JPS59177583A - Magnetic latent image forming method - Google Patents

Magnetic latent image forming method

Info

Publication number
JPS59177583A
JPS59177583A JP5157183A JP5157183A JPS59177583A JP S59177583 A JPS59177583 A JP S59177583A JP 5157183 A JP5157183 A JP 5157183A JP 5157183 A JP5157183 A JP 5157183A JP S59177583 A JPS59177583 A JP S59177583A
Authority
JP
Japan
Prior art keywords
latent image
magnetic
heating
magnetic latent
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5157183A
Other languages
Japanese (ja)
Other versions
JPH0242227B2 (en
Inventor
Koichi Saito
孝一 斉藤
Yoshihiko Fujimura
義彦 藤村
Yuji Suemitsu
末光 裕治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP5157183A priority Critical patent/JPS59177583A/en
Publication of JPS59177583A publication Critical patent/JPS59177583A/en
Publication of JPH0242227B2 publication Critical patent/JPH0242227B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G19/00Processes using magnetic patterns; Apparatus therefor, i.e. magnetography

Abstract

PURPOSE:To reproduce half-tones by applying dot type heat inputs overlapping spatially on a magnetic latent image carrier, inverting the direction of an external applied magnetic field synchronously with a basic clock, and controlling the heat input application of every basic clock according to half-tone information. CONSTITUTION:Heating is performed during a basic cycle T1 in the presence of an applied electric field opposite in direction to the last magnetization and magnetism inversion corresponding to heating bit length shown by the uppermost stage is obtained on a beltlike magnetic body. Then, feeding is carried out in cycles T2 and T3 without heating and heating is carried out during T4 in the presence of the electric field in the opposite direction with the last magnetization. At this time, inverted magnetism M1 cirresponding to the feed amount (three times the half wavelength of basic magnetism inversion) of a magnetic latent image is formed in the period of the cycles T1-T4. Similarly, heating is performed again in cycles T5, T6 OFF, and T6. Further, five-fold and seven-fold operations are possible, and half-tones by a heat dot input magnetic latent image method are reproduced; and a solid part is reproduced uniformly and a magnetic latent image unit smaller than a heat input dot is formed.

Description

【発明の詳細な説明】 本発明は磁気複写方法、詳しく言えば磁化しうる磁性体
にサーマルヘッド、レーザーなどの熱入力によって磁気
潜像を形成する方法において中間調の記録を可能にする
潜像形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic copying method, more specifically, a method of forming a magnetic latent image on a magnetizable magnetic material by heat input from a thermal head, a laser, etc., which enables recording of intermediate tones. Regarding the forming method.

従来、磁気複写(こ於ける磁気潜像形成方法として種々
の方法が提案されている。それらのなかで磁化しうる磁
性体に比較的室温に近い高温にキューリ一温度を有する
二酸化クロム(Cr02)などの熱磁気材料を用い、サ
ーマルヘッドーザー光などでドツト状の熱像を加えなが
ら。
Conventionally, various methods have been proposed as a method for forming magnetic latent images in magnetic copying. Among them, chromium dioxide (Cr02), which has a Curie temperature at a high temperature relatively close to room temperature, is used as a magnetizable magnetic material. Using thermomagnetic materials such as , and adding dot-shaped thermal images with thermal head laser light.

外部磁界を印加して熱残留磁化現象により熱と磁界の協
同作用によって磁気潜像を形成する方法が知られている
。この方法では場合によっては熱磁気材料が予め所定の
一方向に一様磁化されているものを用い.熱入力部で磁
化の向きが反転するようζこ外部磁界を印加する事もで
きる。
A method is known in which a magnetic latent image is formed by applying an external magnetic field and by the cooperative action of heat and magnetic field due to the phenomenon of thermal remanent magnetization. In some cases, this method uses a thermomagnetic material that is uniformly magnetized in one predetermined direction. It is also possible to apply an external magnetic field so that the direction of magnetization is reversed at the heat input section.

この方法は,磁気ヘッドを用いる磁気潜像形成方法に較
べ長尺をこ必要画像密度だけ発熱体が並べられたサーマ
ルヘッドや非接触で高密度(こ熱像を入力できるレーザ
ー光学系が使えるので磁気潜像の密度増大や低価格化の
点で優れてG)る。
Compared to the magnetic latent image formation method using a magnetic head, this method requires a longer length.It is possible to use a thermal head in which heating elements are lined up to the required image density or a laser optical system that can input high-density thermal images without contact. It is excellent in terms of increasing the density of the magnetic latent image and lowering the cost.

磁気へ,ドによる方法の場合(こは磁気潜像として形成
される磁化反転の周期の変化によって中間調を出す事が
できるが、熱ドツト入力部を磁化反転させる前述の方法
の場合(こは熱ドツトの大きさが最小の磁気潜像単位で
あるために。
In the case of the magnetic dot method (in this case, halftones can be produced by changing the cycle of magnetization reversal formed as a magnetic latent image), but in the case of the above-mentioned method of reversing the magnetization of the thermal dot input section (in this case, Because the size of the heat dot is the smallest magnetic latent image unit.

磁化反転の周期の変化によって中間調を医す事は、特ζ
こサーマルヘッドのように比較的大きな熱ドツトを用い
る場合に困難である。
It is a special feature to treat intermediate tones by changing the period of magnetization reversal.
This is difficult when using a relatively large heat dot such as a thermal head.

本発明は、外部磁界を印加しながら熱ドツトを入力して
熱残留磁化により磁気潜像を形成する方法すこ於いて、
中間調を再現するの(こ好適な磁気潜像形成方法を提供
したものである・すなわち1本発明の磁気潜像形成方法
はサーマルへyドやレーザー光などのドツト状の熱入力
を磁気潜像担体上で空間的に重なるように印加し、基本
クロックに同期させて、外部印加磁界の向きを逆転し、
中間調情報に応じて基本クロックを単位とする熱入力印
加を制御する事を特徴とするものである。
The present invention provides a method for forming a magnetic latent image by thermal residual magnetization by inputting a thermal dot while applying an external magnetic field.
The method of forming a magnetic latent image according to the present invention reproduces halftones (this provides a suitable method for forming a magnetic latent image). The externally applied magnetic fields are applied so that they overlap spatially on the image carrier, and the direction of the externally applied magnetic fields is reversed in synchronization with the basic clock.
This method is characterized by controlling the application of heat input in units of basic clocks in accordance with halftone information.

以下1図面に従って本発明の詳細な説明する。The present invention will be described in detail below with reference to one drawing.

第1図(a)〜(d)は基本クロックと完全(こ同期さ
せた熱入力、磁界反転方式によってなされる潜像形成を
説明するための図である。
FIGS. 1(a) to 1(d) are diagrams for explaining latent image formation performed by a heat input completely synchronized with a basic clock and a magnetic field reversal method.

図中、1は非磁性の支持体層、2はCrO2などの熱磁
気記録体層であり、3はドツト状の熱入力部領域、4は
予め形成されている一方向の背景部磁化を示す。
In the figure, 1 is a nonmagnetic support layer, 2 is a thermomagnetic recording layer such as CrO2, 3 is a dot-shaped heat input region, and 4 is a preformed background magnetization in one direction. .

磁気潜像担体は矢印8の向きで移動する。移動はステッ
ピングモータを使って間欠的に行われても、連続的(こ
行われてもよい。まず第1図(a)に示すよう(こ、外
部磁界7のもとで5へのように熱残留磁化する。
The magnetic latent image carrier moves in the direction of arrow 8. The movement may be performed intermittently or continuously using a stepping motor. First, as shown in FIG. Thermoremanent magnetization.

続いて第1図(b)(こ示す状態に移る。この時磁気潜
像担体は第1図一点鎖線9で示されるような軌跡そえか
(。一方(b)では外部磁界の向きが7′のように反転
され、熱残留磁化は5しのように5生とは逆向きになる
Next, the state shifts to the state shown in FIG. 1(b).At this time, the magnetic latent image carrier moves along the trajectory shown by the dashed line 9 in FIG. The thermal remanent magnetization is reversed as shown in 5, and the thermal remanent magnetization is in the opposite direction to that of 5.

以−F第1図(c)、(d)に示すように外部磁界の向
きの反転を繰り返す事をこより磁気潜像担体には5Q 
、5b−5(−のような磁気潜像が形成される。この場
合磁気潜像形成の最終段階では〔第2図(d)」、背景
部と同方向の熱磁化が残留するようなサイクルとする必
要がある。
By repeating the reversal of the direction of the external magnetic field as shown in Fig. 1 (c) and (d), the magnetic latent image carrier has 5Q.
, 5b-5 (-) is formed. In this case, in the final stage of magnetic latent image formation [Fig. 2 (d)], a cycle in which thermal magnetization in the same direction as the background remains remains. It is necessary to do so.

例えば第1図に示すようにs、) 、sl、 、5Cの
磁化反転で磁気潜像を形成する場合には、第1加熱サイ
クルを背景部と逆向きの磁化ができるようをこ揃えるな
らば必ず4回の加熱サイクルが必要である。
For example, as shown in Figure 1, when forming a magnetic latent image by reversing the magnetization of s, ), sl, , 5C, if the first heating cycle is aligned so that the magnetization is in the opposite direction to the background part, then Four heating cycles are always required.

この方法ζこよれば、比較的大きな熱ドツト人力lこ対
しても基本となる磁化反転のくり返し周期を小さくする
事ができる。
According to this method, the basic repetition period of magnetization reversal can be made small even with a relatively large amount of manual heat dot power.

さてこのようをこして達成される基本磁化反転を基本波
長にしてその奇数倍の磁化反転を形成する方法を、第2
図及び第3図(こよって説明する。第2図は基本サイク
ルに対する奇数倍波長磁化反転の磁気潜像を形成するた
めの制御を模式的に示したものである・ 第2図(、)及び(b)が基本サイクルに対応する信号
で、(a)は磁気潜像送り信号、(b)は基本サイクル
加熱イネーブル(クロック)である。(b)の加熱イネ
ーブルに対応し、同期をとって外部磁界を印加して磁界
向きを変化させる〔第2図忙)〕。
Now, the second method is to use the basic magnetization reversal achieved in this way as the fundamental wavelength and form magnetization reversal that is an odd number multiple of the fundamental wavelength.
Figure 2 and Figure 3 (This will be explained below. Figure 2 schematically shows the control for forming a magnetic latent image of odd wavelength magnetization reversal with respect to the basic cycle. Figure 2 (, ) and (b) is the signal corresponding to the basic cycle, (a) is the magnetic latent image sending signal, and (b) is the basic cycle heating enable (clock).It corresponds to the heating enable in (b) and is synchronized. Apply an external magnetic field to change the direction of the magnetic field (see Figure 2).

第2図(d)は基本磁化反転を形成する基本波印時信号
であ゛る。第2図<e)は基本波長の次に大きな磁化反
転波長である3倍波を形成するための、加熱信号をあら
れす。第2図(f)は次に太ぎい5倍波を形成するため
の加熱信号である。このように磁化反転波長が3倍波、
5倍波、7倍波、・・・・・・(2n+1)倍波と奇数
倍になる事は次の第3図tこよって理解される。
FIG. 2(d) shows a fundamental wave signal forming fundamental magnetization reversal. Fig. 2<e) shows a heating signal for forming a third harmonic, which is the next largest magnetization reversal wavelength after the fundamental wavelength. FIG. 2(f) shows a heating signal for forming the next thicker fifth harmonic wave. In this way, the magnetization reversal wavelength is the third harmonic,
5th harmonic, 7th harmonic, . . . (2n+1) harmonics and odd number multiples can be understood from the following Figure 3.

第3図は3倍波が形成される様子を模式的に説明するた
めの図である。
FIG. 3 is a diagram for schematically explaining how a third harmonic wave is formed.

基本サイクルT1の時に、前磁化とは逆向きの印加磁界
(例(ここれを+Hと記す)下で加熱し、帯状に記した
磁性体上には最上段のような加熱ビット長に対応する磁
化反転が形成される。
At the time of basic cycle T1, heating is performed under an applied magnetic field (e.g., this is written as +H) in the opposite direction to the pre-magnetization, and the magnetic material marked in a strip shape corresponds to the heating bit length as shown in the top row. A magnetization reversal is formed.

続いて−T2.T3は加熱せずに送り、T4で前磁化と
同じ向きになるような磁界下で加熱する。
Next - T2. At T3, the magnet is sent without heating, and at T4, it is heated under a magnetic field so that the direction is the same as that of the pre-magnetization.

このときT1〜T2−T2〜T3、T3〜T4の間での
磁気潜像の送り量(基本磁化反転の半波長の3倍)分の
反転磁化M1が形成される。同様QこT5、T6OFF
 、 T7で再び加熱する。
At this time, reversal magnetization M1 is formed by the amount of magnetic latent image feeding between T1-T2-T2-T3 and T3-T4 (three times the half wavelength of basic magnetization reversal). Similar Qko T5, T6 OFF
, reheat at T7.

このように基本磁化反転を単位とするより長い波長の磁
化反転を形成するためには、加熱される時の印加磁界向
きは、加熱されるタイミング同志を比較すると+H1−
H1+Hのように反対になる必要がある〔第3図の例で
は(T□、T4゜T7、T!O,・・・T3n+1)〕
。又最終加熱時の印加磁界は−Hになるようにえらばれ
る。すなわち、3倍波長の場合は T1−T4.  (基本磁化反転の半波長の3倍を有す
る半波長反転) T1゜T4、T7− T10 (基本磁化反転の半波長
の9倍を有する11/2彼長反転) T1・T4. T7・T10・T13・T16(基本磁
化反転の半波長の15倍を有する24波長反転) となる。
In this way, in order to form magnetization reversal with a longer wavelength in units of basic magnetization reversal, the direction of the applied magnetic field during heating should be +H1- when comparing the heating timings.
It needs to be reversed like H1+H [in the example in Figure 3 (T□, T4°T7, T!O,...T3n+1)]
. Also, the applied magnetic field during final heating is selected to be -H. That is, in the case of triple wavelength, T1-T4. (Half-wavelength reversal having three times the half-wavelength of the fundamental magnetization reversal) T1°T4, T7-T10 (11/2 length reversal having nine times the half-wavelength of the fundamental magnetization reversal) T1・T4. T7, T10, T13, T16 (24 wavelength reversal having 15 times the half wavelength of the fundamental magnetization reversal).

次に長い波長の場合には、T1からはじめて十H1−H
,十H,−HとひろいあげるとT1、T6− Tll、
T16”’ T5fi+1となり、許される組合わせは
T□、T6(5倍514波長) T1、T6、Tl1−T16 (15倍、11//2波
長)T1. T6. T1□、Tl6− T2.、T2
6(25倍、21/2彼長)となる5倍波である。
For the next longer wavelength, starting from T1, 10H1-H
, 10H, -H, we get T1, T6-Tll,
T16"' T5fi+1, and the allowed combinations are T□, T6 (5 times 514 wavelengths) T1, T6, Tl1-T16 (15 times, 11//2 wavelengths) T1. T6. T1□, Tl6- T2., T2
6 (25 times, 21/2 length), which is the fifth harmonic wave.

以下、7倍波、9倍波、・・・についても同様である0 このようにして形成される長波長磁化反転は基本サイク
ルでの磁気潜像送り長をtによって形成できる磁気潜像
長さが決まる。すなわち3倍波では3tの奇数倍3t−
9t、 15t、・・・、5倍波では5t、151.2
5t、・・・、7倍波では7t。
The same applies to the 7th harmonic wave, 9th harmonic wave, etc.0 The long wavelength magnetization reversal formed in this way is the magnetic latent image length that can be formed by changing the magnetic latent image feeding length in the basic cycle to t. is decided. In other words, the third harmonic is an odd multiple of 3t, 3t-
9t, 15t,..., 5t for 5th harmonic, 151.2
5t..., 7t for the 7th harmonic.

21L351.・・・である。−万、許される最大倍波
は加熱ビット長をLとするとL/を以fの最大の奇数倍
波である。
21L351. ...is... -10,000, the maximum allowed harmonic is the largest odd harmonic of f below L/, where L is the heating bit length.

中間調を再現しようとする場合、各奇数倍波の許される
磁気潜像長さが上述した許される最大倍波に収まるよう
な最も近い数値をえらぷ事が好ましい。
When attempting to reproduce halftones, it is preferable to select the closest value such that the allowable magnetic latent image length of each odd harmonic falls within the above-mentioned maximum allowable harmonic.

このようにして形成される波長の異なる磁化反転によっ
て中間調が再現される事は磁気潜像から自由空間へもれ
てくる磁界の大きさと減衰の早さが磁気潜像の磁化反転
波長(こ依存する事で説明される。
The fact that intermediate tones are reproduced by magnetization reversals with different wavelengths formed in this way is that the magnitude and attenuation speed of the magnetic field leaking from the magnetic latent image into free space are determined by the magnetization reversal wavelength of the magnetic latent image (this It is explained by dependence.

以下、実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

磁気性像担体として市販の二酸化クロムテープ(米国p
upont社製、商品名cRoLYN)ヲ用イた。この
テープの磁性体層を市販の丈−マルヘッド(富士ゼロッ
クス社製、テレコピア490 用)10に接触するよう
に配置し、二酸化クロムテープを介しサーマルヘッドと
対向する位置に30σのトラック幅を有しギャップ長さ
が200μmであるセンダスト長尺磁気ヘッド(巻数3
00ターン)11を配置した(第4図参照)。
Commercially available chromium dioxide tape (US p.
Made by Upont, trade name: cRoLYN). The magnetic layer of this tape was placed in contact with a commercially available long-maru head (manufactured by Fuji Xerox Co., Ltd., for Telecopier 490) 10, and a track width of 30σ was formed at a position facing the thermal head through the chromium dioxide tape. Sendust long magnetic head with a gap length of 200 μm (number of turns 3)
00 turn) 11 was placed (see Figure 4).

サーマルヘッドの発熱素子長さは約160μmであり二
酸化クロムテープは基本サイクル1m5ec(加熱イネ
ーブル0.5 m5ec )おきに、  ioμm移動
するようにステッピンダモ〜り(図示せス)テ移動させ
た。
The length of the heating element of the thermal head was about 160 μm, and the chromium dioxide tape was moved by a stepper (not shown) so as to move by io μm every 1 m5 ec of the basic cycle (heating enable 0.5 m5 ec).

本文で説明したように10μm−30μm(3倍波)、
50μm(5倍波)、70μm(7倍i ) 、90p
m < 9倍波) +  110μm (11倍波)、
130μm(13倍波) 、 150μm’(15倍波
)の磁化反転長さで1 cm X 1 cmのソリッド
を印字した。詳しく説明すると 10μm −10μm X 100基本サイクル=lo
ooμm30μm・・・ 30μm X  33 = 
990μm50μm +++ 50μm X  21 
 = 1050μm70ttm −70ttm X  
15 = 1050/jm90μm +++ 90μt
n X  11  = 990μm110μm・・・ 
1】0μm X  9 = 990μm130μm・・
・ 130μm X 7 = 910μm150μm 
−150μm X  7 = 1050μmである。
As explained in the main text, 10μm-30μm (3rd harmonic),
50 μm (5th harmonic), 70 μm (7x i), 90p
m < 9th harmonic) + 110 μm (11th harmonic),
A solid of 1 cm x 1 cm was printed with a magnetization reversal length of 130 μm (13th harmonic) and 150 μm' (15th harmonic). To explain in detail, 10μm - 10μm x 100 basic cycles = lo
ooμm30μm... 30μm x 33 =
990μm50μm +++ 50μm X 21
= 1050μm70ttm -70ttm
15 = 1050/jm90μm +++ 90μt
n x 11 = 990μm110μm...
1) 0μm x 9 = 990μm 130μm...
・130μm x 7 = 910μm150μm
−150 μm x 7 = 1050 μm.

このよう番こして形成された磁気潜像を平均粒径工0μ
mの一成分磁性トナーで現像して、普通紙に静畦転写一
定着したのち、画像濃度をマクベス反射濃度計で測定し
たところF表のように濃度の異なる8ステツプの中間調
が得られた。
The magnetic latent image formed in this way has an average grain size of 0μ.
After developing the image with a single-component magnetic toner and fixing it on plain paper in a static ridge transfer, the image density was measured using a Macbeth reflection densitometer, and as shown in Table F, 8 steps of different densities were obtained. .

なお、上記の実施例においては外部磁界印加を磁気ヘッ
ド(こより行う場合について説明したが、外部磁界印加
手段としては第5図に示すよう(こ永久磁石を用いる事
もできる。15は丈−マルヘッドと磁性体との密着を補
助するシリコーンゴム等の弾性体被覆である。中空シリ
ンター−16中では、対称(こ着磁された円筒形永久磁
石ロールが一定速度で回転する。
In the above embodiments, the external magnetic field is applied using a magnetic head. However, as shown in FIG. 5, a permanent magnet can also be used as the external magnetic field applying means. It is an elastic material coating such as silicone rubber that assists in adhesion between the magnet and the magnetic material.In the hollow cylinder 16, a symmetrically magnetized cylindrical permanent magnet roll rotates at a constant speed.

この永久磁石ロール17にはホール素子などの磁束検出
手段を設け、前磁化と逆向きの印加磁界となる加熱イネ
ーブルスタートのタイミング制御、 +H1−Hの印加
磁界が熱残留磁化するのに十分な値になるスライスレベ
ル検出と加熱イネーブル制御、磁性体の送りタイミング
を決定するクロック発生制御を行なう。
This permanent magnet roll 17 is provided with a magnetic flux detection means such as a Hall element, and the heating enable start timing control is such that the applied magnetic field is in the opposite direction to the pre-magnetization, and the applied magnetic field of +H1-H has a value sufficient to cause thermal residual magnetization. It performs slice level detection, heating enable control, and clock generation control that determines the feeding timing of the magnetic material.

この方法Oこよれば磁気ヘッドにより外部磁界を印加す
る方法に較べ、サーマルヘッド吉磁界印加手段の位置合
わせ精度が軽減される。
This method reduces the positioning accuracy of the thermal head magnetic field applying means compared to the method of applying an external magnetic field using a magnetic head.

以上説明したように本発明はサーマルヘッドやレーザー
光などをこよるドツト状の熱入力を磁気潜像担体上で空
間的に重なるように印加し。
As explained above, the present invention applies dot-shaped heat input using a thermal head, laser beam, or the like so that they overlap spatially on a magnetic latent image carrier.

基本クロックと同期して外部印加磁界の向きを逆転し、
中間調情報に応じて基本クロックを単位とする熱入力印
加制御を行う磁気潜像形成方法を提供したものであり、
熱入力制御は基本クロック同期印加、3n+1タイミン
グ、5n+1タイミング+ 7n+1タイミング、・・
・・・・(nは整数を表わす。)71)らなり、各タイ
ミング共偶数印加で1つの中間調潜像形成を行うもので
ある。
Reverses the direction of the externally applied magnetic field in synchronization with the basic clock,
The present invention provides a magnetic latent image forming method that controls heat input application in basic clock units according to halftone information,
Heat input control is basic clock synchronous application, 3n+1 timing, 5n+1 timing + 7n+1 timing,...
(n represents an integer) 71), and one halftone latent image is formed by applying an even number of signals at each timing.

本発明によればサーマルヘッドなど、熱ドツト入力磁気
潜像形成法での中間調再現が再現できること、ソリッド
が均一に再現されること、熱入カドノドの大きさよりも
小さな磁気潜像単位が形成できることなどの特長を有す
るものである。
According to the present invention, it is possible to reproduce halftone reproduction using a thermal dot input magnetic latent image forming method such as a thermal head, it is possible to reproduce a solid uniformly, and it is possible to form a magnetic latent image unit smaller than the size of a heat input dot. It has the following features.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の磁気潜像形成方法の原
理の説明図、第2図(a)〜(f)は基本波、3倍波、
5倍波を印字するためのタイミングチャート。 第3図は3倍波を形成する過程の説明図、第4図は磁気
ヘッドを用いた実施例の構成図、第5図(、)及び(b
)は永久磁石を用いた実施例の構成図及び制御の概要図
である。 図中符号: l・・・支持体層:2・・・磁性体層;3・・・加熱ド
ツト部;4・・・背景部磁化;5・・・潜像磁化;7・
・・外部磁界;7′・・・反転外部磁界;8・・・移動
方向;9・・・移動軌跡;10・・・サーマルヘッド;
11・・・長尺磁気ヘッド;12・・・外部印加磁界;
13・・・磁気記録体送り信号:14・・・加熱イネー
ブル;15・・・弾性体被覆;16・・・中空性支持体
:17・・・永久磁石ロール;18・・・磁界検出手段
。 (ほか3名) fl!1   図
FIGS. 1(a) to (d) are explanatory diagrams of the principle of the magnetic latent image forming method of the present invention, and FIGS. 2(a) to (f) are fundamental waves, third harmonic waves,
Timing chart for printing 5th harmonic wave. Figure 3 is an explanatory diagram of the process of forming the third harmonic wave, Figure 4 is a configuration diagram of an embodiment using a magnetic head, and Figures 5 (,) and (b).
) is a configuration diagram and a schematic diagram of control of an embodiment using permanent magnets. Symbols in the figure: l... Support layer: 2... Magnetic layer; 3... Heating dot part; 4... Background magnetization; 5... Latent image magnetization; 7.
... External magnetic field; 7'... Reversal external magnetic field; 8... Movement direction; 9... Movement trajectory; 10... Thermal head;
11... Long magnetic head; 12... Externally applied magnetic field;
13... Magnetic recording body feed signal; 14... Heating enable; 15... Elastic body coating; 16... Hollow support: 17... Permanent magnet roll; 18... Magnetic field detection means. (3 others) fl! 1 figure

Claims (1)

【特許請求の範囲】 熱残留磁化可能な磁気記録体をドツト状ζこ画像分割し
て加熱すると共に外部磁界を印加して磁気潜像を形成す
る方法に於いて。 磁気記録体の移動ζこ伴ない、磁界を周期的に反転させ
ると共に磁気記録体の移動距離がこの反転周期の奇数倍
に相当する毎に磁気記録体を加熱することを特徴とする
磁気潜像形成法。
[Claims:] A method for forming a magnetic latent image by dividing a magnetic recording body capable of thermal remanent magnetization into dot-shaped images, heating the same, and applying an external magnetic field. A magnetic latent image characterized by periodically reversing the magnetic field as the magnetic recording body moves, and heating the magnetic recording body every time the moving distance of the magnetic recording body corresponds to an odd multiple of the reversal period. Formation method.
JP5157183A 1983-03-29 1983-03-29 Magnetic latent image forming method Granted JPS59177583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5157183A JPS59177583A (en) 1983-03-29 1983-03-29 Magnetic latent image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5157183A JPS59177583A (en) 1983-03-29 1983-03-29 Magnetic latent image forming method

Publications (2)

Publication Number Publication Date
JPS59177583A true JPS59177583A (en) 1984-10-08
JPH0242227B2 JPH0242227B2 (en) 1990-09-21

Family

ID=12890643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5157183A Granted JPS59177583A (en) 1983-03-29 1983-03-29 Magnetic latent image forming method

Country Status (1)

Country Link
JP (1) JPS59177583A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101665057B1 (en) * 2016-05-17 2016-10-24 한국기초과학지원연구원 Spring-type cryo-plunger and Cooling method of sample grid using the same

Also Published As

Publication number Publication date
JPH0242227B2 (en) 1990-09-21

Similar Documents

Publication Publication Date Title
KR910006929A (en) Method and apparatus for recording and playing back magneto-optical record carriers
US3965478A (en) Multicolor magnetographic printing system
JPH04500285A (en) Control circuit for modulating the magnetic field for recording in magneto-optic memory
JPS59177583A (en) Magnetic latent image forming method
CA1102394A (en) Magnetic latent image creation
US4038665A (en) Recording with donor transfer of magnetic toner
JPH0139113B2 (en)
US4621269A (en) Magnetic recording arrangement for thermographic printing apparatus
US3988739A (en) Input device for scanning documents with magnetic bubble printing
US4163979A (en) Method and apparatus for recording latent images on a magnetic medium in magnetography
US4458252A (en) Magnetic image recording device
US4395470A (en) Process of forming magnetic latent images
US4397929A (en) Process for generating a latent magnetic image
US4558327A (en) Magnetic copying method and apparatus
JPS56161574A (en) Formation of magnetic latent image
JPS60194482A (en) Magnetic latent image formation device
JPS6055377A (en) Formation of magnetic latent image
JPS56161572A (en) Formation of magnetic latent image
US5774157A (en) Method of density adjustment for a magnetic printing apparatus
JPS61186977A (en) Method for recording and developing latent image in magnetic imaging device
US3631508A (en) Thermomagnetic recording whereby image reversal is achieved magnetically
JP3069459B2 (en) Thermomagnetic recording method and thermomagnetic printing apparatus
JP3089968B2 (en) Method of forming latent image in magnetic printing apparatus
JPH06308858A (en) Thermomagnetic recording method and thermomagnetic printer
JPS5953855A (en) Thermomagnetic recording body