JPS6041528B2 - Cable cooling method - Google Patents

Cable cooling method

Info

Publication number
JPS6041528B2
JPS6041528B2 JP57127221A JP12722182A JPS6041528B2 JP S6041528 B2 JPS6041528 B2 JP S6041528B2 JP 57127221 A JP57127221 A JP 57127221A JP 12722182 A JP12722182 A JP 12722182A JP S6041528 B2 JPS6041528 B2 JP S6041528B2
Authority
JP
Japan
Prior art keywords
cooling
cable
refrigerant
cooling method
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57127221A
Other languages
Japanese (ja)
Other versions
JPS5917814A (en
Inventor
順夫 安藤
耕一 杉山
正一 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP57127221A priority Critical patent/JPS6041528B2/en
Publication of JPS5917814A publication Critical patent/JPS5917814A/en
Publication of JPS6041528B2 publication Critical patent/JPS6041528B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Gas Or Oil Filled Cable Accessories (AREA)

Description

【発明の詳細な説明】 本発明は高電圧ケーブルの冷却方法、とくに冷煤により
高圧部を冷却する冷却方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cooling a high voltage cable, and more particularly to a method for cooling a high voltage section using cold soot.

ケーブルに発生する種々の熱を冷媒循環に′より外部に
取り出し、放熱或いは冷却した後再度送り込む強制冷却
方法が多用されつつある。
Forced cooling methods are increasingly being used, in which various kinds of heat generated in the cable are taken out to the outside through refrigerant circulation, the heat is radiated or cooled, and then the cable is re-introduced.

一般にケーブルはその外部から冷却するより内部の高電
圧導体部を冷却するが冷却効果が高い。例えば第1図に
示すように、冷却された冷煤1は大地電位にあるポンプ
2等により高電圧終端部3に圧入され、導体4の内部に
設けられた冷媒通路5を経て、ケーブルの発熱を奪い、
池端6に達し、その高圧部から大地電位にあるブリクー
ラ7、熱交換器8、貯蔵タンク9等を経て再度ポンプに
より圧送され循環される。このとき冷媒が循環系統内で
変質したり、異物が混入すると、循環系統の内壁面を変
質、損傷させる恐れがあり、また、大地電位と高電圧電
位間を流れるとき、冷煤の絶縁耐力の低下のため絶縁が
保ち得なくなる恐れもある。このため循環系統の一部に
フィル夕10をおき、ある限度以上の固形物を除去した
りイオン交換器11等をおき、不純物イオンを除去する
方法がとられている。とくに絶縁耐力上最も問題となる
不純物イオンは高温で且つ接触面積の大きいケープル冷
媒通路5及び帰還パイプ12内で発生しやすい。一方循
環系統は、負荷が低い場合、ケーブルや冷却システムの
点検あるいは部分故障の場合には冷煤通路5、帰還パイ
プ6内の冷媒の一部を残留させたまま一時停止され、そ
の後再起動されることがあり、このとき、冷媒通路5、
帰還パイプ12内に滞留した冷嬢は通常よりは高濃度の
不純物イオンを含むことになり、これを再起動したとき
、イオン交換器11に一時に高濃度の不純物が流れ込み
、処理不能となり、そのままポンプ2で送り出され、入
口側の高電圧部までの絶縁が保ち得なくなる。また、こ
の高濃度イオンの冷煤を短時間に処理する能力を持つイ
オン交換器を設置することは、常時の連続運転状態から
みて不用な設備となり、冷却システムの経済性を損うこ
とになる。
In general, cables are cooled by cooling the internal high voltage conductors rather than cooling from the outside, which is more effective. For example, as shown in FIG. 1, the cooled cold soot 1 is press-fitted into the high-voltage termination part 3 by a pump 2 or the like at ground potential, passes through a refrigerant passage 5 provided inside the conductor 4, and then passes through the cable to generate heat. take away,
The water reaches the pond end 6, and from the high-pressure part passes through the pre-cooler 7, heat exchanger 8, storage tank 9, etc., which are at ground potential, and is again pumped and circulated. At this time, if the refrigerant deteriorates or foreign matter enters the circulation system, there is a risk of deterioration or damage to the inner wall surface of the circulation system.Also, when flowing between the ground potential and high voltage potential, the dielectric strength of cold soot decreases. There is also the possibility that insulation may not be maintained due to the drop. For this reason, a method is used in which a filter 10 is installed in a part of the circulation system to remove solid matter exceeding a certain limit, and an ion exchanger 11 or the like is installed to remove impurity ions. In particular, impurity ions, which are most problematic in terms of dielectric strength, are likely to be generated in the cable refrigerant passage 5 and the return pipe 12, which are at high temperatures and have a large contact area. On the other hand, when the load is low, when the cables or cooling system are inspected, or when there is a partial failure, the circulation system is temporarily stopped with some of the refrigerant remaining in the cold soot passage 5 and the return pipe 6, and then restarted. In this case, the refrigerant passage 5,
The refrigerant that remained in the return pipe 12 contains impurity ions at a higher concentration than usual, and when it is restarted, a high concentration of impurities flows into the ion exchanger 11 at once, making it impossible to process and leaving it as it is. It is pumped out by the pump 2, and insulation up to the high voltage part on the inlet side cannot be maintained. In addition, installing an ion exchanger that has the ability to process cold soot with high concentration of ions in a short time would be unnecessary equipment in terms of constant continuous operation, which would impair the economic efficiency of the cooling system. .

同様のことが固形物除去用フィル夕についても云える。The same thing can be said about solid matter removal filters.

本発明の目的は前述の従来方法の欠点を解消し、絶縁上
安定した冷煤を経済的に循環し得る冷却方法を提供する
ことにある。すなわち、本発明は冷却循環系統の停止、
再起勤時に帰還した冷媒を循環閉ループ外に取り出し、
一時に高不純物濃度の冷媒が処理袋直に流入しその処理
能力を越えることのないよう、循環系の一部に枝部に臆
し、たことにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the conventional methods described above and to provide a cooling method that can economically circulate cold soot that is stable in terms of insulation. That is, the present invention provides for stopping the cooling circulation system,
When resuming work, the returned refrigerant is taken out of the closed circulation loop,
In order to prevent refrigerant with high impurity concentration from flowing directly into the processing bag and exceeding its processing capacity, a branch was installed in a part of the circulation system.

本発明の実施例を以下の具体例によって説明する。Embodiments of the present invention will be explained by the following specific examples.

ケーブルとして銅導体(サイズ500桝)、導体内冷煤
鋼管内径1仇吻の公称2狐VCVケーブル24のを用い
、これにイオン交換装置、熱交換器、ポンプ及び冷煤輸
送帰還パイプを付して冷却ループとし、冷却システムと
しての常温での諸特性を把握する実験を行なった。
The cable used was a copper conductor (size 500 squares), a nominally 24 mm VCV cable with a cold soot steel pipe inner diameter of 1 mm inside the conductor, and an ion exchange device, a heat exchanger, a pump, and a cold soot transport return pipe were attached to this. We used this as a cooling loop and conducted experiments to understand the various characteristics of the cooling system at room temperature.

流量約5ぞ/minで冷却水を循環させた所、その導電
度は不純物イオンのため、初期値0.75ムS/弧の冷
却水が1時間後に2仏S/伽でほぼ飽和状態となった。
これは発生した不純物イオンの一部はイオン交換器によ
り減じられるが、発生、除去のバランス状態で初期値よ
りも若干増加したことを示している。その後、冷却系統
を一昼夜停止し、再起動した所、直後の帰還水の電導度
は7仏S/肋に上昇し、イオン交換器を通った後にも6
.5〃S/肌の高位となったが、その後lhr運転した
結果系統のすべての位置で2ムS/肌に減少し、落ち着
いた値を示した。
When the cooling water was circulated at a flow rate of about 5 mm/min, the conductivity was due to impurity ions, so the initial value of the cooling water was 0.75 μS/arc, but after 1 hour it reached a nearly saturated state of 2 μS/min. became.
This indicates that although some of the generated impurity ions are reduced by the ion exchanger, the impurity ions slightly increased from the initial value due to the balance between generation and removal. After that, the cooling system was stopped for a day and night, and when restarted, the conductivity of the returned water immediately rose to 7 S/s, and even after passing through the ion exchanger, the conductivity of the returned water increased to 6
.. It was at a high level of 5 S/skin, but as a result of subsequent lhr operation, it decreased to 2 S/skin at all positions in the system, showing a stable value.

即ち、運転再開直後、袷煤管、帰還パイプその他の部分
に滞留した高濃度イオンの冷却水が直接イオン交換器に
達し、その処理能力をこえて高濃度のままポンプで送り
出されたが、何回も循環するうちに次第にイオン交換器
によって処理され、バランス状態に達したことを示して
いる。
In other words, immediately after restarting operation, cooling water with high concentration of ions that had accumulated in the soot pipe, return pipe, and other parts directly reached the ion exchanger, and was pumped out with a high concentration that exceeded its processing capacity. This indicates that the ion exchanger gradually processed the ion exchanger as it was circulated several times, and a balance state was reached.

以上の結果は小規模な実験によるものであるが、より苛
酷な運転状態となる実際のケーブルでは循環再開直後高
濃度不純物を含む冷却水が大地電位から高圧部分間に入
り、その部分の絶縁性能を低下させ、絶縁破壊を生じさ
せる恐れが十分ある。
The above results are based on small-scale experiments, but in actual cables that undergo more severe operating conditions, cooling water containing highly concentrated impurities enters between high-voltage sections from ground potential immediately after circulation resumes, and the insulation performance of that section deteriorates. There is a strong possibility that this will cause a decrease in the temperature and cause dielectric breakdown.

なお終端部3は必ずしもケーブルとしての終端部を指す
ものではなく、袷蝶の入口部を意味し、他端6は冷煤の
出口部を意味する。
Note that the terminus 3 does not necessarily refer to the terminus of the cable, but refers to the inlet of the butterfly, and the other end 6 refers to the outlet of cold soot.

上記の具体例では冷却水中の不純イオンをとりあげたが
例えば冷却システム全体から発生する導亀性粒子につい
ても同じことが云え、常時運転ではあるバランス状態で
低濃度に保たれたものが、運転再開直後には集中的にフ
ィルターに達しフィルターを短時間に目づまりさせたり
、フィルターと並列にとりつけられたバイパス回路(第
2図13)を通って高濃度のまま送り出される。
Although the above example deals with impurity ions in the cooling water, the same can be said of the tortoise-conducting particles generated from the entire cooling system, and during continuous operation, those that are kept at a low concentration in a certain balanced state are used to restart operation. Immediately after, it intensively reaches the filter and clogs the filter in a short period of time, or it is sent out in high concentration through a bypass circuit (Fig. 2, 13) installed in parallel with the filter.

したがってこれら異常現象を防止するには、第2図の拡
大図において送り出しポンプを出た直後に分枝部14あ
るいは静浄な冷煤を貯える貯蔵タンク9の直前に分枝部
15を置き、高濃度で帰還した冷媒を外部に放出する必
要がある。
Therefore, in order to prevent these abnormal phenomena, the branch part 15 is placed immediately after exiting the delivery pump in the enlarged view of FIG. It is necessary to release the returned refrigerant to the outside in a concentrated state.

分枝部先端にはバルブ16或いは16′を取りつけてお
き、経験的に一定量或いは一定時間バルブを開放するこ
とにより放出したり、分枝部での不純物濃度を検知して
、ある限界を越えたときバルブを開放しても良い。いず
れの場合もバルブの操作は自動、手動で可となる。放出
された袷蝶は廃棄しても良く、また別設置された処理装
置により処理した後再度循環系に注入してもよい。以上
の本発明により、常時の正常運転状態で十分な処理ので
きるフィルタ或いはイオン交換器を置くのみで、再起動
直後の異常に対応した容量の処理装置を設置することな
く、安定した性能の冷煤を高電圧部に送り込むことが可
能となり、経済的且つ安定した冷却方法を得る上で大き
い効果を発揮する。
A valve 16 or 16' is attached to the tip of the branch, and based on experience, it can be released by opening the valve in a certain amount or for a certain period of time, or by detecting the concentration of impurities at the branch and detecting impurities that exceed a certain limit. The valve may be opened when the In either case, the valve can be operated automatically or manually. The released butterflies may be discarded, or may be treated by a separate treatment device and then reinjected into the circulation system. According to the present invention described above, by simply installing a filter or ion exchanger that can perform sufficient treatment under normal operating conditions, stable cooling performance can be achieved without installing a treatment device with a capacity that can handle abnormalities immediately after restart. This makes it possible to send soot to high-voltage parts, which is highly effective in providing an economical and stable cooling method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のケーブル冷却方法の一例を示す説明図、
第2図は本発明方法の一実施例を示す冷却装置付近の拡
大説明図である。 1・・・・・・冷媒、2・・・・・・循環用ポンプ、3
・・・・・・ケーブル終端部、4・…・・ケーブル導体
、5・・・・・・導体内冷煤通路、6・・・・・・他端
終端部、7・・・・・・プリク−ラ、8・・・・・・熱
交換器、9・・・・・・冷媒貯蔵タンク、10・・・・
・・フィル夕、11・・・・・・イオン交換器、12・
・・・・・帰還パイプ、13・・・・・・フィルタバィ
パス管、14・・・・・・分枝部、15・・・・・・分
枝部、16・・・・・・分枝部バルブ、16′・・・・
・・分枝部バルフ。 第1図祭ご風
FIG. 1 is an explanatory diagram showing an example of a conventional cable cooling method,
FIG. 2 is an enlarged explanatory view of the vicinity of a cooling device showing an embodiment of the method of the present invention. 1...refrigerant, 2...circulation pump, 3
...Cable end, 4...Cable conductor, 5...Cold soot passage within the conductor, 6...Other end terminal, 7... Pre-cooler, 8... Heat exchanger, 9... Refrigerant storage tank, 10...
...Filter, 11...Ion exchanger, 12.
... Return pipe, 13 ... Filter bypass pipe, 14 ... Branch section, 15 ... Branch section, 16 ...... Minute Branch valve, 16'...
...Branch part balf. Figure 1 Festival style

Claims (1)

【特許請求の範囲】[Claims] 1 冷却した冷媒をケーブル高電圧部に圧送し、高電圧
部を冷却した後帰還し、再度放熱、冷却するケーブル循
環冷却方法において、循環系統停止後再起動するとき、
帰環した冷媒を本来の循環ループ外部に取り出し、廃却
あるいは清浄処理後再注入することを特徴とするケーブ
ル冷却方法。
1. In the cable circulation cooling method in which the cooled refrigerant is force-fed to the cable high-voltage section, returns after cooling the high-voltage section, and radiates and cools the high-voltage section again, when restarting the circulation system after stopping,
A cable cooling method characterized in that the returned refrigerant is taken out of the original circulation loop and reinjected after being disposed of or cleaned.
JP57127221A 1982-07-21 1982-07-21 Cable cooling method Expired JPS6041528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57127221A JPS6041528B2 (en) 1982-07-21 1982-07-21 Cable cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57127221A JPS6041528B2 (en) 1982-07-21 1982-07-21 Cable cooling method

Publications (2)

Publication Number Publication Date
JPS5917814A JPS5917814A (en) 1984-01-30
JPS6041528B2 true JPS6041528B2 (en) 1985-09-17

Family

ID=14954716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57127221A Expired JPS6041528B2 (en) 1982-07-21 1982-07-21 Cable cooling method

Country Status (1)

Country Link
JP (1) JPS6041528B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118301U (en) * 1987-01-28 1988-07-30

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147255A (en) * 1984-12-20 1986-07-04 Fuji Photo Film Co Ltd Method for supplying heat developing photosensitive material and image receiving paper to heat developing and transferring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118301U (en) * 1987-01-28 1988-07-30

Also Published As

Publication number Publication date
JPS5917814A (en) 1984-01-30

Similar Documents

Publication Publication Date Title
DE112007000358B4 (en) The fuel cell system
US2879157A (en) Purification of alkali metals by heat transfer
JPS6041528B2 (en) Cable cooling method
US6459750B1 (en) Turbine generator and operating method thereof, and nuclear power plant and operating method thereof
US6137018A (en) Chemical refining method and reuse system for semiconductor device manufacturing
KR100889118B1 (en) Piping deposit removal from stator water cooling systems
US6572777B1 (en) Method for purifying the cooling circuit of an alternator stator operating in ventilated circuit, and implementing device
JPH09219388A (en) Manufacture of semiconductor
JP2985127B2 (en) Water-cooled cooling method of compressed air and water-cooled aftercooler
JP6846059B2 (en) Compressed pneumatic circuit structure
JPS6151662B2 (en)
JP2020185262A (en) Compressed air pressure circuit structure
JPH0662542A (en) Water-cooling apparatus for stator winding
DE2719566A1 (en) COMPRESSOR UNIT FOR A HEAT PUMP SYSTEM
CN109405387B (en) Industrial recirculated cooling water system
JPS60113910A (en) Cooling water feeding and circulating system
JPS6245198Y2 (en)
CN217979453U (en) Spiral precooler with protective structure
CN110980868A (en) Device and method for removing ions in water of cooling water tank
JP2014176292A (en) Passivation of hollow copper strands in stator water cooling system
JPH0127321B2 (en)
KR20060015891A (en) Chemical exhaust equipment of semiconductor product device
JPH04204296A (en) Desalting device for nuclear power plant
CN118108312A (en) Internal cooling water treatment device and method
JPH10109009A (en) Magnetic filter washing system