JPS59177336A - Production of fiber reinforced composite metallic material - Google Patents

Production of fiber reinforced composite metallic material

Info

Publication number
JPS59177336A
JPS59177336A JP5079483A JP5079483A JPS59177336A JP S59177336 A JPS59177336 A JP S59177336A JP 5079483 A JP5079483 A JP 5079483A JP 5079483 A JP5079483 A JP 5079483A JP S59177336 A JPS59177336 A JP S59177336A
Authority
JP
Japan
Prior art keywords
fiber
fibers
metal
case
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5079483A
Other languages
Japanese (ja)
Inventor
Kenichi Akutagawa
芥川 憲一
Hideo Otsu
大津 日出男
Jun Hasegawa
順 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP5079483A priority Critical patent/JPS59177336A/en
Publication of JPS59177336A publication Critical patent/JPS59177336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain a fiber reinforced composite metallic material of a desired shape in which reinforcing fibers are isotropically disposed by housing a fiber assemblage in a compacted state into a case formed of a high melting material and bringing a molten base metal into contact therewith to penetrate said metal into the fiber aggregate then solidifying the material. CONSTITUTION:Carbon fibers 51, etc. are uniformly dispersed and disposed in a metallic mold 1 and an org. binder 52 is poured thereon. A top punch 11 is lowered to compress the mixture and the mixture is hardened by heating to form a compacted molding. such molding is housed in a case formed of a high melting material and is heated to remove the binder 52, by which the fiber assemblage is obtd. The fiber assemblage in the state of being housed in the case is put into the mold 1 and after the assemblage is preheated, the melt of a base metal such as an Al alloy or the like is charged into the mold. The punch 11 is lowered to press the mixture and thereafter the mold 1 is cooled to solidify the molten metal. The fiber reinforced composite metallic material having a high fiber content is obtd. by the above-mentioned method.

Description

【発明の詳細な説明】 本発明は繊維強化金属複合材料(rRM)の製造方法に
関づる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing fiber reinforced metal composites (rRM).

FRMとは、母材である金属中に分散材としての多数の
繊維を埋設した複合材料である。これは、用材金属の強
度、剛性、耐熱性等の緒特性を、繊維によって強化した
ものであり、ポンプのベーンなどの摺動月利、あるいは
耐熱性を要求される自動車部品等、その用途は広い。
FRM is a composite material in which a large number of fibers as a dispersion material are embedded in a metal base material. This is made by reinforcing the strength, rigidity, heat resistance, and other characteristics of raw metal with fibers, and its applications include sliding parts such as pump vanes, and automobile parts that require heat resistance. wide.

従来F RMは、たとえば拡散接合法にに・)で製造し
ていた。これは、同相の用材金属とIli維とを、ホッ
トプレスによってじっくり時間をか()て結合させ、成
形づるものである。即ち、繊維を金属箔ではさみホッl
〜プレスしたり、f!Ii#ff表面に金属を被覆した
プリプレグシートを積層してホラ1プレスしたり、ある
いは粉末状の金属を繊維にまぶしてホラ1〜ブレスづる
等の方法ににっC製造していた。また、他の方法として
は、溶融した母材金属を織肩1に接触、浸透させた後、
これを冷II固化させるという方法も採られていた。
Conventionally, FRMs have been manufactured using, for example, the diffusion bonding method. This is made by slowly bonding raw metal and Ili fibers of the same phase by hot pressing and forming them. That is, the fibers are sandwiched between metal foils.
~Press or f! Ii#ff was manufactured by laminating prepreg sheets coated with metal on the surface and pressing them together, or by sprinkling powdered metal on fibers and pressing them. In addition, as another method, after contacting and permeating molten base metal into the woven shoulder 1,
A method of solidifying this in a cold stage was also used.

しかし1.L来のF RMの製造方法は、以下の如き欠
点を有していた。
But 1. The conventional FRM manufacturing method had the following drawbacks.

第1に、織組を母材金属中に均一に分散させる口とが困
難であった。たとえば溶融した母材金属中に繊肩1を分
11(さUた後固化さけると、金属と繊肩1との比千差
のため、凝固過秤C織肩fが偏在l)がらひあった。こ
のため良好な特性のF RMを冑にくかった。
First, it has been difficult to uniformly disperse the weave in the base metal. For example, in the molten base metal, the fiber shoulder 1 was mixed with 11 parts (if it was avoided to solidify after being smelted, due to the difference in ratio between the metal and the fiber shoulder 1, there were unevenly distributed over-solidified shoulders C). . For this reason, it was difficult to obtain an FRM with good characteristics.

第2に、織組を母材金属中に等方向に配列さけることが
困デ11であった。たとえば前記拡散接合法にJ3いて
、金層箔あるいはプリプレグシートを用いる場合、イの
強化方向は2次元である。まIこ、?5)未払の金属中
で繊維を等方向に配列さUるために撹拌づること(ユ、
抵抗が大きく困テ11である。JI:、溶融金属中(、
二等方的に繊肩fを分11(させたどしても凝固過程で
」−記したように織組は偏在づる。。
Second, it is difficult to avoid arranging the weave in the same direction in the base metal. For example, when a gold layer foil or a prepreg sheet is used in the diffusion bonding method J3, the strengthening direction of A is two-dimensional. Maiko? 5) Stirring to uniformly align the fibers in the unfinished metal.
The resistance is large and this is a problem. JI:, in molten metal (,
Even if the fiber shoulders f are divided biisotropically, the weave will be unevenly distributed during the coagulation process.

このlζめ等方向な特性を有するF RM f!:Ii
lにくかった。
F RM f! having this lζ isotropic characteristic. :Ii
It was difficult.

第3に、F RMにお【]る繊繊維行右の調整、及び高
含有率のFRMを狩ることが困難であっlζ。
Thirdly, it is difficult to adjust the fiber rows in FRM and to detect high content FRM.

一般にF RMの種々の特性は繊維含有十によって左右
される。また、繊維含右牢〜を増づほど強度は改善され
る。したがって用途に応じ所望の特性を有するFRMを
得たい場合は、繊維含有率をそのように設定づればよい
。しかし、従来の製造方法では繊維含有宰の設定幅は自
ずと限定され、また、高含有率のものを1りることも困
νUであった。たとえば前記プリプレグシー1〜を用い
る場合は、繊維を被覆覆る金属の串は、繊維の太さ等に
よっである程度限定される。また、溶融金属中に繊維を
分散さける場合は、溶融金属中に入れ得る繊維の用は溶
融金属の体積訴によって限定される。
In general, various properties of FRM depend on the fiber content. Moreover, the strength is improved as the fiber content increases. Therefore, if it is desired to obtain an FRM having desired characteristics depending on the application, the fiber content may be set accordingly. However, in the conventional manufacturing method, the setting range of fiber content is naturally limited, and it is also difficult to remove one with a high fiber content. For example, when using Prepreg Sea 1~, the metal skewer that covers the fibers is limited to some extent depending on the thickness of the fibers. Furthermore, when fibers are to be dispersed in the molten metal, the use of the fibers that can be introduced into the molten metal is limited by the volumetric appeal of the molten metal.

第4に、任意形状のFRMを得ることが製法」ニ困Ij
ll C−あった。
Fourth, it is difficult to obtain an FRM of any shape by the manufacturing method.
ll C-There was.

本光明は従来の+!A造方法の以にのような欠点を克服
づることを目的どづる。
Honkomei is the conventional +! The purpose is to overcome the following drawbacks of the A construction method.

即ち本発明は、繊維集合体に溶融した81月金属を接触
、浸透ざl!、その後該母材金属を固化させる繊軒1強
化金属複合材料の製造方法において、前記繊維集合体は
、繊Mを前記母材金属よりも高融点の月11のケースに
圧密状態となるJ、うに収納し−C得ることを特徴とづ
る繊紐強化金属複合拐刺の製造方法である。
That is, in the present invention, molten metal is brought into contact with and penetrated into the fiber aggregate. , in the method for manufacturing a fiber eaves 1 reinforced metal composite material, in which the base metal is solidified, the fiber aggregate is made of fibers M that are consolidated in a case with a melting point higher than that of the base metal; This is a method for producing a fiber-reinforced metal composite splint, which is characterized by obtaining -C by storing the fibers in the sea urchin.

繊維集合体とは、所定の形状に成形された繊維の東まり
である。ここに、所定の形状とは所望のF RI’tI
+の形状に略等しい形状である。織肩1どしては炭素繊
組、ガラス繊維、ボロン繊維、シリ」ンカーバイド繊郭
、アラミド繊帷等各種楳組の良識ftff及び短繊維を
用いることができる。繊維集合体の前記所定の形状は、
該繊維集合体を収納するケースによって保持づる。即ち
、繊維を所定形状の17−スに圧密状態となるように収
納してII紺集合体を得る。圧密状態は、繊維をケース
に収納した後、加圧して得ることができる。なお、ケー
スは当初単純な形のものを用い、織肩1を収納した後に
型内で成形しつつ加圧して圧密体としたり、板状の乙の
をプレス成形しU一定形状の板状圧密体とりることもで
きる。該ケースの材お1は、少くとも母材金属の融点よ
りし高融点の材1′31でな【プれはならない。なんと
なれば、繊維集合体は該ケース内に収納したまま、溶融
した母材金属と接触させるからである。
A fiber aggregate is a bundle of fibers formed into a predetermined shape. Here, the predetermined shape is the desired FRI'tI
The shape is approximately equal to the shape of +. For the woven shoulder 1, common ftff and short fibers of various types of woven fabrics such as carbon fiber, glass fiber, boron fiber, silicon carbide fiber, aramid fiber, etc. can be used. The predetermined shape of the fiber aggregate is
The fiber aggregate is held by a case that houses it. That is, the fibers are housed in a 17-space of a predetermined shape so as to be in a compacted state to obtain a navy blue aggregate II. The compacted state can be obtained by compressing the fibers after storing them in a case. In addition, the case was initially of a simple shape, and after storing the woven shoulder 1, it was molded and pressurized in a mold to form a consolidated body, or a plate-shaped case was press-formed and a plate-shaped consolidated body with a constant shape was formed. You can also take your body. The material 1 of the case must be a material 1'31 with a melting point higher than that of the base metal. This is because the fiber aggregate is brought into contact with the molten base metal while being housed in the case.

41維を前記ケースに収納する。に際し、繊組を有機バ
インダ中に分散させて収納してもよい。液状の有機バイ
ンダ中に繊維を分散させると、ケースへの収納が容易と
なり、また、繊維分布が均一かつ等方向となる。繊維の
有機バインダ中への分散は、たとえば、液状の有機バイ
ンダと繊維とを撹拌装置、混練装置等で均一に混合づる
ことにJ:って行う。分散を容易とするためには有機バ
インダと繊維の濡れ性の良いことが必要である。また、
)捏合を均一に行うためには、混合時にお()る右放バ
インダの粘性はあまり高くない方が良い。このため有機
バインダは、アレトン、水等の溶媒に溶かしでおくどに
い。なお有機バインダを用いる場合は、繊維を分散さV
た後固化さUて所定形状とし、これをケース内に収納し
てもよい。有機バインダの固化に要づる温度等の条イ′
1は右成バインダの種類等によっC異なる。たとえばポ
リビニルアルコールを用いた場合は200℃程度に約2
時間加熱づればよい。なお有(幾バインダは、ケース内
への収納後に、熱分解によって除去できる。熱分解の温
度等の条件は有機バインダの種類によって異なる。たと
えばポリビニルアルコールを用いた場合は、450℃程
度で約1時間加熱づる。その際発生りるガスを逃がまた
めに、ケースには小さな空気流通孔を多数間(プCおく
41 fibers are stored in the case. In this case, the fibers may be dispersed and stored in an organic binder. Dispersing the fibers in a liquid organic binder facilitates storage in a case and provides uniform and isodirectional fiber distribution. The fibers are dispersed in the organic binder by, for example, uniformly mixing the liquid organic binder and the fibers using a stirring device, a kneading device, or the like. In order to facilitate dispersion, it is necessary that the organic binder and fibers have good wettability. Also,
) In order to knead uniformly, the viscosity of the binder used during mixing should not be too high. For this reason, it is important to dissolve the organic binder in a solvent such as aretone or water. In addition, when using an organic binder, the fibers are dispersed V
After that, it may be solidified into a predetermined shape and stored in a case. Conditions such as temperature required for solidification of organic binder
1 varies depending on the type of binder. For example, when polyvinyl alcohol is used, the temperature is about 2
Just heat it up for a while. However, some binders can be removed by thermal decomposition after being stored in the case. Conditions such as thermal decomposition temperature vary depending on the type of organic binder. For example, when polyvinyl alcohol is used, the The case is heated for a period of time.In order to allow the gas generated to escape, there are many small air circulation holes in the case.

有機バインダとしてはポリビニルアルコール(PVA)
、エポキシ樹脂、メチルレルロース、ポリプロピレン等
を用いることがCさる。
Polyvinyl alcohol (PVA) as an organic binder
, epoxy resin, methyllerulose, polypropylene, etc. can be used.

17−ス内に収納した繊維の集合は、前記したように加
圧して所定形状のシ密体に成形する。この加tr−王程
での加JT力の程度によって、最終製品であるFRMの
繊N酋有牢を設定ηることができる。
17- The collection of fibers housed in the space is pressurized as described above and formed into a dense body of a predetermined shape. Depending on the degree of the applied JT force in this addition process, the fiber resistance of the FRM, which is the final product, can be set.

たとえば高い繊維含有率のFRMを得たい場合は高圧力
で加圧する1、すると圧密成形体の繊頓の畜産は高まる
ため、最終製品であるFRMの繊糾含イj率も高まる。
For example, if you want to obtain FRM with a high fiber content, pressurize with high pressure 1. This will increase the amount of lint in the compacted body, which will also increase the lint content of the final product, FRM.

逆に、低い繊維含有率のFRMを得たい場合は、比較的
低い圧力で1111圧すれば良い。
On the other hand, if it is desired to obtain FRM with a low fiber content, a relatively low pressure of 1111 may be used.

このようにして得た所定形状の繊維集合体に溶融した母
材金属を接触、浸透させる。
The molten base metal is brought into contact with and infiltrated into the fiber aggregate having a predetermined shape thus obtained.

母材金属とは、炭素綴紐のような分散材を埋設する主体
となる金属である。金属の!li類はFRMの用途に応
じ選択できる。たとえば、アルミニウム、アルミニウム
合金、マグネシウム、マグネジ・リム合金、銅、銅合金
等を使用できる。アルミニ・リム、アルミニウム合金を
用いると、軽くて強度の大きい複合材料を得られる。母
材金属は繊維集合体に接触、浸透させる前に、あらかじ
め、溶融する。即ち、母材金属のみを繊維集合体とは別
個に加熱溶融した後、後述の如<m維集合体に接触、浸
透させる。この方法を探ることによって、両者が一緒に
高温状態に置かれる時間を従来より心知縮して、両者の
反応を抑制することがC′きる。溶iW!温度は、該母
材金属の融点より10〜20’C高い温度が望ましい。
The base metal is the main metal in which the dispersion material, such as the carbon string, is buried. Of metal! The li type can be selected depending on the use of the FRM. For example, aluminum, aluminum alloy, magnesium, magnetic screw rim alloy, copper, copper alloy, etc. can be used. By using aluminum rims and aluminum alloys, you can obtain lightweight and strong composite materials. The base metal is melted before it comes into contact with and permeates the fiber aggregate. That is, after the base metal is heated and melted separately from the fiber aggregate, it is brought into contact with and infiltrated into the fiber aggregate as described below. By exploring this method, it is possible to suppress the reaction between the two by reducing the amount of time that both are exposed to high temperature together than before. Melting W! The temperature is preferably 10 to 20'C higher than the melting point of the base metal.

での理由は、f1月金属が繊維に浸jルする;J: C
1,1溶融a態を保つ必要がある=一方、浸透後は、づ
み\\)かに冷211固化さける必要があるという、両
との要請を(−またりためである。
The reason is that the metal soaks into the fiber; J: C
1,1 It is necessary to maintain the molten a state = On the other hand, after infiltration, it is necessary to cool down and avoid solidification.

溶融しlζ母材金属は、該母材金属を繊維集合体に注ぐ
等の方法にJ二つて、繊維集合体に接触、浸j6さUる
。この方法によると、繊維集合体の毛細管現象等によっ
て、Lu材金金属繊維集合体へ、浸透し易くなる。また
、は材金属を必要Φだ(〕繊紐束合体に接触さUること
ができるため母材金属のhlが過ぎることに起因する熱
容量の増加も<> <、後述の冷IJIがスムーズどな
る。さらにF RN’l中にお()る繊維集合体の比率
を従来よりも高めることが−Cぎる。なおその際、繊I
ll集含体はあらかじめ81月金属の融点近くまで加熱
してa3<のが望ましい。その理由は、104A金属が
楳t=I+集合体と接触しk 1G、浸透する前に、m
紐集合体に熱を奪われて固化してしJ、い、浸透が不十
分どなることを防出するためである。また繊維集合体は
、繊維集合体への母材金属の浸透をづみやかにづるため
に、あらかじめ復学排気してJ3 <とよい。あるいは
また、前記浸透を促進づるために、繊維集合体と母材金
属との接触後、両者を加圧してもよい。加圧手段は、ガ
ス加圧でも、あるいはプランジャー等の機械的手段にJ
:る加圧でもよい。
The molten base metal is brought into contact with and impregnated into the fiber aggregate by a method such as pouring the base metal onto the fiber aggregate. According to this method, the Lu material can easily penetrate into the Lu material gold metal fiber aggregate due to the capillarity of the fiber aggregate. In addition, the heat capacity increases due to the excess heat capacity of the base metal because it can come into contact with the strand bundle. .Furthermore, it is possible to increase the ratio of fiber aggregates in the FRN'l than before.
It is desirable that the aggregate be heated in advance to a temperature close to the melting point of the metal. The reason is that before the 104A metal comes into contact with the t = I + aggregate and penetrates k 1G, m
This is to prevent the string assembly from absorbing heat and solidifying, resulting in insufficient penetration. In addition, the fiber aggregate is preferably re-evacuated beforehand to J3 < in order to facilitate the penetration of the base metal into the fiber aggregate. Alternatively, in order to promote the permeation, pressure may be applied to the fiber aggregate and the base metal after they come into contact with each other. The pressurizing means may be gas pressurization or mechanical means such as a plunger.
: Pressure may be applied.

繊維集合体に溶融した母材金属を接触、浸透させた後は
、すみやかに冷l、1シ、固化さぜる。接触後、固化ま
での所要時間は3分以内が望ましい。
After contacting and infiltrating the molten base metal into the fiber aggregate, it is immediately cooled and stirred for one hour to solidify. After contact, the time required for solidification is preferably within 3 minutes.

換言すれば3分以内であれば繊維集合体と母材金属との
反応は、比較的少なく、高強度のFRMが得られる。な
お、繊維と溶融金属の接触特開は短()れば短い程よい
In other words, within 3 minutes, the reaction between the fiber aggregate and the base metal is relatively small, and a high-strength FRM can be obtained. Note that the shorter the contact between the fiber and the molten metal, the better.

冷却は、たとえば、繊維集合体と母材金属とを収納して
いる容器の周囲に冷N1パイプを配置しておき、該冷却
パイプ内に冷却材を流して冷)iII Lでもよい。あ
るいは、前記収納容器の下部に水桁を配置しておき、該
水槽内の水に収納容器を潰(プて冷却してもよい。以上
のようにしてFRMを製造づる。
Cooling may be performed, for example, by disposing a cold N1 pipe around a container housing the fiber aggregate and base metal, and flowing a coolant into the cooling pipe. Alternatively, a water girder may be disposed at the bottom of the storage container, and the storage container may be crushed (plunged) into the water in the water tank to cool it. The FRM is manufactured in the above manner.

木光明の製造方法は、以下の諸点で従来の製造方法より
づくれでいる。
The manufacturing method for Mokukomei is superior to conventional manufacturing methods in the following points.

第1に強度等の物井的な諸性性の等方面<@ F RM
を行ことができる。繊維を均一かつ等方面に母材金属中
に分散させることができるからである。
First, isotropic properties such as strength <@ F RM
can be done. This is because the fibers can be uniformly and uniformly dispersed in the base metal.

第2に繊維を圧密成形して圧密成形体を得るため繊肩を
含有率を任意に設定することができ、また従来より繊維
含有率の高いFRMを(9ることができる。
Second, since fibers are compacted to obtain a compacted body, the content of fiber shoulders can be set arbitrarily, and FRM with a higher fiber content than before can be produced.

第3に用途に応じた形状のFRMを製造ηることができ
る。
Thirdly, it is possible to manufacture an FRM having a shape depending on the intended use.

以下、本発明の詳細な説明づる。The present invention will be described in detail below.

第1実施例 第1図は本実施例で使用した加圧成形装置の断面模式図
であり、第2図は本実施例の圧密成形体を収納したケー
スの斜視図である。
FIRST EXAMPLE FIG. 1 is a schematic cross-sectional view of the pressure molding apparatus used in this example, and FIG. 2 is a perspective view of a case containing the compacted body of this example.

第1四に示7加圧成形装置は、金型1と枠体2とから成
る。金型1は本体10と該本体10の内部に」−下方向
に摺v)可能に設置された上パンチ1成る。金ハ!1の
内部形状は製造ηべきF RMの外部形状と等しい。本
体10には加熱手段ぐあるじ一ター101が設置されて
いる。下バンブ12には圧密成形体中の余分の水分を排
出づる小径の穴が多数間(プられており、また、下パン
f12の上バンチ11に対向づる面にはメツシュ状金網
が設置されている。枠体2は、前記金を1の本体10ど
下バンチ12を固定する台23と、上パンチ11を固定
づ−るクロスヘッド21と、これらを支持する支持部2
2とから成る。クロスヘッド21は上下に可動である。
14 The pressure molding apparatus shown in FIG. 7 consists of a mold 1 and a frame 2. The mold 1 consists of a main body 10 and an upper punch 1 installed inside the main body 10 so as to be slidable downward. Money ha! The internal shape of 1 is equal to the external shape of the manufactured FRM. A heating means gear 101 is installed in the main body 10. The lower bump 12 is provided with a large number of small diameter holes for draining excess moisture in the compacted compact, and a mesh-like wire gauze is installed on the surface of the lower bun f12 facing the upper bunch 11. The frame body 2 includes the main body 10 of the metal 1, a stand 23 for fixing the lower bunch 12, a cross head 21 for fixing the upper punch 11, and a support part 2 for supporting these.
It consists of 2. The crosshead 21 is movable up and down.

かかる構成の加圧成形装置を用いて、以下の手順で本発
明を実施した。
The present invention was carried out using the pressure molding apparatus having such a configuration according to the following procedure.

(1)繊維長平均3+++a+の炭素繊M+ 51を金
型1の内部に均一に分散するように配置した。
(1) Carbon fibers M+ 51 having an average fiber length of 3+++a+ were arranged so as to be uniformly dispersed inside the mold 1.

(2)有機バインダであるポリごニルアルニ1−ル水溶
液52(!’1度約40%)を金型1の内部に注ぎ、前
記炭素繊肩151を潰した。
(2) An aqueous polygonylalnylene solution 52 (approximately 40%), which is an organic binder, was poured into the mold 1 to crush the carbon fiber shoulders 151.

(3)上バンチ11を下降させ、炭素綴紐51とポリビ
ニルアルコール水溶液52との混合物を圧縮した。
(3) The upper bunch 11 was lowered to compress the mixture of the carbon binding string 51 and the polyvinyl alcohol aqueous solution 52.

(4)金型1の内部を200 ℃に約2時間加熱し、ポ
リビニル)′ルコール52を硬化させ、圧密成形体50
を冑た。
(4) The inside of the mold 1 is heated to 200°C for about 2 hours to harden the polyvinyl alcohol 52, and the compacted molded body 50
I was disappointed.

(5j)上記圧密成形体50を第2図に示づ一ケース6
に収納した。このケース6の内形状は製造タベきFRM
の外形状と等しく、その側面には刀スを逃がまための空
気流通孔61が多v!l設()られている。
(5j) The compacted compact 50 is shown in FIG.
It was stored in. The inner shape of this case 6 is manufactured FRM.
It has the same external shape, and there are many air circulation holes 61 on its side to prevent the sword from escaping! l has been established ().

(6)ケース6に収納した圧密成形体50を、空気流通
下で450℃に約1時間加熱してポリごニルアルτI−
ル1)2を熱分解除去し、炭素繊肩1集合体5を1’J
た。
(6) The compacted compact 50 housed in the case 6 is heated to 450°C for about 1 hour under air circulation to make polygonyl aluminum τI-
The carbon fiber shoulder 1 aggregate 5 was removed by 1'J
Ta.

(7)1−記炭素繊靜集含体5をケース6に収納したま
ま金型1の内部に収納し、該金型1の内部を/100−
・/130℃に加熱し、炭素繊維集合体5を予熱した。
(7) Store the carbon fiber collection material 5 described in 1- in the case 6 and store it inside the mold 1, and make the inside of the mold 1 by /10-
The carbon fiber aggregate 5 was preheated by heating to /130°C.

(8〉溶融したアルミニウム合金を金型1の内部に注湯
した後、」上パンチ11を下降さゼ−,60Ok(]/
cJ12の圧力で加圧した。
(8> After pouring the molten aluminum alloy into the inside of the mold 1, lower the upper punch 11.
It was pressurized at a pressure of cJ12.

(9)加圧開始後、図示しない手段によって金型1をす
みやかに冷却し、上記アルミニウム合金をづみやかに固
化]ノ、FRMを得た。
(9) After the pressurization was started, the mold 1 was quickly cooled down by a means not shown, and the aluminum alloy was solidified rapidly.] An FRM was obtained.

第2実施例 第2実施例は、第1実施例と略同様である。第2実施例
が第1実施例と異なる点は、炭素繊維集合体5に溶融金
属を接触、浸透さける工程である。
Second Embodiment The second embodiment is substantially the same as the first embodiment. The second embodiment differs from the first embodiment in the step of contacting and infiltrating the carbon fiber aggregate 5 with molten metal.

以下の手順で第2実施例を実施した。The second example was carried out using the following procedure.

〈1)第1実施例と同様(第1実施例の(1)−(6)
)にして所定形状の炭素繊維集合体5を製造した。ここ
に、炭素繊維集合体5を収納しているケース6は厚さ0
.5+nm以上の鉄板で構成され、このケース6には手
りが固定されている。
<1) Same as the first embodiment ((1)-(6) of the first embodiment)
) to produce a carbon fiber aggregate 5 having a predetermined shape. Here, the case 6 housing the carbon fiber aggregate 5 has a thickness of 0.
.. The case 6 is made of an iron plate with a thickness of 5+nm or more, and a hand is fixed to the case 6.

(2)炭素繊維集合体5をケース6に収納したまま含浸
容器7に収納し、これをA−トクレー1装置8に第3図
に示すよう収納した。
(2) The carbon fiber aggregate 5 was stored in the impregnating container 7 while being stored in the case 6, and this was stored in the A-Tocray 1 apparatus 8 as shown in FIG.

第3図はオー1〜クレープ装置8の断面模式図である。FIG. 3 is a schematic cross-sectional view of O 1 to crepe device 8.

、該A−トクレープ装冒8は容器収納部81とガス供給
部82とから成る。
, the A-to-crepe charger 8 consists of a container storage section 81 and a gas supply section 82.

容器収納部81は、圧力容器ε)1oど、該圧力容器8
10の周囲をとりまくヒーター812と、該圧力容器8
10の上部開口部を密rjJ覆るボルト状の栓814と
から成る。
The container storage section 81 stores pressure vessels 8 such as pressure vessels ε) 1o, etc.
10 and a heater 812 surrounding the pressure vessel 8 .
It consists of a bolt-shaped stopper 814 that tightly covers the upper opening of 10.

カス供給部ε32は、前記圧力容器810の上部を円通
し、先端が該圧力容器810の内部へ向かうJ:うにし
て該圧力容器810に取着されたガス導入パイプ821
、ガス11ト出パイプ823と、ぞれぞれのパイプの中
途に取着されたバルブ8211.8231とから成る。
The waste supply section ε32 has a gas introduction pipe 821 that passes through the upper part of the pressure vessel 810 and has its tip directed toward the inside of the pressure vessel 810.
, a gas 11 outlet pipe 823, and valves 8211 and 8231 attached to the middle of each pipe.

なお、ガス導入パイプ821の他端に(は、図示しない
カスボンベが接続されている。また、ガス排出パイプの
他端にG11、図示し4rいn2ポンプを接続できる。
Note that a gas cylinder (not shown) is connected to the other end of the gas introduction pipe 821. Also, a 4Rn2 pump (not shown), G11, can be connected to the other end of the gas discharge pipe.

(3)バルブ8211を間き、ガス導入パイプ821か
ら圧力容器810の内部へ窒素ガスを供給しつつ、ヒー
ター812によって圧力容器810の内部を約550℃
に加熱した。
(3) While supplying nitrogen gas from the gas introduction pipe 821 to the inside of the pressure vessel 810 with the valve 8211 closed, the inside of the pressure vessel 810 is heated to approximately 550°C by the heater 812.
heated to.

(4)栓814をはずし、あらかじめ溶融してJ3いた
母材金属である5 90 ℃のアルミニウム合金を含浸
容器7内へン」いだ。
(4) The plug 814 was removed, and the aluminum alloy at 590° C., which was the base metal J3 that had been previously melted, was poured into the impregnation container 7.

(5)バルブ8231を閉め、バルブ8211を聞き、
窒素ガスを圧力容器810の内部へガス圧50 ko/
 cm 2以上で供給し、ケース内の炭素繊維集合体5
にアルミニウl\合金を浸透させた。
(5) Close valve 8231, listen to valve 8211,
Nitrogen gas is introduced into the pressure vessel 810 at a gas pressure of 50 ko/
cm 2 or more and carbon fiber aggregate 5 in the case
infiltrated with aluminum alloy.

(7)含浸容器7の周囲をとりまく冷却パイプに冷却水
を流し、アルミニウl\合金を固化させ、FRMを得た
(7) Cooling water was flowed through the cooling pipe surrounding the impregnation container 7 to solidify the aluminum l\ alloy to obtain an FRM.

第1実施例、第2実施例とも繊維含有率10〜60vo
1%のFRMの製造が可能であり、したがってFRMの
用途に応じ所望の特tII:(強度、熱膨張率)を有づ
るFRMを製造し得る。なお従来の製造方法による場合
の繊維含有率は10〜/′IOv。
Both the first example and the second example have a fiber content of 10 to 60 vo.
It is possible to manufacture FRM of 1%, and therefore, it is possible to manufacture FRM having desired characteristics tII: (strength, coefficient of thermal expansion) depending on the use of the FRM. In addition, the fiber content in the case of the conventional manufacturing method is 10~/'IOv.

1%I¥I廊である。It is 1%I¥I-ro.

また第1実施例の方法で製造したFRMの任意方向の曲
げ強度、熱膨張率は、最後に示す表のようであった。
Further, the bending strength in any direction and the coefficient of thermal expansion of the FRM manufactured by the method of the first example were as shown in the table shown at the end.

以上型するに本発明は、織IIt集合体に溶融した母材
金属を接触、浸透さゼ、その後該母材金属を固化させる
繊維強化金属複合材わlの製造方法に43いて、前記#
A維集合体は、繊維を前記母材金属よりも高融点の林料
のケースに圧密状態となるように収納して得ることを特
徴とづ−る413 llff強化金属複合材料の製造方
法である。
To summarize, the present invention provides a method for producing a fiber-reinforced metal composite material in which a molten base metal is brought into contact with a woven IIt aggregate, infiltrated therein, and then the base metal is solidified.
A method for producing a 413 llff reinforced metal composite material, characterized in that the A fiber aggregate is obtained by housing the fibers in a compacted state in a case of forest material having a higher melting point than the base metal. .

本発明の製造方法ににると、F RM中の繊キ11を等
方向かつ均一に配向づることができる。また、繊肩1念
右率の設定幅を従来よりも広げることかてさ、かつ繊維
含有率を高めることができる。またff意形状のF R
Mを製造づることがでいる。
According to the manufacturing method of the present invention, the fibers 11 in the FRM can be oriented in the same direction and uniformly. In addition, it is possible to widen the setting range of the fiber shoulder rate and increase the fiber content. Also, FF-shaped F R
It is possible to manufacture M.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は加圧成形装置の断面模式図、第2図(2機HM
3合体を収納部るケースの斜視図、第3図t、′A−1
−クレープ装置の断面模式図である。
Figure 1 is a schematic cross-sectional view of the pressure forming device, Figure 2 (2 machines HM
Perspective view of the case housing the three combinations, Figure 3 t, 'A-1
- A schematic cross-sectional view of the crepe device.

Claims (1)

【特許請求の範囲】 (1)繊組集合体に溶融したfl祠金屈を接触、浸透さ
せ、その後該母材金属を固化させる繊維強化金属複合材
料の製造方法において、 前記繊維集合体は、Ra帷を前記用材金属よりも高融I
jJの月利のケースに圧密状態となるように収納して行
ることを特徴とする繊維強化金属複合材料の製造方法。 (2> +W+記綴雑集合体は、4)11 titをケ
ースに収納した後ケースこと圧縮して一定形状に成形し
で織雑東合fホどづる特gTH請求の範囲第1Jfi記
載の製造方法。 (3)前記繊維を前記ケースに収納覆るに際し、繊維を
液状の有機バインダに分散させて収納し、イの後該右抑
バインタを熱分解重る特許請求の範囲第1項記載の製造
方法。 (/I)前記繊組は短繊紺である特許請求の範囲第1瑣
記載の製造方法。 (5)前記織組はυ之素織紺である特1′[請求の範囲
第1項記載の製造方法。 (6)前記右1幾バイングはポリビニルアルコール、[
ボキシ樹脂、メヂルセルロース、ポリプロピレンの1種
である特許請求の範囲第1項記載の一1l迄方法。
[Scope of Claims] (1) A method for producing a fiber-reinforced metal composite material, in which a molten fl abrasive is brought into contact with and permeated into the fiber aggregate, and then the base metal is solidified, wherein the fiber aggregate comprises: The Ra cloth has a higher melting point than the material metal mentioned above.
A method for manufacturing a fiber-reinforced metal composite material, characterized in that the material is stored in a compressed state in a JJ monthly case. (2> +W+Record miscellaneous aggregate is produced by storing 4) 11 tit in a case, compressing it into a certain shape, and manufacturing it according to claim 1 Jfi. Method. (3) The manufacturing method according to claim 1, wherein when storing and covering the fibers in the case, the fibers are dispersed in a liquid organic binder and then stored, and after (a), the binder is thermally decomposed. (/I) The manufacturing method according to claim 1 (d), wherein the fibers are short navy blue fibers. (5) The manufacturing method according to claim 1, wherein the weave is a navy blue weave. (6) The above-mentioned right number 1 is polyvinyl alcohol, [
11. The method according to claim 1, which is one of boxy resin, methylcellulose, and polypropylene.
JP5079483A 1983-03-25 1983-03-25 Production of fiber reinforced composite metallic material Pending JPS59177336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5079483A JPS59177336A (en) 1983-03-25 1983-03-25 Production of fiber reinforced composite metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5079483A JPS59177336A (en) 1983-03-25 1983-03-25 Production of fiber reinforced composite metallic material

Publications (1)

Publication Number Publication Date
JPS59177336A true JPS59177336A (en) 1984-10-08

Family

ID=12868701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5079483A Pending JPS59177336A (en) 1983-03-25 1983-03-25 Production of fiber reinforced composite metallic material

Country Status (1)

Country Link
JP (1) JPS59177336A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634032A (en) * 1986-06-23 1988-01-09 Mitsubishi Electric Corp Preform for producing fiber-reinforced metal and its production
JPH04103734A (en) * 1990-08-21 1992-04-06 Titan Kogyo Kk Sintered fibrous preform for manufacturing metal matrix composite
KR100643725B1 (en) 2004-01-29 2006-11-10 닛신 고오교오 가부시키가이샤 Metal composite material and method of producing the same
JP2008223133A (en) * 2007-02-14 2008-09-25 Makoto Yoshida Carbon fiber structure-containing preform, its production method, metal matrix composite material using the same, and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634032A (en) * 1986-06-23 1988-01-09 Mitsubishi Electric Corp Preform for producing fiber-reinforced metal and its production
JPH04103734A (en) * 1990-08-21 1992-04-06 Titan Kogyo Kk Sintered fibrous preform for manufacturing metal matrix composite
KR100643725B1 (en) 2004-01-29 2006-11-10 닛신 고오교오 가부시키가이샤 Metal composite material and method of producing the same
JP2008223133A (en) * 2007-02-14 2008-09-25 Makoto Yoshida Carbon fiber structure-containing preform, its production method, metal matrix composite material using the same, and method for producing the same

Similar Documents

Publication Publication Date Title
US8097336B2 (en) Methods and systems for manufacturing a structure having organized areas
DE68920267T2 (en) Process for the production of a composite material reinforced by ceramic.
US5588477A (en) Method of making metal matrix composite
KR101366721B1 (en) Improved method for preparation metal-matrix composite and device for implementing said method
US6254998B1 (en) Cellular structures and processes for making such structures
CN109228399A (en) A kind of integral formation method of same with thermosetting compound material chopped strand and continuous fiber
CN109049761A (en) Carbon fibre composite vacuum impregnation and hot-press solidifying forming method
JPS59177336A (en) Production of fiber reinforced composite metallic material
JPH01221228A (en) Method and device for manufacturing fiber-reinforced composite article
CN106282852B (en) A kind of low-temp liquid-phase sintering manufacturing process of hybrid metal fiber sintering felt serving
US7588179B2 (en) Bonding of carbon fibers to metal inserts for use in composites
JPS6046335A (en) Preparation of fiber reinforced metal composite material
DE2415868A1 (en) Porous compacts impregnated with molten metal under pressure - e.g. silicon nitride or carbon compacts impregnated with aluminium alloys
US5787960A (en) Method of making metal matrix composites
US20050260398A1 (en) Methods and systems for manufacturing a structure having organized areas
JPS58215263A (en) Production of composite material
JPS642471B2 (en)
JPS62161463A (en) Production of composite metallic material
CN114505466B (en) Electronic packaging material and preparation method and preparation device thereof
JP2000095586A (en) Composite material and its production
JPS61127836A (en) Manufacture of potassium titanate fiber reinforced metal material
JPH0456788B2 (en)
JPS5941428A (en) Manufacture of carbon fiber-reinforced composite metallic material
JPH03275268A (en) Manufacture of fiber reinforced metal strip
JPS62238062A (en) Production of fiber reinforced metallic composite material