JPS59177321A - Production of steel bar having excellent toughness - Google Patents

Production of steel bar having excellent toughness

Info

Publication number
JPS59177321A
JPS59177321A JP5199283A JP5199283A JPS59177321A JP S59177321 A JPS59177321 A JP S59177321A JP 5199283 A JP5199283 A JP 5199283A JP 5199283 A JP5199283 A JP 5199283A JP S59177321 A JPS59177321 A JP S59177321A
Authority
JP
Japan
Prior art keywords
less
steel
transformation point
rolling
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5199283A
Other languages
Japanese (ja)
Inventor
Fukukazu Nakazato
中里 福和
Yasuhiro Maehara
泰裕 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5199283A priority Critical patent/JPS59177321A/en
Publication of JPS59177321A publication Critical patent/JPS59177321A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce efficiently a steel bar having high toughness by subjecting a steel composed specifically of C, Si, Mn, sol.Al and Fe, etc. to specific rolling in a two phase region of austenite and ferrite after a heat treatment and cooling the rolled steel. CONSTITUTION:A steel which contains 0.02-0.17wt% C, <=0.7% Si, 0.6-2.0% Mn and 0.01-0.07% sol.Al, contains, if necessary, >=1 kind among <=0.01% La, <=0.01% Ce and <=0.01% Ca, or further contg. >=1 kind among <=0.50% Cu, <=0.5% Cr, <=3.0% Ni, <=0.20% Mo, <=0.15% V, <=0.10% Nb, <=0.10% Ti, and <=0.10% Zr, and consists of the balance Fe with inevitable impurities is heated to a temp. range of Ac3 transformation point-Ac3 transformation point +300 deg.C and thereafter the heated steel is subjected to rolling at >=40% cumulative draft in the two phase region of austenite and ferrite and at the draft after the even number pass counted from the final stand of 10-20% per pass. The rolled steel is allowed to cool or is forcibly cooled and a steel bar having excellent cryogenic strength and toughness is obtd.

Description

【発明の詳細な説明】 この発明(弓1、特に−320℃以下の極低温において
も高強度と高靭性とを保持する棒鋼の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for producing a bow 1, particularly a steel bar that maintains high strength and high toughness even at extremely low temperatures of -320°C or lower.

従来、例えば鉄筋コンクIJ −ト用棒鋼が、寒冷地や
極地の鉄筋コンク’J −ト構造物、鉄筋コンクリート
製の冷凍庫、さら(/c丁、NoやL ]) C+をは
じめとする液イヒガス用タンクなどに使用されているこ
とは良く知られているところであるが、これらの鉄筋は
いずれも、T工、S(+3112に定める規定により製
造されたものであり、かつ前記JIS規格(・ま常温又
はそれ以上の温度で使用される場合を想定して定められ
たものであるため、」二記のような極低温界囲気に曝さ
れた場合に強度不足や靭性不足を来たすものであった。
Conventionally, for example, steel bars for reinforced concrete IJ-to have been used for reinforced concrete structures in cold regions and polar regions, reinforced concrete freezers, and for liquid IHI gas such as C+. It is well known that these reinforcing bars are used in tanks, etc., but all of these reinforcing bars are manufactured according to the regulations specified in T-work, S (+3112), and are Because it was designed with the assumption that it would be used at temperatures above or above, it would lack strength and toughness when exposed to extremely low temperatures as described in Section 2 above.

そこで、近年、上記のような低温はもちろんのこと、極
低温に曝されても所定の高強度と高靭性七を保持する棒
鋼の研究・開発が行われるようになってきだが、未だ満
足する極低温特性を有する棒鋼は得られていないのが現
状である。
Therefore, in recent years, research and development has been carried out on steel bars that maintain specified high strength and high toughness even when exposed to extremely low temperatures, as well as the above-mentioned low temperatures. Currently, steel bars with low-temperature properties have not been obtained.

本発明者等は、上述のような観点から、上述のような極
低温の使用環境を十分にカバーするところの、特に−1
2()℃以下という極低温においても十分鋼足し得る高
強度と高靭性とを紐持する棒鋼を得べく、種々研究を重
ねた結果、 (11)  えJ象とする弁4を、 (“: (,1,02〜O,]、 ’7 % (以下、
成分割合を表ゎず%は11f幻%とする)。
From the above-mentioned viewpoint, the inventors of the present invention have developed a method, in particular -1, which sufficiently covers the above-mentioned extremely low temperature usage environment.
As a result of various studies in order to obtain a steel bar that has both high strength and high toughness that can be used even at extremely low temperatures of 2 () degrees Celsius or below, we have developed (11) Valve 4, which is based on the EJ concept. : (,1,02~O,], '7% (hereinafter,
Component ratios are not expressed (% is 11f illusory %).

j、;i : O,’? %以下、   Mn : 0
.6〜2.0 % 。
j,;i: O,'? % or less, Mn: 0
.. 6-2.0%.

5oAAI’、 :  O,Ol 〜0.07 % 。5oAAI': O, Ol ~ 0.07%.

を含有し、 Fe及び不可避不純物、残シ。Contains Fe and unavoidable impurities, residue.

から成る化学成分組成を有するものに特定し、この鋼に
A C3変態点〜[Ac3変態点+3oo℃〕の温度範
囲に加熱後、オーステナイト・フェライト2相域での累
積川下率が断面収縮率で40%以上であり、かつ最終孔
型スタンドから数えて偶数パス(2n:n−]〜4パス
)以降における川下率を各パス当り10〜20%とした
圧延を施し、その後放冷もしくは焼きの入らない範囲で
強制冷却すると、前記圧延の前工程の加熱によって初期
オーステナイト粒が微細化し、さらに前記圧延によって
、細粒オーステナイトからの変態によるフェライト粒の
微細化、及び未再結晶オーステナイトの加−1−゛によ
るフェライトへの変態核の増加作用にょるフェライト粒
の微al化が図られ、極めて微alな〔フェライト+パ
ーライト〕組織が14すられる上、」−記フエライトと
オーステナイトの2相戟での偶数回圧延によって4)I
異を集合組織が形成されて、セパレーション(シャルピ
ー衝撃試j険において現われる圧延面と平行な層状の割
れ)の形成改簡や、結晶力位分布に左づく靭性向上が図
られるため、イ4tられた所定寸法の棒鋼は一120℃
以下の極低温に曝されても極めて高い強度と優れた靭性
を保持していること、 (b)  上記のようにして棒鋼を製造する際、対象と
する鋼に所定量のCu、 Cr 、 Ni、 Mo、 
Y 、 Nb、’J)j、 。
After heating this steel to a temperature range of A C3 transformation point to [Ac3 transformation point + 3oooC], the cumulative downstream rate in the austenite-ferrite two-phase region is determined by the cross-sectional shrinkage rate. 40% or more, and rolled with a downstream ratio of 10 to 20% in each pass after an even number of passes (2n:n-] to 4 passes counting from the final hole stand, and then allowed to cool or bake. When forced cooling is performed within a range where the temperature does not fall, the initial austenite grains are refined by heating in the pre-rolling process, and further, by the rolling, ferrite grains are refined by transformation from fine-grained austenite, and unrecrystallized austenite is added. - The ferrite grains are made finer by the action of increasing the number of transformation nuclei into ferrite, and an extremely fine [ferrite + pearlite] structure is created. 4) I by rolling an even number of times
A different texture is formed, which improves the formation of separations (layered cracks parallel to the rolling surface that appear in the Charpy impact test) and improves toughness based on the crystal stress distribution. Steel bars of specified dimensions are heated to -120°C.
(b) When producing a steel bar as described above, a predetermined amount of Cu, Cr, or Ni is added to the target steel. , Mo,
Y, Nb,'J)j, .

及びZrの1種以−七を含有させると、その強度及び靭
性が更に向上すること、 (C)上記(a)項及び(b)項に記載した鋼に、さら
に所定量のLa、、 Ce及びCaの1種以上を含有せ
しめて上記(a)項に示した処理を施すと、その靭性が
一層向1−すること、 以上(a)〜(C)に示す如き知見をイiするに至った
のである。
and Zr, the strength and toughness of the steel are further improved; Based on the findings shown in (a) to (C) above, if one or more of Ca and Ca is contained and the treatment shown in item (a) above is applied, the toughness is further improved. It has come to this.

この発明は、上記知見に基づいてなされたもので、 C: 002〜O]7係、  Si:0.7係以下。This invention was made based on the above knowledge, C: 002 to O] 7 sections, Si: 0.7 sections or less.

Mn : Q、 6〜2.0%、  sol、AQ :
 0.01〜0.07 %。
Mn: Q, 6-2.0%, sol, AQ:
0.01-0.07%.

を含有するとともに、必要に応じて 1−+8. : O,O]、 %以T’−+   Ce
 : 0.01 %以下。
and, if necessary, 1-+8. : O, O], % or more T'-+ Ce
: 0.01% or less.

Ca:0.01%以下。Ca: 0.01% or less.

のうちの1種以−トを含み、あるいは更に、Cu:0.
50%以下、   Cr:05%以下。
Cu:0.
50% or less, Cr: 05% or less.

N j、 ’、 3.0係以下、    Mo:0.2
0係以下。
N j, ', 3.0 or less, Mo: 0.2
Below section 0.

V : 0.15%以下、   Nb : 0.10チ
以下。
V: 0.15% or less, Nb: 0.10% or less.

”J’i: O,] O係以下、   Zr : 0.
10%以下。
"J'i: O,] Section O and below, Zr: 0.
Less than 10%.

のうちの]9種以上をも含有し、 Ti’e及び不可避不純物:残り。Contains 9 or more types of Ti'e and unavoidable impurities: Remaining.

から成る成分組成の鋼を、A C3変態点〜[: AC
3変態点−1−300℃〕の温度範囲に加熱した後、オ
ーステナイト・フェライト2相域での累積圧下率が断1
ni収縮率で4.0係以上、かつ最終孔型スタンドから
数えて偶数パス(2n:n−1〜4)以降における川下
率を各パス当910〜20%とした圧延を施し、次いで
これを放冷もしくは強制冷却することによって、−12
0℃以下という極低温に曝されても極めて高い強度と優
れた靭性を保持する棒鋼を得る点に特徴を有するもので
ある。
A steel with a composition consisting of A C3 transformation point ~ [: AC
3 transformation point -1-300℃], the cumulative reduction rate in the austenite-ferrite two-phase region was 100%.
Rolling was performed with a coefficient of ni shrinkage of 4.0 or more and a downstream rate of 910 to 20% for each pass after even passes (2n: n-1 to 4) counting from the final hole stand, and then this was carried out. -12 by cooling or forced cooling
This method is characterized in that it provides a steel bar that maintains extremely high strength and excellent toughness even when exposed to extremely low temperatures of 0° C. or lower.

次に、この発明の方法において、対象とする鋼の成分組
成、及び処理条件を」二記のように限定した理由を説明
する。
Next, in the method of the present invention, the reason why the composition of the target steel and the processing conditions are limited as described in "2" will be explained.

ム、鋼の成分組成 ■ C C成分には、棒鋼に所定の強度を付与する作用があるが
、その含有量が002チ未満では前記作用に所望の効果
が得られず、他方0]7、係を越えて含有させると靭性
低下を来たすようになることから、その含有量を002
〜0.17%と定めた。
Component composition of steel ■ C The C component has the effect of imparting a certain strength to the steel bar, but if its content is less than 0.02 mm, the desired effect cannot be obtained; If the content exceeds 0.02%, the toughness will decrease, so
It was set at ~0.17%.

■ 5i Si成分には、鋼の脱酸作用及び強化作用があるが、0
.7係を越えて含有させると靭性低下が著しくなること
から、その上限値を07%と定めた。
■ 5i Si component has deoxidizing and strengthening effects on steel, but 0
.. If the content exceeds 7%, the toughness will be significantly lowered, so the upper limit was set at 0.7%.

  Mn Mn成分には、鋼の素地に固溶してこれを同溶強化し、
かつ結晶粒を微細化して強度及び靭性を向上させる作用
が°あるが、その含有量が0.6%未満では前記作用に
所望の効果が得られず、他方2゜係を越えて含有させる
と靭性及び溶接性が劣化するようになることから、その
訝有量を06〜2゜係と定めた。。
Mn The Mn component is solid dissolved in the base steel and strengthened as a solid solution.
It has the effect of refining crystal grains and improving strength and toughness, but if the content is less than 0.6%, the desired effect cannot be obtained, and on the other hand, if the content exceeds 2° Since toughness and weldability begin to deteriorate, the degree of doubt was set at 06 to 2 degrees. .

■   sOl、  八C 5ot、heC成分は優れた細粒、化作用があるが、そ
の含有量が0.01チ未満では所望の細粒化を図ること
ができず、他方、0.07%を越えて含有させると非金
属介在物の量が急激に増加して鋼の靭性を劣化するよう
になることから、その含有量を0.0]〜007係と定
めた。
■ The sOl, 8C 5ot, and heC components have excellent grain refining and oxidizing effects, but if their content is less than 0.01%, the desired grain refining cannot be achieved; If the content exceeds that amount, the amount of nonmetallic inclusions will rapidly increase and the toughness of the steel will deteriorate, so the content was set at 0.0 to 007.

■ La 、 Ce 、  及びCa これらの元素は、A系介在物を球状化し、延性域での衝
撃値を向上させる作用があるので、靭性のより一層の向
上が図られる場合に必要によ91種以上添加されるもの
であるが、いずれも0.01チを越えて添加するとその
効果が飽和するばかυでなく、逆に介在物量が増加して
衝撃値を劣化さぜることとなるので、それらの上限を0
01チと定めた。
■ La, Ce, and Ca These elements have the effect of spheroidizing A-based inclusions and improving the impact value in the ductile region, so they are necessary when further improvement of toughness is desired. However, if more than 0.01 inch is added, the effect will not be saturated, but on the contrary, the amount of inclusions will increase and the impact value will deteriorate. set their upper limit to 0
It was set as 01chi.

また、Cu、Or 、 Ni、、Ma 、  V 、 
Nb、T]、及びZrの各元素は、鋼の衝撃値を改善す
るか、少なくとも衝撃値の劣化が少なくて強度を上昇さ
せる元素であるので、特により一層の強度が必要な場合
に制御以上添加されるものである。そして、これらの元
素の添加量に制限を加えたのは、次の理由によるもので
ある。
Also, Cu, Or, Ni, Ma, V,
The elements Nb, T], and Zr are elements that improve the impact value of steel, or at least increase the strength with less deterioration of the impact value. It is added. The reason why the amount of these elements added is limited is as follows.

■ Cu r:υは、衝撃値の劣化をはとんど伴うことなく強度を
上昇させるものであるが、0.50%、を越えて含有さ
ぜると鋼材の表面割れ発生の問題を生ずるので、その含
有量を05%以下と定めだ。
■Cu r:υ increases the strength without deteriorating the impact value, but if it is contained in excess of 0.50%, it will cause surface cracking of the steel material. Therefore, the content is set at 0.5% or less.

■ N1 Niは、衝撃値の改善に有効であるばかりでなく、強度
をも上昇させるものであるが、その含有量が3.0’%
を越えても格別顕著な向上効果がみられず、また経済的
見地からも、その上限を30%と定めた。
■N1 Ni is not only effective in improving impact value but also increases strength, but its content is 3.0'%.
Even if it exceeds the above limit, no particularly significant improvement effect is observed, and from an economic standpoint, the upper limit has been set at 30%.

σp  Cr crも、銅相の強度向上に有効な元素であるが、0.5
チを越えて含有させると溶接性を劣化するので、その上
限を05%と定めた。
σp Cr cr is also an effective element for improving the strength of the copper phase, but 0.5
Since weldability deteriorates if the content exceeds 0.05%, the upper limit was set at 0.5%.

■ M O MOも、Crと同様に銅相の強度向上作用を有する元素
であるが、その含有ヨが0.20%を越えると溶接性を
劣化させるので、上限を0.20%と定めた。
■ MO, like Cr, is an element that improves the strength of the copper phase, but if its content exceeds 0.20%, weldability deteriorates, so the upper limit was set at 0.20%. .

■ V 、 Nb、 ’I”i 、及びZrこれらの元
素は、いずれもそれぞれの炭窒化物の本1出によって銅
材の強度を」−昇させるものであるが、■が01,5%
を、そしてNb、Ti及びZrがそれぞれO,]、 O
%を越えて含有されると、強度上昇効果が飽和し、ベイ
ナイト組織になって靭性劣化を招くことから、■の上限
をO,]、 5係、Nb、Ti及びZrの」−眼をそれ
ぞれ0.10%と定めた。
■ V, Nb, 'I''i, and Zr These elements all increase the strength of copper material by their respective carbonitrides, but ■ is 01.5%.
and Nb, Ti and Zr are respectively O, ], O
If the content exceeds 5%, the strength increasing effect will be saturated and a bainite structure will result, leading to deterioration of toughness. Therefore, the upper limit of It was set at 0.10%.

B、処理条件 φ)加熱温度 加熱温度がA c 3変態点未満では均一にして微細他
方、〔AC3変態点+300℃〕を越えた温度に加熱す
ると粒成長が著しくなって所定の細粒化を図ることがで
きないので、細粒化のだめの加熱温度をAc3変態点〜
[AC3変態点+300℃〕と定めた。
B. Processing conditions φ) Heating temperature If the heating temperature is lower than the A c3 transformation point, the grains will be uniform and fine, but if heated to a temperature exceeding [AC3 transformation point + 300°C], the grain growth will be significant and the grains will not be refined to the desired size. Since it is not possible to achieve the desired temperature, the heating temperature for refining the grain should be set to the Ac3 transformation point.
[AC3 transformation point + 300°C] was determined.

■ 圧延条件 フェライトとパーライトの微細組織と集合組織の制御に
よって所望の高強度、高靭性を得るためには、断面減少
率で示される〔フェライト+オーステナイト〕域での累
積圧下率が40%以上必要であり、特に、セパレーショ
ンの発生、を促進シ、結晶方位分布が圧延方向と垂直な
断面のへき開破壊の進展を困難にするような集合組織を
発達させてなおかつ相料の圧延方向回9の異方性を少な
くするだめには、孔型圧延の最終パスから数えて偶数回
の強圧下を加える必要がある。
■ Rolling conditions In order to obtain the desired high strength and toughness by controlling the microstructure and texture of ferrite and pearlite, the cumulative reduction rate in the [ferrite + austenite] region, which is indicated by the area reduction rate, must be 40% or more. In particular, the occurrence of separation is promoted, the crystal orientation distribution develops a texture that makes it difficult to develop cleavage fracture in a cross section perpendicular to the rolling direction, and the difference in the rolling direction of the phase material is In order to reduce the orientation, it is necessary to apply strong reduction an even number of times counting from the final pass of groove rolling.

セパレーションの発生は平面応力状態を実現するので、
組織の微細化によって得られる作用と合わせてシャルピ
ー衝撃試験での破面遷移温度を著しく低下させる。そし
て、セパレーションの発生にdl、かかる低温圧延で形
成される集合組織と密接に関係することが、鋼板の場合
について知られてはいるか、棒鋼の場合についてはこれ
まで報告例が見当らない33 そこで、本発明者等は集合組織と圧延条件との関係を詳
細かつ系統的に調べて、靭性の向上に対して集合組織の
発達が重要な意味をもつことを発見したのであるが、そ
の詳細は以下の如くである。
Since the occurrence of separation realizes a plane stress state,
Combined with the effect obtained by refining the structure, it significantly lowers the fracture surface transition temperature in the Charpy impact test. Is it known in the case of steel sheets that the occurrence of separation is closely related to the texture formed by such low-temperature rolling?33 So far, no reports have been found in the case of steel bars33. The present inventors investigated the relationship between texture and rolling conditions in detail and systematically, and discovered that the development of texture has an important meaning in improving toughness.The details are as follows. It's like this.

即ち、フェライトとオーステナイトの2相域圧延によっ
て、棒調圧′jL利には、銅板と異なる( j、 OO
l (OO]、 ) (但し、()は用下面と平行な而
、〈〉は圧延方向と平行な方向を意味する)集合組織ど
、銅板と同様な(1]、 1 )〜(211)(O]、
 ]、 )の< 1− OC1’)回りの回転系列の2
つの集合組織が著しく発達するが、これは、棒鋼の場合
、圧延面が圧延方向回りに回転し、例えばオーバル/ラ
ウンド方式の圧延では圧延面と垂直な方向が各パス4U
に圧延方向回りに90°ずつ回転することになるためで
あり、かかる状況下で圧延されだ棒鋼に発生ずるセパレ
ーションは(]−001面に平行となるので、十文字に
多数発生することになる。加えて、かかる低温圧延にお
いては、各結晶粒が圧延方向に著しく伸展し、圧延方向
と垂直な面のへき開破壊よりも圧延面と平行な(100
1而に沿う割れの方がより容易に伝播し易くなる。
That is, due to rolling in the two-phase region of ferrite and austenite, the bar pressure adjustment 'jL is different from that of copper plate (j, OO
l (OO], ) (However, () means parallel to the lower surface, <> means parallel to the rolling direction) Similar texture to copper plate (1], 1) to (211) (O),
], ) of the rotation series around <1-OC1')
This is because, in the case of steel bars, the rolling surface rotates around the rolling direction, and for example, in oval/round rolling, the direction perpendicular to the rolling surface is 4U in each pass.
This is because the rolled steel bar is rotated by 90° around the rolling direction under such circumstances, and the separations that occur in the rolled steel bar are parallel to the (]-001 plane, so a large number of separations occur in a cross pattern. In addition, in such low-temperature rolling, each crystal grain extends significantly in the rolling direction, and cleavage fractures parallel to the rolling surface (100
Cracks along one axis propagate more easily.

また、混在する(110)方位群は、セパレーションの
発生をより容易にするのである。
Moreover, the mixed (110) orientation group makes it easier to generate separation.

パス回数を最終孔型スタンドから数えて偶数回とするの
は、上記集合組織の発達に伴う異方性を少なくするため
であり、パス当シの圧下率を]0〜20%としたのは、
該圧下率がコ0係未満ではr9F望の集合組織の形成が
困難であり、一方20係を越える圧下率は設備或いは操
業上の困難を伴うことになるとの理由からである。
The reason why the number of passes is an even number counting from the final hole mold stand is to reduce the anisotropy caused by the development of the texture described above, and the rolling reduction ratio of the passes is set to 0 to 20%. ,
This is because if the rolling reduction ratio is less than 0 parts, it is difficult to form the desired texture, while if the rolling reduction ratio exceeds 20 parts, it will be accompanied by equipment or operational difficulties.

なお、上記圧延工程を経た棒鋼は放冷又は強制冷却され
るが、この場合、焼きが入るような強制冷却は鋼の靭性
を劣化するので好ましくない。調料組織は、微細な〔フ
ェライト+パーライト〕組絨とすることが望ましい。
Note that the steel bar that has undergone the above-mentioned rolling process is allowed to cool or is forcedly cooled, but in this case, forced cooling that causes hardening is not preferable because it deteriorates the toughness of the steel. The preparation structure is preferably a fine [ferrite + pearlite] aggregate.

捷/こ、圧延路r後−)1.冷却され/こYk、4−+
Jひ鋼のl\・・1変態点以下の温度に焼戻しをしても
、何らこの発明の効果を消失するもので1二ない、。
After the rolling process -) 1. Cooled/Yk, 4-+
Even if J steel is tempered to a temperature below the 1 transformation point, the effects of this invention will not be lost in any way.

次いて、この発明を実施例により比較例占対比しながら
説明する。
Next, the present invention will be explained with reference to examples and comparative examples.

実施例 ]、 まず、通常の溶解法によって第1表に示される如き成分
組成の鋼を溶製し、これより150mmφのビレットを
製造し/こ。
Example] First, steel having the composition shown in Table 1 was melted by a normal melting method, and a billet of 150 mmφ was manufactured from the steel.

次いで、得られた各ビレットに、第2表に示す如き加熱
・圧延条件のオーバル/ラウンド方式多段圧延を施し、
直径、30籠の棒鋼を製造した。
Next, each of the obtained billets was subjected to oval/round multi-stage rolling under the heating and rolling conditions shown in Table 2.
A steel bar with a diameter of 30 cages was manufactured.

なお、第1表及び第2表における※印は、成分組成又は
処理条件が本発明の範囲から外れていることを示すもの
である。
Note that the * mark in Tables 1 and 2 indicates that the component composition or processing conditions are outside the scope of the present invention.

続いて、得られた各棒鋼について、引張り試験。Next, each obtained steel bar was subjected to a tensile test.

シャルピー衝撃試験1紀織観察、並びに集合組織の測定
を行った。
Charpy impact test, observation of primary weave, and measurement of texture were performed.

引張り試験では、X(/−行線が8朋φ×40m1の九
棒平’/’f?試験片を圧延方向と平行に振散し、常温
引張りにおける引張強さ、降伏点、及び伸ひを測定し、
シャルピー衝撃試験では、1T I 84号試験片を引
張試験片と同様に圧延方向と平行に採取し、破面遷移温
度及び−120℃におけるVノツチ吸収エネルギーをそ
れぞれ測定するとともに、破断した破面のセパレーンヨ
ン発生状況を観察した。
In the tensile test, nine bar flat '/'f? measure,
In the Charpy impact test, a 1T I 84 test piece was taken parallel to the rolling direction in the same way as the tensile test piece, and the fracture surface transition temperature and V-notch absorbed energy at -120°C were measured, and the fracture surface was measured. The occurrence of separation was observed.

寸だ、組織観察では、02係ナイタールで爬食後の試料
を光学顕微鏡で観某したほか、組織が微細なものについ
ては走査型電子顕微鏡を用いて詳細に観察し、フェライ
トの平均結晶粒径とパーライトコロニーの寸法を求めた
In order to observe the structure, in addition to using an optical microscope to observe the sample after being eaten with 02 Nital, we also used a scanning electron microscope to observe the fine structure in detail, and determined the average crystal grain size of the ferrite. The dimensions of pearlite colonies were determined.

集合組織の測定においては、圧延方向と垂直な1面と平
行に薄膜を作成し、coKam#を使用することによっ
て、同−試料にS h u l t、 Zの反射法と1
)eckerの透過法を併用し、全極点図を求めた。
To measure the texture, a thin film was created parallel to one plane perpendicular to the rolling direction, and by using coKam#, the same sample was subjected to Shult, Z reflection method and 1.
) Ecker's transmission method was used in combination to obtain all pole figures.

これらの試験における測定結果を第2表に併せて示した
The measurement results in these tests are also shown in Table 2.

第2表に示される結果からも、本発明の条件に従ってj
j(’!造された棒鋼は、いずれも高強度及び高イ・y
月lIgを有し、特に−]220℃下の極低温において
も極めて優れた靭性を示すことが明らかである。
From the results shown in Table 2, it is clear that according to the conditions of the present invention,
j('!The manufactured steel bars have high strength and high i・y
It is clear that the material has extremely high toughness, especially at extremely low temperatures below -]220°C.

これに対して、本発明の条件から外れた比較法によって
製造された棒鋼は、これらの性能が劣っている。即ち、
比較法1によって製造されたものは圧延前の加熱温度が
高く、オーステナイト粒が粗大化してその後の圧延によ
ってもフェライトの細粒化が十分に行われなかったため
に、−120℃での衝撃エネルギー吸収値は低くなって
いる。
On the other hand, steel bars manufactured by a comparative method that does not meet the conditions of the present invention are inferior in these properties. That is,
For those manufactured by Comparative Method 1, the heating temperature before rolling was high, the austenite grains became coarse, and the subsequent rolling did not sufficiently refine the ferrite grains, resulting in poor impact energy absorption at -120°C. The value is low.

寸だ、比較法4及び9にて製造されたものは、破面遷移
温度は低いが、圧延時のオーバルとラウンド圧延での圧
下比が異なるために、いずれか圧下面ト平行なセパレー
ションが極めて容易に起り、−120℃での衝撃吸収エ
ネルギー値が低い。比較法5にて製造されたものは1パ
ス当りの圧下率が10%未満のバスがあるため一120
℃での衝撃吸収エネルギーが低い。そして、比較法lO
及び11にて製造されたものは2相域での川下が十分で
ないためにフェライトの細粒化が十分に行われず、集合
組織の発達も不十分であり、高い破面遷移温度を示して
いる。
The fracture surface transition temperatures of the products manufactured using Comparative Methods 4 and 9 are low, but due to the difference in the rolling reduction ratio between oval and round rolling, the separation parallel to either rolling surface is extremely difficult. It occurs easily and the impact absorption energy value at -120°C is low. The product manufactured by Comparative Method 5 has a rolling reduction rate of less than 10% per pass, so
Low impact absorption energy at °C. And the comparative method lO
and No. 11, the downstream in the two-phase region is not sufficient, so the ferrite grains are not refined sufficiently, the texture is insufficiently developed, and the fracture surface transition temperature is high. .

」二連のように、この発明によれば、−120℃以下と
いう極低温においても、高い強度と優れた靭性とをイノ
1ぜ待った棒鋼を能率良く製造することができるなど、
工業上有用な効果がもたらされるのである。
'' According to this invention, it is possible to efficiently produce steel bars with high strength and excellent toughness even at extremely low temperatures of -120°C or lower.
Industrially useful effects are brought about.

出願人  住友金属工業株式会社Applicant: Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】 (])  C: 0.02〜017チ。 Si、’0.7φ以下。 Mn : 0.6〜2.0 %。 sot、AC: 0.01〜O,O’7 % 。 を含有するとともに、必要に応じて、 1、a : 0.01係以下。 C4〕’、 0.01%以下。 Ca:0.01係以下。 のりもの1種以上を含み、 1(e及び不可避不純物、残り。 から成る成分組成(以上重量係)の鋼を、AC3変態点
〜〔ΔC3変態点十二500℃〕の温度範囲に加熱した
後、オーステナイト・フェライト2相域でフ)累積圧下
率が断面収縮率で40%以上、かつ最盾冬孔型スタンド
から数えて偶数バス(2n:n=1〜4)以後における
圧下率を各パス当りlO〜2()係とした圧延を施し、
次いでこれを“放冷もしくは強制冷却・することを特徴
とする、靭性の優れた棒鋼の製造方法。 (2)  C: 0.02−一〇、17%。 Sl : O,’7%以下。 Mn : 0.6〜2.0%。 snl、 AQ : 0.01〜0.07%。 を含有するとともに、さらに、 Cu:050%以下。 Cr:0.3%以下。 Iす] 30係以下。 Ivlo:0.20%以下。 V:0.15%以下。 Nb:0.10係以下。 ’I’i:0.10%以下。 Zr:0.10%以下。 のうちの1種以上を含み、かつ必要に応じて、■・80
01係以下。 (づC:O,O] チ以]包 Ca:0.0 j 係ノン1色 のうちの1種板−]二をも含有し、 ■パe及び不可避不純物:残り。 から成る成分組成(以上車量%)の鋼を、Ac3変態点
〜CAcy、変態点+3oo℃〕の温度範囲に加熱した
後、オーステナイト・フェライト2相域での累積圧下率
が断面収縮率で40係以上、かつ最終孔型スタンドから
数えて偶数パス(2n: n = 1〜4)以降におけ
る圧下率を各パス当り10〜20%とした圧延を施し、
次いでこれを放冷もしくは強制冷却することを特徴とす
る、靭性の優れた44鋼の製造方法。
[Claims] (]) C: 0.02 to 017 chi. Si, '0.7φ or less. Mn: 0.6-2.0%. sot, AC: 0.01-O, O'7%. 1.a: 0.01 or less. C4]', 0.01% or less. Ca: 0.01 or less. After heating a steel having a composition (by weight) of 1 (e and unavoidable impurities, the remainder) containing one or more types of vehicles to a temperature range of AC3 transformation point to [ΔC3 transformation point 12,500°C], In the austenite-ferrite two-phase region, the cumulative rolling reduction is 40% or more in cross-sectional shrinkage, and the rolling reduction after an even number of baths (2n: n = 1 to 4) counting from the most shielded winter hole type stand is calculated for each pass. Rolled to a ratio of lO~2(),
A method for manufacturing a steel bar with excellent toughness, characterized in that the steel bar is then allowed to cool or is forced to cool. (2) C: 0.02-10, 17%. Sl: O, 7% or less. Contains Mn: 0.6 to 2.0%. SNL, AQ: 0.01 to 0.07%, and further contains: Cu: 050% or less. Cr: 0.3% or less. Section 30 The following. Ivlo: 0.20% or less. V: 0.15% or less. Nb: 0.10% or less. 'I'i: 0.10% or less. Zr: 0.10% or less. One of the following. Including the above, and as necessary, ■・80
Section 01 and below. (Z C: O, O] Ca: 0.0 After heating the steel (Ac3 transformation point to CAcy, transformation point +3oo℃) to a temperature range of Ac3 transformation point to CAcy, transformation point +3oo℃], the cumulative reduction ratio in the austenite-ferrite two-phase region is 40 coefficients or more in cross-sectional shrinkage ratio, and the final Rolling was carried out with the rolling reduction rate in each pass after an even number of passes (2n: n = 1 to 4) counting from the hole stand to 10 to 20%,
A method for producing 44 steel with excellent toughness, which is then allowed to cool or is forced to cool.
JP5199283A 1983-03-28 1983-03-28 Production of steel bar having excellent toughness Pending JPS59177321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5199283A JPS59177321A (en) 1983-03-28 1983-03-28 Production of steel bar having excellent toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5199283A JPS59177321A (en) 1983-03-28 1983-03-28 Production of steel bar having excellent toughness

Publications (1)

Publication Number Publication Date
JPS59177321A true JPS59177321A (en) 1984-10-08

Family

ID=12902345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5199283A Pending JPS59177321A (en) 1983-03-28 1983-03-28 Production of steel bar having excellent toughness

Country Status (1)

Country Link
JP (1) JPS59177321A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164823A (en) * 1986-01-16 1987-07-21 Nippon Steel Corp Production of reinforcing steel bar having excellent low temperature toughness
JPH0320407A (en) * 1989-06-19 1991-01-29 Kobe Steel Ltd Method for preventing oxidation of grain boundary in high strength cold-rolled steel sheet
JP2014009367A (en) * 2012-06-28 2014-01-20 Kyoei Steel Ltd Bar steel for reinforcement used for stud welding
CN106623425A (en) * 2016-12-20 2017-05-10 中南大学 Method for reducing edge cracks during rolling of aluminum-titanium composite panels
CN110343962A (en) * 2019-07-26 2019-10-18 马鞍山钢铁股份有限公司 A kind of 700Mpa grades or more hot-rolled ribbed high tensile reinforcement steel and its production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164823A (en) * 1986-01-16 1987-07-21 Nippon Steel Corp Production of reinforcing steel bar having excellent low temperature toughness
JPH0320407A (en) * 1989-06-19 1991-01-29 Kobe Steel Ltd Method for preventing oxidation of grain boundary in high strength cold-rolled steel sheet
JP2014009367A (en) * 2012-06-28 2014-01-20 Kyoei Steel Ltd Bar steel for reinforcement used for stud welding
CN106623425A (en) * 2016-12-20 2017-05-10 中南大学 Method for reducing edge cracks during rolling of aluminum-titanium composite panels
CN106623425B (en) * 2016-12-20 2018-04-13 中南大学 A kind of method for reducing aluminium titanium composite panel material rolled edge and splitting
CN110343962A (en) * 2019-07-26 2019-10-18 马鞍山钢铁股份有限公司 A kind of 700Mpa grades or more hot-rolled ribbed high tensile reinforcement steel and its production method

Similar Documents

Publication Publication Date Title
CA2601052C (en) High-tensile steel plate, welded steel pipe or tube, and methods of manufacturing thereof
CA2731908C (en) Thick-walled high-strength hot rolled steel sheet with excellent low-temperature toughness and method for producing same
JP5278188B2 (en) Thick steel plate with excellent resistance to hydrogen-induced cracking and brittle crack propagation
CA2602728C (en) High-strength steel plate, method of producing the same, and high-strength steel pipe
KR101594664B1 (en) High carbon steel sheet and method for manufacturing the same
WO2021109439A1 (en) Hic-resistant and large deformation-resistant pipeline steel and preparation method therefor
CN111886354B (en) High-strength steel sheet having excellent ductility and hole expansibility
JP3379355B2 (en) High-strength steel used in an environment requiring sulfide stress cracking resistance and method of manufacturing the same
CN113699439B (en) Steel for low-yield-ratio ultrahigh-strength continuous oil pipe and manufacturing method thereof
JP3817887B2 (en) High toughness high strength steel and method for producing the same
JPS59177321A (en) Production of steel bar having excellent toughness
JPH1088280A (en) Steel sheet for structural purpose excellent in brittle fracture resistance after plastic deformation and its production
CN108642390B (en) High-strength thick steel plate with thickness direction performance Z of 35-50% and production method thereof
CN114086084A (en) Hot-rolled dual-phase steel and preparation method thereof
CA3093397C (en) Low alloy third generation advanced high strength steel and process for making
KR100431849B1 (en) Method for manufacturing medium carbon wire rod containing high silicon without low temperature structure
JPS63203721A (en) Production of hot rolled steel sheet having excellent hydrogen induced cracking resistance and stress corrosion cracking resistance
KR100328037B1 (en) A Method for Manufacturing High Strength Hot Rolled steel Sheet Having Low Yield Ration
CN110331332A (en) It is a kind of to produce the super thick pipe part steel plate used under condition of ultralow temperature and its manufacturing method with DQ substitution hardening and tempering process
JPH07242944A (en) Production of sour resistant high strength steel plate having excellent low temperature toughness
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
KR100431848B1 (en) Method for manufacturing high carbon wire rod containing high silicon without low temperature structure
JP7367896B1 (en) Steel plate and its manufacturing method
KR101507943B1 (en) Line-pipe steel sheet and method for manufacturing the same
JP2019026927A (en) Thick steel sheet and manufacturing method of thick steel sheet