JPS5917814A - Method of cooling cable - Google Patents

Method of cooling cable

Info

Publication number
JPS5917814A
JPS5917814A JP57127221A JP12722182A JPS5917814A JP S5917814 A JPS5917814 A JP S5917814A JP 57127221 A JP57127221 A JP 57127221A JP 12722182 A JP12722182 A JP 12722182A JP S5917814 A JPS5917814 A JP S5917814A
Authority
JP
Japan
Prior art keywords
refrigerant
cable
cooling
circulation
ion exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57127221A
Other languages
Japanese (ja)
Other versions
JPS6041528B2 (en
Inventor
安藤 順夫
耕一 杉山
志賀 正一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP57127221A priority Critical patent/JPS6041528B2/en
Publication of JPS5917814A publication Critical patent/JPS5917814A/en
Publication of JPS6041528B2 publication Critical patent/JPS6041528B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Gas Or Oil Filled Cable Accessories (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は高電圧ケーブルの冷却方法、とくに冷媒により
高圧部を冷却する冷却方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cooling a high voltage cable, and more particularly to a method for cooling a high voltage section using a refrigerant.

ケーブルに発生する種々の熱を冷媒循環にまり外部に取
り出し、放熱或いは冷却した後再度送り込む強制冷却方
法が多用されつつある。一般にケーブルはその外部から
冷却するより内部の高電圧導体部を冷却するが冷却効果
が高い。例えば第1図に示すように、冷却された冷媒1
は大地電位にあるポンプ2等により高電圧終端部3に圧
入され、導体4の内部に設けられた冷媒1m路5を経て
、ケーブルの発熱を奪い、他端6に達し、その高圧部か
ら大地電位にあるプリクーラ7、熱交換器8、−貯蔵タ
ンク9等を経て再度ポンプにより圧送され循環される。
Forced cooling methods are increasingly being used, in which various kinds of heat generated in cables are trapped in refrigerant circulation, taken out to the outside, radiated or cooled, and then sent back in. In general, cables are cooled by cooling the internal high voltage conductors rather than cooling from the outside, which is more effective. For example, as shown in FIG.
is press-fitted into the high-voltage termination part 3 by a pump 2 or the like at ground potential, passes through a 1m refrigerant path 5 provided inside the conductor 4, removes heat from the cable, reaches the other end 6, and is discharged from the high-voltage part to the earth. After passing through the pre-cooler 7, heat exchanger 8, storage tank 9, etc., which are at potential, it is again pumped and circulated.

このとき冷媒が循環系統内で変質したり、異物が混入す
ると、循[t;1系統の内壁面を変質、損傷させる恐れ
があり、まだ、大地電位と高電圧電位間を流れるとき、
冷媒の絶縁耐力の低下のため絶縁が保ち得なくなる恐れ
もある。このため循環系統の一部にフィルタ10をおき
、ある限度以上の固形物を除去したりイオン交換器11
等をおき、不純物イオンを除去する方法がとられている
。とくに絶縁耐力上最も問題となる不純物イオンは高温
で且つ接触面積の大きいケーブル冷媒通路5及び帰還・
ξイブ12内で発生しやすい。一方循環系統は、負荷が
低い場合、ケーブルや冷却システムの点検あるいは部分
故障の場合には冷媒通路5、帰還バイブロ内の冷媒の一
部を残留させたまま一時停止され、その後再起動される
ことがあり、このとき、冷媒通路5、帰還・ξイブ12
内に滞溜した冷媒は通常よりは高濃度の不純物イオンを
含むことになり、これを再起動したとき、イオン交換器
11に一時に高濃度の不純物が流れ込み、処理不能とな
り、その!、まポンプ2で送り出され、人口側の高電圧
部寸での絶縁が保ち得なくなる。
At this time, if the refrigerant deteriorates or foreign matter enters the circulation system, there is a risk of deterioration or damage to the inner wall surface of the circulation system.
There is also a possibility that insulation may not be maintained due to a decrease in the dielectric strength of the refrigerant. For this reason, a filter 10 is installed in a part of the circulation system to remove solids exceeding a certain limit, and an ion exchanger 11
A method is used to remove impurity ions. In particular, impurity ions, which are most problematic in terms of dielectric strength, are present in the cable refrigerant passage 5 and the return/return area, which are at high temperature and have a large contact area.
It is likely to occur within ξ Eve 12. On the other hand, when the load is low, when the cable or cooling system is inspected, or when there is a partial failure, the circulation system is temporarily stopped with some of the refrigerant remaining in the refrigerant passage 5 and the return vibro, and then restarted. At this time, refrigerant passage 5, return/ξ Eve 12
The refrigerant that has accumulated in the refrigerant contains impurity ions at a higher concentration than usual, and when the refrigerant is restarted, a high concentration of impurities flows into the ion exchanger 11 at once, making it impossible to process. , and is pumped out by pump 2, making it impossible to maintain insulation at the high voltage part on the artificial side.

また、この高濃度イオンの冷媒を短時間に処理する能力
を持つイオン交換器を設置することは、常時の連続運転
状態からみて不用な設備となり、冷却システムの経済性
を損うことになる。
Furthermore, installing an ion exchanger capable of processing this highly concentrated ion refrigerant in a short time would be unnecessary equipment from the standpoint of continuous operation, which would impair the economic efficiency of the cooling system.

同様のことが固形物除去用フィルタについても云える。The same can be said of solid matter removal filters.

本発明の目的は前述の従来方法の欠点を屏消し、絶縁上
安定した冷媒を経済的に循環し得る冷却方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the conventional methods described above and to provide a cooling method that can economically circulate a dielectrically stable refrigerant.

すなわち、本発明は冷却循環系統の停止、再起動時に帰
還した冷媒を循環閉ループ外に取り出し、一時に高不純
物濃度の冷媒が処理装置に流入しその処理能力を越える
ことのないよう、循環系の一部に枝部を置いたことにあ
る。
That is, the present invention takes the returned refrigerant out of the closed circulation loop when the cooling circulation system is stopped and restarted, and controls the circulation system so that the refrigerant with high impurity concentration does not flow into the processing equipment at once and exceed its processing capacity. This is because some branches are placed.

本発明の実施flJを以下の具体例によって説明する。The implementation of the present invention will be explained by the following specific examples.

ケーブルとして銅導体(サイズ500mm2)、4体内
冷媒銅管内径10mmの公称22 KV cV  ケー
ブル24 mを用い、これにイオン交換装置、熱交換器
、ポンプ及び冷媒輸送帰還・ぐイブを付して冷却ループ
とし、冷却システムとしての常温での緒特性を把握する
実験を行なった。流計約5R/minで冷却水を循環き
せた所、その導電度は不純物イオンのだめ、初明値o2
75μs /ctnの冷却水が1時間後に2μs^でほ
ぼ飽和状態となった。これは発生し/こ不純物イオンの
一部はイオン交換器により減じられるが、発生、除去の
・Sランス状態で初期1直よりも若干増加したことを示
している。
A nominally 24 m 22 KV cV cable with a copper conductor (size 500 mm2) and 4 internal refrigerant copper tubes with an inner diameter of 10 mm was used as the cable, and was equipped with an ion exchanger, a heat exchanger, a pump, and a refrigerant transport return/guve for cooling. We conducted an experiment to understand the characteristics of the cooling system at room temperature. When the cooling water was circulated at a flow rate of about 5 R/min, its conductivity was due to the accumulation of impurity ions, and the initial value o2
The cooling water flow rate of 75 μs/ctn became almost saturated at 2 μs^ after 1 hour. This shows that although some of the impurity ions generated are reduced by the ion exchanger, they slightly increased in the S lance state of generation and removal compared to the initial first shift.

その後、冷却系統を一昼夜停止し、再起動した所、直後
の帰I!水の心導度は7μs 7cmに上昇し、イオン
交換器を通った後にも(i、5μS/cmの高位となっ
たが、その後1 hr運転し/ζ結果系統のすべての位
置で2μS /c1nに減少し、落〜ち着いた値を示し
た。
After that, I stopped the cooling system for a day and night, restarted it, and immediately returned home! The cardiac conductivity of the water rose to 7 μs 7 cm, and even after passing through the ion exchanger (i, it was as high as 5 μS/cm, but after 1 hr of operation/ζ the result was 2 μS/c1n at all positions in the system) It decreased to a stable value.

即ち、運転再開直後、冷媒管、帰還・ξイブその他の部
分に滞留した高濃度イオンの冷却水が直接イオン交換器
に達し、その処理能力をこえて高濃度のままポンプで送
り出されだが、何回も循環するうちに次第にイオン交換
器によって処理され、・ζランス状態に達したことを示
している。
In other words, immediately after restarting operation, the cooling water with high concentration of ions accumulated in the refrigerant pipe, return/ξ-eve, and other parts directly reaches the ion exchanger and is pumped out with a high concentration exceeding its processing capacity. This shows that as it circulates many times, it is gradually processed by the ion exchanger and reaches the ζ lance state.

以上の結果は小規模な実験によるものであるが、より苛
酷な運転状態となる実際のケーブルでは循環再開直後高
濃度不純・吻を含む冷却水が大地電位から高圧部分間に
入り、その部分の絶縁1’lE能を低下させ、絶縁破壊
を生じさせる恐れが十分ある。
The above results are based on small-scale experiments, but in actual cables, which are subject to more severe operating conditions, immediately after the circulation is restarted, cooling water containing highly concentrated impurities enters between the high voltage parts from the ground potential. There is a strong possibility that the insulation 1'lE ability will be reduced and dielectric breakdown will occur.

なお終端部3は必ずしもケーブルとしての終端部を指す
ものではなく、冷媒の入口部を意味し、他端6は冷媒の
出口部を意味する。
Note that the terminal end 3 does not necessarily refer to the terminal end of the cable, but refers to a refrigerant inlet, and the other end 6 refers to a refrigerant outlet.

上記の具体例では冷却水中の不純イオンをとりあげたが
例えば冷却システム全体から発生する導電性粒子につい
ても同じことが云え、常時運転ではあるバランス状態で
低濃度に保たれたものが、運転再開直後には集中的にフ
ィルターに達しフィルターを短時間に目づまりさぜたり
、フィルターと並列にとりつけられたパイ・97回路(
第2図]3)を通って高濃度のまま送り出される。
Although the above specific example deals with impurity ions in the cooling water, the same can be said of conductive particles generated from the entire cooling system. In some cases, the filter reaches the filter in a concentrated manner, clogging the filter in a short period of time, or the PI-97 circuit (
[Fig. 2] 3) and is sent out with high concentration.

したがってこれら異常現象を19ノ止するには、第2図
の拡大図において送り出1. 、+5ンプを出た直後に
分枝部14あるいは清浄な冷媒を貯える貯蔵タンク9の
直前に分枝部15ケ置き、高a1度で帰還した冷媒を外
部に放出する心安がある。分枝部先端にはバルブ16鋭
いは16′を11シリっけておき、経験的に一定板或い
は一定時間パルブを開放することにより放出したり、分
枝部での不純′白濃度を検知して、ある限界を越えたと
きバルブを開放しても良い。いずれの場合も・Sルプの
操作は自動、手動で可となる。放出された冷媒は廃棄し
ても良く、まだ別設置された処理装置により処理した後
再度循環系に注入しても良い。
Therefore, in order to stop these abnormal phenomena by 19 points, in the enlarged view of FIG. , 15 branches are placed in the branch part 14 immediately after exiting the +5 pump or in front of the storage tank 9 that stores clean refrigerant, so that the refrigerant returned at a high temperature of 1 degree can be safely discharged to the outside. A sharp valve 16 or 16' is installed at the tip of the branch, and empirically, it is possible to discharge by opening the valve for a certain period of time or to detect the impurity concentration at the branch. The valve may be opened when a certain limit is exceeded. In either case, the S loop can be operated automatically or manually. The discharged refrigerant may be discarded, or may be treated by a separate treatment device and then reinjected into the circulation system.

以上の本発明により、常時の正常運転状態で十分な処理
のできるフィルタ或いはイオン交換器を置くのみで、再
起動直後の異常に対応した容量の処理装置を設置するこ
となく、安定した性能の冷媒を高電圧部に送り込むこと
が可能となり、経済的且つ安定した冷却方法を得る上で
大きい効果を発揮する。
According to the present invention described above, refrigerant with stable performance can be obtained by simply installing a filter or ion exchanger that can perform sufficient treatment under normal operating conditions without installing a treatment device with a capacity that can handle abnormalities immediately after restart. This makes it possible to send energy to high-voltage parts, which is highly effective in providing an economical and stable cooling method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のケーブル冷却方法の一例を示す説明図、
第2図は本発明方法の一実施例を示す冷却装置付近の拡
大説明図である。 1 ・冷媒、2・・循環用ポンプ、3・ケーブル終端部
、4 ・ケーブル導体、5・導体内冷媒1F!l路、6
・・他端終端部、7・・プリクーラ、8・・熱交換器、
9 ・冷媒貯蔵タンク、10 フィルタ、11 イオン
交換器、12 ・帰還・ξイブ、13 フィルタパイ・
ξス管、14・・分枝部、15 分枝部、1G・分枝部
・ζルゾ、16′・・分枝部・Sルブ。
FIG. 1 is an explanatory diagram showing an example of a conventional cable cooling method,
FIG. 2 is an enlarged explanatory view of the vicinity of a cooling device showing an embodiment of the method of the present invention. 1. Refrigerant, 2. Circulation pump, 3. Cable end, 4. Cable conductor, 5. Refrigerant in conductor 1F! l road, 6
・・Other end terminal part, 7・・Precooler, 8・・Heat exchanger,
9 ・Refrigerant storage tank, 10 Filter, 11 Ion exchanger, 12 ・Return・ξ Eve, 13 Filter pipe・
ξS tube, 14...Branch, 15 Branch, 1G, Branch, ζRuso, 16'...Branch, S Luso.

Claims (1)

【特許請求の範囲】[Claims] (1)冷却した冷媒をケーブル高電圧部に圧送し、高電
圧部を冷却した後帰還し、再度放熱、冷却するケーブル
循環冷却方法において、循環系統停止後再起動するとき
、帰還した冷媒を本来の循環ループ外部に取り出し、廃
却あるいは清浄処理後書住人することを特徴とするケー
ブル冷却方法。
(1) In the cable circulation cooling method, in which the cooled refrigerant is force-fed to the high-voltage part of the cable, returns after cooling the high-voltage part, and radiates and cools the high-voltage part again, when restarting the circulation system after stopping, the returned refrigerant is A cable cooling method characterized in that the cable is taken out of the circulation loop and stored after being disposed of or cleaned.
JP57127221A 1982-07-21 1982-07-21 Cable cooling method Expired JPS6041528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57127221A JPS6041528B2 (en) 1982-07-21 1982-07-21 Cable cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57127221A JPS6041528B2 (en) 1982-07-21 1982-07-21 Cable cooling method

Publications (2)

Publication Number Publication Date
JPS5917814A true JPS5917814A (en) 1984-01-30
JPS6041528B2 JPS6041528B2 (en) 1985-09-17

Family

ID=14954716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57127221A Expired JPS6041528B2 (en) 1982-07-21 1982-07-21 Cable cooling method

Country Status (1)

Country Link
JP (1) JPS6041528B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147255A (en) * 1984-12-20 1986-07-04 Fuji Photo Film Co Ltd Method for supplying heat developing photosensitive material and image receiving paper to heat developing and transferring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118301U (en) * 1987-01-28 1988-07-30

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147255A (en) * 1984-12-20 1986-07-04 Fuji Photo Film Co Ltd Method for supplying heat developing photosensitive material and image receiving paper to heat developing and transferring device
JPH058820B2 (en) * 1984-12-20 1993-02-03 Fuji Photo Film Co Ltd

Also Published As

Publication number Publication date
JPS6041528B2 (en) 1985-09-17

Similar Documents

Publication Publication Date Title
JP4796733B2 (en) Gas decomposition apparatus and plasma equipment using the same
JPWO2019193901A1 (en) Water treatment apparatus and water treatment method
JPS5917814A (en) Method of cooling cable
CN104766700A (en) Oil processing device and method
CN1311707A (en) ESRF coolant degassing process
US6572777B1 (en) Method for purifying the cooling circuit of an alternator stator operating in ventilated circuit, and implementing device
TW201202410A (en) Cleaning system and cleaning method
JP6952358B2 (en) Compressed pneumatic circuit structure
JP6846059B2 (en) Compressed pneumatic circuit structure
JPH09219388A (en) Manufacture of semiconductor
EP0744996B1 (en) Air purification and pollution control cyclonic exchanger
JPWO2017010192A1 (en) Exhaust gas treatment system
KR200257367Y1 (en) Cooling & Condedencing Type Volertile Organic Compound Vapor Collector
JP2009183851A (en) Apparatus for regenerating chlorofluorocarbon
JP2012244103A (en) Electrolytic regeneration processing unit and electrolytic regeneration processing apparatus equipped with the unit
JP6817645B2 (en) Compressed pneumatic circuit structure
JPS58198899A (en) X-ray tube device
CN219423773U (en) Device for removing sodium sulfate at low temperature
CN101728062A (en) Online external circulating device of transformer oil
JPH11193782A (en) Water cooling type cooling method for compressed air and water cooling type aftercooling unit
JPH09118993A (en) Method and device for chemical cleaning of plant
JP6846058B2 (en) Compressed pneumatic circuit structure
JPS6231631B2 (en)
JP2010253360A (en) Method and apparatus for treating cooling water of refrigerator/cold and warm water machine
US6547950B1 (en) Cathode rinsing station and method