnetic path member 2. A movable member 5 shown in FIG. 1B faces the gap 3 in a freely accessible manner.

)−記構成を有する本発明による磁気的な検出器の作用
を説明する。第1図の実施例←こおいて、永久耐石lは
磁路部材2内に磁束Φを発生させる。
)--The operation of the magnetic detector according to the present invention having the above configuration will be explained. In the embodiment shown in FIG. 1, the permanent stone resistant l generates a magnetic flux Φ in the magnetic path member 2.

可動部材5に接71された可動磁性体7が間隙3にiβ
;人するか又は1・分に接近すると、磁路アタプタ2A
の磁気抵抗が減少し、磁路2内の磁束Φが増大する。コ
イル4はこの磁束増大時の磁束変化と鎖交して例えは第
51Δp1に示す正極性のパルスを発生する。このパル
スp1の発生により、可動磁性体7の接近1pち可動部
材5の接近が検出される。逆に、  [」接近した1可
動部材5が間隙3から離脱すると、磁路アタフリ2Aの
磁気抵抗が増大し、磁路2内の磁束Φが減少するので、
コイル4に(オ磁束増大時とは逆極性の第5図のパルス
p。
The movable magnetic body 7 that is in contact with the movable member 5 is iβ in the gap 3.
; When someone approaches or approaches 1 minute, the magnetic path adapter 2A
The magnetic resistance in the magnetic path 2 decreases, and the magnetic flux Φ in the magnetic path 2 increases. The coil 4 interlinks with this change in magnetic flux when the magnetic flux increases, and generates a positive pulse shown, for example, at the 51st Δp1. By generating this pulse p1, the approach 1p of the movable magnetic body 7, that is, the approach of the movable member 5, is detected. On the contrary, ['' When the approaching movable member 5 leaves the gap 3, the magnetic resistance of the magnetic path attachment 2A increases and the magnetic flux Φ in the magnetic path 2 decreases.
The pulse p in Fig. 5 is applied to the coil 4 (o) with the opposite polarity to that when the magnetic flux increases.

が発生する。このパルスP2の発生により、Ilf動磁
動磁性体型脱即ち可動部材5の離脱が検出される。
occurs. By the generation of this pulse P2, detachment of the Ilf dynamic magnetic body, that is, detachment of the movable member 5 is detected.

第3図の実施例において、磁路部材2のrif動8動労
8分2Bえばロボ・ントの回転腕(図4べせず。)に連
動させ、この1i(動部分2Bが所定位置に到達した時
に間隙3が十分狭くなり、磁路部材2の磁束Φが増大す
る様に設定する。この場合には、磁路3[(材2のtr
f動部分2Bの接極部分2Eに対する接近・離脱に尾、
してコイル4が例えば第5図に示ずパルスI)1.P2
を発生し、その接近・離脱が検出される。パルスP1.
p2の極性及υ波形が永久磁石1及びコイル4の仕様に
よって定まることは、当業者には明らかである。
In the embodiment shown in FIG. 3, the rif movement 8 movement 8 minutes 2B of the magnetic path member 2 is linked to the rotating arm of the robot (not shown in FIG. 4), and this 1i (moving part 2B reaches a predetermined position The setting is made so that the gap 3 becomes sufficiently narrow when the magnetic flux Φ of the magnetic path member 2 increases.
When the f moving part 2B approaches and leaves the polarized part 2E,
For example, the coil 4 (not shown in FIG. 5) receives pulses I)1. P2
occurs, and its approach/departure is detected. Pulse P1.
It is clear to those skilled in the art that the polarity and υ waveform of p2 are determined by the specifications of the permanent magnet 1 and the coil 4.

第4図の実施例で入力コイル11における矢印iの向き
の電流による磁路部材2内の磁束Φlの向きを11一方
向として第6図に実線で、1べした磁化曲線を参照する
に、入力コイル11のある磁路部分2F内に永久磁石1
によって生ずる磁束Φ、の磁束密度をBとし磁路部材2
の閉磁路に働く起磁力をHとすれば、永久磁石1により
他の磁路部材2Gに生ずる磁束密度は−Bとして表わす
ことができる。可動磁性体7が間隙3へ接近したときに
人力コイル11のある磁路部分2Fに生ずる磁束増分Φ
□の方向を上記止方向であるとすると仮定すれば、回し
く可動磁性体7が間隙3へ接近したときに1−2他の磁
路部分2Gに生ずる磁束増分は負方向の一Φ。となる。
In the embodiment shown in FIG. 4, assuming that the direction of the magnetic flux Φl in the magnetic path member 2 due to the current in the direction of the arrow i in the input coil 11 is one direction, referring to the solid line in FIG. 6, the magnetization curve is A permanent magnet 1 is installed in the magnetic path section 2F where the input coil 11 is located.
Let B be the magnetic flux density of the magnetic flux Φ generated by the magnetic path member 2
If the magnetomotive force acting on the closed magnetic path is H, then the magnetic flux density generated in the other magnetic path member 2G by the permanent magnet 1 can be expressed as -B. Magnetic flux increment Φ that occurs in the magnetic path section 2F where the human-powered coil 11 is located when the movable magnetic body 7 approaches the gap 3
Assuming that the direction of □ is the stopping direction, the magnetic flux increment generated in the other magnetic path portion 2G of 1-2 when the movable magnetic body 7 approaches the gap 3 is 1Φ in the negative direction. becomes.

磁路部材2の磁化特性は第6図に鎖線で示す様にヒステ
リシス特性を有するが、磁化特性の直線部分を使う様に
磁路抵抗及び永久磁石の特性を訳べば、磁路部材2にお
ける磁束の変化分は、近似的に第6図に実線で示した磁
化曲線即ち起磁力H=0で磁束密度B=Oの点を通る磁
化曲線の場合の磁束変化分によって代表さ−けることが
できるので、以ド第6図の実線を参照して説明する。
The magnetization characteristic of the magnetic path member 2 has a hysteresis characteristic as shown by the chain line in FIG. The change in magnetic flux can be approximately represented by the change in magnetic flux in the case of the magnetization curve shown by the solid line in Figure 6, that is, the magnetization curve passing through the point where the magnetomotive force H = 0 and the magnetic flux density B = O. Since this can be done, the explanation will be given below with reference to the solid line in FIG.

時刻1 = 1 oにおいて、人力コイル11に電流が
ない条f1の1;1でtIf動磁動磁性体間隙3に接近
したとすると、第6図に示す様に、磁路部材2に作用す
る起磁力Hが間隙3の磁気抵抗の減少に応じて+ΔHだ
け増大する。このとき人力コイルl】のある磁路部分2
Fにおいては、この起磁力増分+△I(にJi、し、実
線の磁化1111線りの磁束密度Bに対紀、する点Pに
おける微分透磁率に従って磁束密度が点Pから点P、ま
で+ΔBだけ増大する。この磁束密度増分に対応する磁
束変化に従って第1出力コイル4Aには例えば第7A図
に図式的に示すパルス+1が発)]する。現実のパルス
は第7A1Aに示すものよりも複郭な波形となるが、こ
こでは:ii:性的な比較説明で足りるので、便宜上矩
形パルスを仮定する。同時に、−に2他の磁路部分2G
では、磁束密度−Bが第6図の実線1.の点Qがら点Q
2まで一ΔBだけ減少し、第2出力コイル4Bには例え
ば第7A図の逆極性パルス−1が発生する。従って、両
出力コイル4A、4Bにおける逆極性パルスの同時発生
に注目することにより、可動磁性体7の接近即ち可動部
材5の接近を検出することができる。可動磁性体7が1
7i7隙3がら踵11iaするときは、第7A図のパル
ス極性が反転することは明らかである。
At time 1 = 1 o, if the human-powered coil 11 approaches the dynamic magnetic gap 3 at 1:1 of the line f1 with no current, then the force acts on the magnetic path member 2 as shown in FIG. The magnetomotive force H increases by +ΔH as the magnetic resistance of the gap 3 decreases. At this time, the magnetic path section 2 with the human-powered coil l]
At F, this magnetomotive force increment +△I (Ji, and the magnetic flux density is +△B from point P to point P according to the differential permeability at point P, which is opposite to the magnetic flux density B of the solid line magnetization 1111). According to the magnetic flux change corresponding to this magnetic flux density increment, a pulse +1, for example, schematically shown in FIG. 7A is generated in the first output coil 4A. Although the actual pulse has a more complex waveform than that shown in No. 7A1A, here: ii: Since a sexual comparative explanation is sufficient, a rectangular pulse is assumed for convenience. At the same time, -2 other magnetic path parts 2G
In this case, the magnetic flux density -B is the solid line 1. in FIG. point Q empty point Q
2, and a reverse polarity pulse -1 as shown in FIG. 7A, for example, is generated in the second output coil 4B. Therefore, the approach of the movable magnetic body 7, that is, the approach of the movable member 5, can be detected by noting the simultaneous occurrence of opposite polarity pulses in both output coils 4A, 4B. The movable magnetic body 7 is 1
It is clear that when the heel 11ia is released from the gap 3, the pulse polarity in FIG. 7A is reversed.

つきに、時刻1=1.において可動磁性体7が間隙3か
ら離脱した条件の許で、入力コイル11に矢ITIJ 
iの方向に入力電流が流れたときにその電流の大きさが
入力コイル11のある磁路部分2Fの起磁力増分を+Δ
Hとする如きものであったとすると、当該磁路部分2F
の磁束密度は第6図の代1、Pから点P、まで+ΔBた
け増大し、従って、負′ジ1出力コイル4Aには例えば
第7B図に示すパルス+1が発生する。同時に、上記側
の磁路部分2Gでは、磁束密度Bが第6図の点Qから点
Q+まで一トΔBだけ増大し、第2出力コイル4Bにも
同極性のパルス即ち第7B図のパルス+1が発生する。
Finally, time 1=1. Under the condition that the movable magnetic body 7 is separated from the gap 3, the input coil 11 has an arrow ITIJ
When the input current flows in the direction of i, the magnitude of the current increases the magnetomotive force increment in the magnetic path section 2F where the input coil 11 is located by +Δ
If it is such as H, the magnetic path portion 2F
The magnetic flux density increases by +ΔB from point P to point P in FIG. 6, and therefore, a pulse +1 as shown in FIG. 7B, for example, is generated in the negative current output coil 4A. At the same time, in the magnetic path portion 2G on the above side, the magnetic flux density B increases by one point ΔB from point Q to point Q+ in FIG. occurs.

従って、両出力コイル4A、4Bにおける同極性パルス
の同時発生に注[1することにより、人力コイル11へ
の入力端子の印加を検出することかできる。入力端子の
向きが逆のときには、第7B図のパルスの極性が反転す
ることは明らかである。
Therefore, by noting the simultaneous occurrence of pulses of the same polarity in both output coils 4A and 4B, it is possible to detect the application of the input terminal to the human-powered coil 11. It is clear that when the orientation of the input terminals is reversed, the polarity of the pulses in Figure 7B are reversed.

さらに、可動磁性体7の間隙3への接近と人力コイル1
1への1、記入力端子の印加が同時に発生した場合には
、人力コイルのある磁路部分2Fでは起磁力が+2△H
だけ増大し、磁束密度か+2△Bだけ増大し、第1出力
コイル4Aには例えば第7C図に示すパルス+2が発生
する。同時に、I−屈伸の磁路部分2Gでは、磁束密度
が第6図の点Qから1−記可動磁性体接近により例えば
+ΔBだけ増大するとともにl−記電流印加により例え
ば−ΔBだけ減少するので磁束変化は発生せず、第2出
力コイル4Bには例えば第7C図に示す様に1=t9.
ではパルスが発生しない。従って、第1出力コイル4A
におけるパルス+2の存在と第2出力コイル4Bにおけ
るパルスの不存在との同時発生に注目することにより、
tj)動磁性体7の間隙3への接近と入力コイル11へ
の入力端子の印加との同時発生を検出することができる
。可動磁性体7の1Qli説と入力電流の遮断とが同時
発生[7たときに第7C図のパルスの極性が反転するこ
とは明らかである。
Furthermore, the approach of the movable magnetic body 7 to the gap 3 and the human-powered coil 1
If the application of 1 to 1 and the input terminal occurs simultaneously, the magnetomotive force will be +2△H in the magnetic path section 2F where the human coil is located.
The magnetic flux density increases by +2ΔB, and a pulse +2 as shown in FIG. 7C, for example, is generated in the first output coil 4A. At the same time, in the I-bending/extending magnetic path portion 2G, the magnetic flux density increases by, for example, +ΔB from point Q in FIG. No change occurs, and the second output coil 4B receives, for example, 1=t9. as shown in FIG. 7C.
No pulse is generated. Therefore, the first output coil 4A
By noting the simultaneous occurrence of the presence of pulse +2 at and the absence of pulse at the second output coil 4B,
tj) It is possible to detect the simultaneous occurrence of the approach of the dynamic magnetic body 7 to the gap 3 and the application of the input terminal to the input coil 11. It is clear that the polarity of the pulse in FIG. 7C is reversed when the 1Qli theory of the movable magnetic body 7 and the interruption of the input current occur simultaneously [7].

第1表は、可動磁性体7の間隙3への接近を機械的人力
と1〜人力コイル11への入力端子の印加を電気的入力
とじたときの、入力と両出力コイル4A、4Bの出力と
の関係を示す。同表から明らかな様に、本発明によれば
極めて簡単な構造の検出器により機械的入力と電気的入
力とに対し論理和処理及び論理積処理を施すことができ
る。また、電気的入力と機械的入力との時間差を検出し
て装置の応答速度を監視することもできる。
Table 1 shows the input and outputs of both output coils 4A and 4B when the movable magnetic body 7 approaches the gap 3 using mechanical force and when the application of the input terminals to the coils 1 to 11 is electrically terminated. Indicates the relationship between As is clear from the table, according to the present invention, logical sum processing and logical product processing can be performed on mechanical input and electrical input using a detector having an extremely simple structure. It is also possible to monitor the response speed of the device by detecting the time difference between electrical input and mechanical input.

第1表 以1−の説明において、入力コイル11の入力電流によ
る起磁力変化分ΔHが可動磁性体7の空隙3への近接に
よる起磁力変化分ΔHに等しいと仮定し−たが、これら
は必ずしも等しいことを要しないものであり、I・[り
出力コイル4A、4Bの出力パルスに検出11能な変化
を発生させるもであれば足りる。
In the explanation from Table 1 onwards, it was assumed that the magnetomotive force change ΔH due to the input current of the input coil 11 was equal to the magnetomotive force change ΔH due to the proximity of the movable magnetic body 7 to the air gap 3. They do not necessarily have to be equal, and it is sufficient if they generate a change that can be detected in the output pulses of the output coils 4A and 4B.

発明の効果 以1−説明した本発明による磁気的な検出器が奏する効
果を列挙すれば次の通りである。
Effects of the Invention 1 - Effects of the magnetic detector according to the present invention described above are listed below.

(イ)被検出体以外の構成部品を全て固定配置するので
、堅牢な構造とし安定な検出動作を長期間にわたって確
保することができる。
(a) Since all components other than the object to be detected are fixedly arranged, it is possible to have a robust structure and ensure stable detection operation over a long period of time.

(ロ)磁路部材に設けた間隙を利用して近接を検出する
ので、一方向からの近接のみでなくこの間隙に向う各種
方向からの近接及びこの間隙を通過する連動をも検出す
ることができる。
(b) Since proximity is detected using the gap provided in the magnetic path member, it is possible to detect not only approach from one direction but also approach from various directions toward this gap and interlocking movement passing through this gap. can.

(ハ)出力がパルスであるから、コンピュータを利用し
た制御装置へ容易に組込むことができる。
(c) Since the output is a pulse, it can be easily incorporated into a control device using a computer.

(ニ)検出コイルに常時作用する磁束を永久磁石によっ
て形成し励磁コイルを用いないので、電力消費が極めて
少ない。
(d) Since the magnetic flux that constantly acts on the detection coil is formed by a permanent magnet and no excitation coil is used, power consumption is extremely low.

(ホ)心安に応し、電気的人力と機械的入力とを簡単な
構造の単一の検出器で個別に検出し、また内入力にだい
し論理積処理及び論理和処理を施すことができる。
(e) For peace of mind, electrical human power and mechanical input can be detected individually with a single detector with a simple structure, and internal inputs can be subjected to logical product processing and logical sum processing.

【図面の簡単な説明】[Brief explanation of the drawing]

fiIJ1図は本発明の一実施例の平面図、第2図は第
1図の線I I−I Iにおける断面図、第3図及び第
4図は他の実施例の説明図、第5図、第6図及び第7A
−7C図は動作説明図である。 1・・・永久磁石、    2・・・磁路部材、3・・
・空隙、       4・・・コイル、4A・・・第
1出力コイル、4B・・・第2出力コイル゛7・・・可
動磁性体、    11・・・人カコイル特工1出願人
        武  井    信  r゛特、;1
出願代理人   弁理士 市東禮次部、31□    
 第3図 第6図 第7A図 第7B図 ■ 第7C1足1 Y。 iカ、イ、L48”■−−ヵ 2
Fig. fiIJ1 is a plan view of one embodiment of the present invention, Fig. 2 is a cross-sectional view taken along line I-II I in Fig. 1, Figs. 3 and 4 are explanatory diagrams of other embodiments, and Fig. 5 , Figures 6 and 7A
-7C is an explanatory diagram of the operation. 1... Permanent magnet, 2... Magnetic path member, 3...
・Air gap, 4...Coil, 4A...First output coil, 4B...Second output coil 7...Movable magnetic body, 11...Human coil special engineering 1 applicant Shin Takei r゛Special;1
Application agent: Patent attorney Tsugube Ichito, 31□
Figure 3 Figure 6 Figure 7A Figure 7B ■ 7C1 Foot 1 Y. i, i, L48"■--ka2

Claims (3)

【特許請求の範囲】[Claims] (1)永久磁石の起磁力に直列に接続された磁路部拐、
1.記起磁力に直列に磁路部材に形成された空隙、1−
記Ie路部旧の磁束変化と鎖交する如く設けられたコイ
ル、及び・1.記空隙に近接自在の可動磁性体を備えて
なる磁気的な近接検出器。
(1) A magnetic path connected in series to the magnetomotive force of a permanent magnet,
1. A gap formed in the magnetic path member in series with the magnetomotive force, 1-
A coil provided so as to interlink with the magnetic flux change in the Ie path section, and 1. A magnetic proximity detector comprising a movable magnetic body that can freely approach a gap.
(2) 猫ri′l′請求の範囲第1項記載の近接検出
器において、1−記間隙に対向する1−記磁路部材端面
の一力に形成された深溝及び1.記Of動磁性体を枢支
する腕を備え、−1,記可動磁性体の一端を」−記深溝
に遊嵌し11つ1−記呵動磁性体の他端を1−記磁路部
材の空隙対向it’+iの他方に対向させてなる磁気的
な近接検出器。
(2) The proximity detector according to claim 1, wherein: (1) a deep groove formed in one end face of the magnetic path member (1) facing the gap; An arm is provided for pivotally supporting the movable magnetic body, and -1, one end of the movable magnetic body is loosely fitted into the deep groove, and the other end of the movable magnetic body is connected to the magnetic path member. A magnetic proximity detector formed by opposing the other of the air gap opposing it'+i.
(3)閉磁路を形成する磁路部材、1:記磁路部相の一
−;X3に巻伺けられた入力コイル、」、記磁路部材を
人力コイルのある部分と他の部分に分ける如きj−記磁
路部材1−の2点間に空隙を介して磁気的に結合された
永久磁石、上記磁路部材の1−記入力コイルのある部分
に巻伺けられた第1出力コイル、並ひに1.記閉磁路部
月の七記他の部分に巻伺けられた第2出力コイルを備え
てなる磁気的な近接検出器。
(3) Magnetic path members forming a closed magnetic path, 1: Input coil wound around magnetic path part phase 1-; A permanent magnet magnetically coupled via an air gap between two points of the magnetic path member 1, such as dividing the magnetic path member 1, and a first output wound around a portion of the magnetic path member where the input coil is located. Coil, parallel 1. A magnetic proximity detector comprising a second output coil wound around the other part of the closed magnetic path.
JP58052422A 1983-03-30 1983-03-30 Magnetic access detector Pending JPS59178383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58052422A JPS59178383A (en) 1983-03-30 1983-03-30 Magnetic access detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58052422A JPS59178383A (en) 1983-03-30 1983-03-30 Magnetic access detector

Publications (1)

Publication Number Publication Date
JPS59178383A true JPS59178383A (en) 1984-10-09

Family

ID=12914339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58052422A Pending JPS59178383A (en) 1983-03-30 1983-03-30 Magnetic access detector

Country Status (1)

Country Link
JP (1) JPS59178383A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0467202A2 (en) * 1990-07-17 1992-01-22 GAO Gesellschaft für Automation und Organisation mbH Arrangement for testing of objects with magnetic properties

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0467202A2 (en) * 1990-07-17 1992-01-22 GAO Gesellschaft für Automation und Organisation mbH Arrangement for testing of objects with magnetic properties
US5457382A (en) * 1990-07-17 1995-10-10 Gao Gesellschaft Fur Automation Und Organisation Mbh Apparatus for testing documents having magnetic properties

Similar Documents

Publication Publication Date Title
EP0195217A1 (en) Magnetic reluctance sensing apparatus and method
JP4873709B2 (en) Current sensor
JPH11513487A (en) Non-contact position detecting device for object and method of using the device
US20210263009A1 (en) Magnetic chip detector and method of use
EP0034821A1 (en) Pulse generation by changing magnetic field
JPS59178383A (en) Magnetic access detector
JPS58184319A (en) Magnetic bearing
US3192471A (en) Hall device transmitter including a field signal storing foil in the magnetic circuit
JPS5917764B2 (en) Rotation detection device
JPH11101861A (en) Magneto-resistance effect type sensor
US3349323A (en) Apparatus and methods employing magnetic reed switches and static and varying bias fields for detecting magnetic phenomena
JPS60133370A (en) Acceleration sensor
JPS5946526A (en) Electromagnetic stress sensor
JPH112646A (en) Direct current sensor and method for preventing flowing-out of direct current
EP0391160B1 (en) Variable reluctance sensor for detecting the rate of rotary or linear movement
RU2300827C2 (en) Magnetic field sensor
JPS6346803Y2 (en)
JPH028171Y2 (en)
JP5771544B2 (en) Spin current amplifier
JPS61167869A (en) Acceleration sensor
JPS58198760A (en) Signal generator
JPS5831613B2 (en) Servo mechanism
JPS63255602A (en) Position detector
JPH02245668A (en) Acceleration sensor
JPH0914314A (en) Electric type pad ware indicator