JPS59177317A - Manufacture of supertough steel - Google Patents

Manufacture of supertough steel

Info

Publication number
JPS59177317A
JPS59177317A JP5151183A JP5151183A JPS59177317A JP S59177317 A JPS59177317 A JP S59177317A JP 5151183 A JP5151183 A JP 5151183A JP 5151183 A JP5151183 A JP 5151183A JP S59177317 A JPS59177317 A JP S59177317A
Authority
JP
Japan
Prior art keywords
toughness
steel
ductility
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5151183A
Other languages
Japanese (ja)
Other versions
JPH0454724B2 (en
Inventor
Seikichi Yamada
山田 誠吉
Koichiro Tada
光一郎 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP5151183A priority Critical patent/JPS59177317A/en
Publication of JPS59177317A publication Critical patent/JPS59177317A/en
Publication of JPH0454724B2 publication Critical patent/JPH0454724B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si

Abstract

PURPOSE:To manufacture a supertough steel having high strength, superior ductility and toughness as well as especially superior drawability and rupture toughness by quenching a high Si tough steel contg. aspecified amount of Si from a proper temp. and by properly tempering it. CONSTITUTION:A high Si tough steel consisting of, by weight, 1.8-3.0% Si, about 0.25-0.55% C, about 0.35-1.0% Mn, about 0.6-1.2% Cr, about 0.15-1.2% Mo, about 0.001-0.01% Ca and the balance Fe with impurities is quenched from 890-1,150 deg.C which is higher than a conventional temp., and it is properly tempered to obtain a super-tough steel. Said high Si tough steel may further contain about 0.3-4.0% Ni and/or about 0.0005-0.02% B, one or more among about 0.01-0.2% Ti, about 0.01-0.3% Nb+Ta and about 0.05-0.3% V, and one or more among Cu, Pb, Se and Te.

Description

【発明の詳細な説明】 この発明は、高強度でかつ延性ならびに靭性に揚れ、と
くに絞りおよU−破壊靭性値に優れた超強靭鋼の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ultra-strong steel that has high strength, ductility and toughness, and particularly excellent drawing and U-fracture toughness values.

近年、航空機や自動車等の輸送機器においては、その加
速性等の運行性能や燃費等の経済性を?、−hめるため
に、航空機用部品(例えばランディングキャ)や自動車
用部品(例えばパワートレーン系の部品)なとの、ji
、g Flf化がとりわけ要求されるようになってきて
おり、そのため、引張強さが160 kgf / rr
+m2級以−1−の高強度鋼の採用が進められてきてい
る。この場合、上記部品の素材としては、高強度と同時
に十分な延性ならひに靭性を兼備したものが要求される
が、従来の鋼種では上記延性ならひに靭性の点で未だ十
分であるとはいえなかった。
In recent years, transportation equipment such as aircraft and automobiles has become more and more important in terms of operational performance such as acceleration and economic efficiency such as fuel consumption. In order to improve
, g FlF is particularly required, and therefore the tensile strength is 160 kgf/rr.
The use of high-strength steel of +m2 class or higher is being promoted. In this case, the material for the above-mentioned parts is required to have both high strength and sufficient ductility and toughness, but with conventional steel types, the above-mentioned ductility and toughness are still sufficient. I couldn't say that.

そこで、本出願人は、従来の多11種よりもさらに高強
度でかつ十分な延性ならひに靭性を兼(mii Lだ超
強靭鋼を開発して、すでに特許出願を行った(特開昭5
7−41354号公報掲載)。この超強靭鋼は、従来の
鋼種に比べて高強度でかつ十分な延性ならひに靭性を備
えたものであり、一応の評価を得ることができたが、本
発明者らはこれよりもさらに改善をはかり、高強度でか
つ十分な延性ならひに靭性を具備し、とくに高強度に調
質したときの横方向の絞り値および破壊靭性値の債れた
iを開発することを目的として種々の実験研究を積み重
ねた結果、この発明を完成するに至った。
Therefore, the present applicant has developed an ultra-strong steel that has even higher strength than the conventional 11 types and has sufficient ductility and toughness, and has already filed a patent application (Japanese Patent Application Laid-Open No. 5
Published in Publication No. 7-41354). This ultra-strong steel has higher strength and sufficient ductility and toughness than conventional steel types, and has been able to gain some acclaim, but the inventors have We have developed a variety of steels with the aim of developing high strength steels with sufficient ductility and toughness, and especially high lateral reduction of area and fracture toughness values when tempered to high strength. As a result of repeated experimental research, this invention was completed.

すなわち、この発明は、重量%で、1.8〜3.0%の
Siを含有する高Si系強靭鋼を通常行われるよりも高
い890〜1150°Cの温度から焼入れたのち適宜焼
もどしすることにより超強’tA tl!lを製造する
ことを特徴としている。
That is, in this invention, a high-Si type strong steel containing 1.8 to 3.0% Si by weight is quenched at a temperature of 890 to 1150°C, which is higher than that normally performed, and then appropriately tempered. By the way, super strong 'tA tl! It is characterized by producing l.

この発明が適用される鋼は、Siを1.8〜3.0%含
含量する高Si系の高強度鋼であり、具体的な化パを成
分としては、例えば、型部%で、C:0.25−0.5
5%、Si:1.8〜3.0%、M n : 0 、3
5−1 、0%、Cr:0.6−1.2%、Mo+0.
15〜1.2%、Ca0.001〜0.01%を基本成
分とし、必要に応じて、Ni:0.3〜4.0%、B:
0.0005〜0.02%のうちの1種または2種、お
よびT i : O、Ol〜0.2%、Nb+Ta :
 0 、01−0 、3%、V:0.05〜0.3%の
うちの1!I8または2種以−に、その他Cu 、Pb
 、Se 、Teの1種以上を含有し、残部Feおよび
不純物よりなるものである。そして、このような高強度
と同時に十分な延性ならびに靭性をそなえ、とくに高強
度に調質したときの横方向の絞すイ174および破壊靭
性値をさらに改善するために、不純物中において、S≦
0.005%、0≦0.0015%に規制することによ
って好ましくない介在物昂を減少させ、Caの添加によ
って酸化物系と硫化物系の球形状複合介在物を作るよう
にした錆に適用することができる。そして、この発明で
ほこのように成分調整したg−を通常行われるよりも高
い890〜1150°Cの温度から焼入れし、その後適
宜焼もどしを行うようにしたところに4寺徴を有してい
る。
The steel to which this invention is applied is a high-Si type high-strength steel containing 1.8 to 3.0% Si. :0.25-0.5
5%, Si: 1.8-3.0%, Mn: 0, 3
5-1, 0%, Cr:0.6-1.2%, Mo+0.
15-1.2%, Ca0.001-0.01% as basic components, Ni: 0.3-4.0%, B:
One or two of 0.0005 to 0.02%, and Ti: O, Ol to 0.2%, Nb+Ta:
0, 01-0, 3%, V: 1 of 0.05-0.3%! I8 or 2 or more, other Cu, Pb
, Se, and Te, with the remainder being Fe and impurities. In order to provide such high strength and sufficient ductility and toughness at the same time, and further improve the lateral constriction and fracture toughness values when tempered to particularly high strength, S≦
0.005%, 0≦0.0015% to reduce undesirable inclusion accumulation, and the addition of Ca creates spherical composite inclusions of oxide and sulfide.Applicable to rust. can do. In this invention, G- whose composition has been adjusted in this way is quenched at a temperature of 890 to 1150°C, which is higher than the usual temperature, and then tempered as appropriate, which has four characteristics. There is.

次に、この発明が適用される超強靭鋼のより好ましい化
学成分範囲(重量%)について説りJする。
Next, a more preferable chemical composition range (wt%) of ultra-strong steel to which this invention is applied will be explained.

Cは、0.25%未満では十分な焼入れ性ならひに強度
を確保する上で十分でなく、055%を超えると延性な
らひに靭性の劣化が大きくな5ので、0.25〜0,5
5%の範囲とするのがより望ましい。
If C is less than 0.25%, it is not sufficient to ensure sufficient hardenability or strength, and if it exceeds 0.55%, the deterioration of ductility or toughness will be significant. 5
A range of 5% is more desirable.

Siは、延性ならびに靭性なさほど損なうことなく強度
を上昇させるため、および低温焼もとし脆性を避けるた
めに添加する元素であるが、1.8%未満ではこような
効果か十分でなく、3.0%を超えると延性ならひに靭
性の劣化が著しくなるので、1.8〜3.0%の範囲と
する必要がある。
Si is an element added to increase strength without significantly impairing ductility and toughness, and to avoid low-temperature tempering brittleness, but if it is less than 1.8%, this effect is not sufficient; If it exceeds .0%, the deterioration of ductility and toughness becomes significant, so it is necessary to keep it in the range of 1.8 to 3.0%.

Mnは、0.35%未満では焼入性向上の効果か小さく
、1.0%を超えると特に顯著な利点はなく、むしろ鋼
の延性ならひに靭性を害するので、0.35〜1,0%
の範囲とするのがより望ましい。
If Mn is less than 0.35%, the effect of improving hardenability is small, and if it exceeds 1.0%, there is no particular advantage, and if anything, the ductility of the steel is adversely affected. 0%
It is more desirable to set it within the range of .

Crは、焼入性の向上に有効な元素であるが、0.6%
未満では」二記焼入性の向上が十分でなく、1.2%を
超えると高強度に調質した場合に鋼の延性ならびに靭性
がむしろ劣化するので、0.6〜1.2%の範囲とする
のがより望ましい。
Cr is an element effective in improving hardenability, but at 0.6%
If it is less than 0.6% to 1.2%, the improvement in second hardenability will not be sufficient, and if it exceeds 1.2%, the ductility and toughness of the steel will deteriorate when tempered to high strength. It is more desirable to have a range.

Moは、焼入性の向」二と延性ならびに靭性の敗色に必
要な元素であるが、0.15%未満ではその効果か十分
でなく、1.2%を超えるとその効果がかえって小さく
なり、また高価となるので、0.15〜1.2%の範囲
とするのがより望ましCaは、脱硫および介在物球状化
に必要な元素であり、Ca添加によって酸化物系と硫化
物系の球形状複合介在物を作る。すなわち、添加された
Caは酸硫化物を作り、Pf造および再溶解萌(より好
ましくは真空再溶解時)に浮上分魔トシ、また再溶解後
(より好ましくは真空再溶解後)に残留した介在物を球
状化させて、鋼の延性ならひに靭性を向トさせる。しか
しながら、0.001%未満では上記した効果が小さく
、001%を超えると介在物が多くなり、鋼の延性なら
ひに靭性か劣化するので、0.001〜0.01%の範
囲とするのがより望ましい。
Mo is an element necessary for improving hardenability and discoloring ductility and toughness, but if it is less than 0.15%, the effect is not sufficient, and if it exceeds 1.2%, the effect becomes smaller. , and is expensive, so it is more desirable to keep the content in the range of 0.15 to 1.2%. Create spherical composite inclusions. That is, the added Ca forms oxysulfides, which float during Pf formation and re-melting (more preferably during vacuum re-melting), and remain after re-melting (more preferably after vacuum re-melting). It makes the inclusions spheroidal and improves the toughness compared to the ductility of steel. However, if it is less than 0.001%, the above effect will be small, and if it exceeds 0.001%, inclusions will increase and the ductility of the steel will deteriorate, so it should be in the range of 0.001 to 0.01%. is more desirable.

さらに、上記の基本成分のほかに、Ni、BあるいはT
i、Nb、Ta、Vのうちの1種以上を適宜含有させる
ことができる。
Furthermore, in addition to the above basic components, Ni, B or T
One or more of i, Nb, Ta, and V can be contained as appropriate.

これらのうち、NiおよびBは、焼入性の向」二に有効
であるが、これらの元素を含有させる場合には、Ni:
0.3〜4.0%、B:であると焼入性の向上および延
性ならびに靭性の敗色の効果が小さく、4.0%を超え
ると上記効果か顕メてなくなり、高価なものとなるため
に記の範囲とすることが望ましい。また、Bは0.00
05%未満では焼入性向」―の効果が小さくなり、0.
02%を超えても上記効果が小さくなると共に高温割れ
の原因ともなるので」二記の範囲とすることが望ましい
Among these, Ni and B are effective in improving hardenability, but when these elements are included, Ni:
If it is 0.3 to 4.0%, B: the effect of improving hardenability and discoloration of ductility and toughness will be small, and if it exceeds 4.0%, the above effects will not be noticeable and it will become expensive. Therefore, it is desirable to keep the range as described below. Also, B is 0.00
If it is less than 0.05%, the effect of "hardening tendency" will be small;
If it exceeds 0.02%, the above-mentioned effect will be reduced and it will also cause hot cracking, so it is desirable to keep it in the range shown in 2.

また、Ti、Nb、Ta、Vは結晶粒の微細化に有効で
あるが、これらの元素を含有させる場合には、Ti:o
、01〜0.2%、Nb+Ta:0.01〜0.3%、
V:0.05〜0.3%の1挿JJ、 lを添加するの
がより望ましい。この場合、T1は0.01%未満では
結晶粒微細化の効果か小さく、02%を超えると鋼の清
浄度および靭性が著しく低下するので上記の範囲とする
ことか望ましい6NbおよびTaは合計て0.01%未
満では結晶あr微細化の効果ならひに靭性向上の効果が
小さく、0.3%を超えると炭窒化物が多くなって靭性
が劣化するので上記の範囲とすることが望ましい。さら
に、■は0.05%未満では結晶ね微細化と焼入性向」
−の効果が小さく、0.3%を超えるとかえって焼入性
を低下するので上記の範囲とすることが望ましい。
Furthermore, Ti, Nb, Ta, and V are effective for refining crystal grains, but when these elements are included, Ti:o
, 01-0.2%, Nb+Ta: 0.01-0.3%,
V: It is more desirable to add 0.05 to 0.3% of JJ, l. In this case, if T1 is less than 0.01%, the effect of grain refinement will be small, and if it exceeds 0.02%, the cleanliness and toughness of the steel will decrease significantly, so it is preferable to keep it within the above range. If it is less than 0.01%, the effect of improving grain toughness due to grain refinement will be small, and if it exceeds 0.3%, carbonitrides will increase and toughness will deteriorate, so it is desirable to keep it within the above range. . Furthermore, if ■ is less than 0.05%, crystal grain refinement and hardening tendency will occur.
The effect of - is small, and if it exceeds 0.3%, the hardenability will deteriorate, so it is desirable to keep it in the above range.

さらに、不純物中において、Sは0.005%を超える
と、Caによる延性ならひに靭性の改善をはかったとし
ても十分な延性ならひに靭性を得ることができない。し
たがって、Sは0.005%以下の極微量にすることが
より望ましい。
Furthermore, if S exceeds 0.005% among the impurities, even if the ductility and toughness are improved by Ca, sufficient ductility and toughness cannot be obtained. Therefore, it is more desirable to keep S in a very small amount of 0.005% or less.

また、不純物中のO含有量が多いと介在物量が増大し、
鋼の延性ならひに靭性を害するので、0.0015%以
下とすることがより望ましい。
In addition, when the O content in impurities is high, the amount of inclusions increases,
Since it impairs the toughness of steel, it is more desirable to keep it at 0.0015% or less.

そのほか、強度および耐食性向上のためにCuを添加し
、被削性向上のためにPb 、 Se 。
In addition, Cu is added to improve strength and corrosion resistance, and Pb and Se are added to improve machinability.

Te、Biの1種以上を含有させても良い。One or more of Te and Bi may be contained.

なお、脱酸剤としてAMを使用する場合には、脱酸およ
び結晶粒微細化のために、0.01〜0.04%の範囲
で含有させるのも良い。すなわち、0.01%未満では
上記の効果が小さく、0.04%を超えると高強度に調
質した場合の延性ならひに靭性が劣化することによる。
In addition, when AM is used as a deoxidizing agent, it may be contained in a range of 0.01 to 0.04% for deoxidizing and grain refinement. That is, if it is less than 0.01%, the above effect is small, and if it exceeds 0.04%, the ductility and toughness deteriorate when tempered to high strength.

このような化学成分の鋼を調質する場合、従来の考え力
では通常820〜880 ’Cの温度から焼入れを行い
、適宜な温度で焼もどしをして使用されている。そして
、この調質後には、一応の高強度および優れた延性なら
びに靭性を有する強靭鋼をイliることができるが、本
発明者らはなおも特性の向−1−をはかるためにさらに
熱処理条件について種々検3、Jシた結果、とくにSi
を1.8〜3.0%含有する高Si系強靭鋼においては
、通常行われている1晶jflよりもさらに高い890
〜1150°Cの温度から焼入れたのち適宜焼もどしを
行うことにより、耐力および引張強さを低下させること
なく、絞すイfiおよび破壊靭性値を著しく向」二でき
ることを新たに見出した。ここで、焼入温度が890°
Cよりも低いと従来と同程度の延性および靭性しかvj
ることができず、1150℃を超えると破壊靭性値は白
玉するものの仲ひおよび絞り値が(氏上するので好まし
くない。
When refining steel with such chemical composition, the conventional thinking is that it is usually quenched at a temperature of 820 to 880'C and tempered at an appropriate temperature before use. After this tempering, it is possible to obtain a tough steel with high strength and excellent ductility and toughness. As a result of various tests on conditions, especially Si
In high-Si type strong steel containing 1.8 to 3.0% of 890
It has been newly discovered that by quenching from a temperature of ~1150°C and then appropriately tempering, the drawing strength and fracture toughness can be significantly improved without reducing yield strength and tensile strength. Here, the quenching temperature is 890°
If it is lower than C, the ductility and toughness are only the same as before.
If the temperature exceeds 1150° C., the fracture toughness value will become flat, but the diameter and aperture value will increase, which is not preferable.

なお、この発明の製造方法における焼入れの際の冷却速
度は、婬加元素邦による鋼の焼入性に応じて適宜選定す
ることが望ましく、例えば、水焼入れ、油焼入れ、衝風
焼入れ、空冷gか行われる。
The cooling rate during quenching in the manufacturing method of the present invention is desirably selected appropriately depending on the hardenability of the steel. For example, water quenching, oil quenching, blast quenching, air cooling or will be done.

以下、実施例によりさらに具体的に説明する。Hereinafter, this will be explained in more detail with reference to Examples.

表1に示す化学成分の鋼を溶製したのち造塊および鍛造
し、直径170mmのイノI試材を製造した。
Steel having the chemical composition shown in Table 1 was melted, then ingot-formed and forged to produce an Inno I sample material with a diameter of 170 mm.

次いで、各供試材の172半径の部分から引張試験片お
よび破壊靭性試験片を作成し、各試験片に対して表2に
示す各焼入温度に1時間保持したのちその温度から油焼
入れし、続いて一73°C×1時間の条件でサブゼロ処
理を行ったのち、表2に丞す各位もどじ温度で2時間保
持後空冷を2回繰り返して焼もどしを行った。
Next, tensile test pieces and fracture toughness test pieces were prepared from a 172-radius section of each specimen, and each test piece was held at each quenching temperature shown in Table 2 for 1 hour, and then oil quenched from that temperature. Subsequently, after subzero treatment was performed under the conditions of -73°C x 1 hour, each sample listed in Table 2 was tempered by holding at the same temperature for 2 hours and air cooling twice.

次に、調質後の各試験片の引張特性および破壊靭性値を
調べたところ、表2に示す結果が得られた。
Next, the tensile properties and fracture toughness values of each test piece after tempering were examined, and the results shown in Table 2 were obtained.

表1および表2に示すように、従来の焼入温度範囲であ
る850〜870℃から焼入れだもので6寸、一応高強
度と同時に十分な延性ならびに靭性を有しているが、−
に記温度よりも高い本発明に規定する890〜1150
°Cの温度から焼入れ1.た場合には、高強度と同時に
十分な延性ならびに靭性を右しているうえに、特に高強
度に調質したときても延性の指標となる絞り値および靭
性の指標となる破壊靭性(iCiが各々著しく改善され
ていることが明らかである。しかし、1150°Cを超
えた場合には伸びおよび絞りが極端に低下していること
か明らかである。
As shown in Tables 1 and 2, those quenched from the conventional quenching temperature range of 850 to 870 degrees Celsius have high strength and sufficient ductility and toughness, but -
890 to 1150 as specified in the present invention, which is higher than the temperature specified in
Quenching from a temperature of °C 1. In this case, it not only has high strength but also sufficient ductility and toughness, and even when tempered to a particularly high strength, the reduction of area, which is an index of ductility, and the fracture toughness, which is an index of toughness, are It is clear that each is significantly improved.However, when the temperature exceeds 1150°C, it is clear that the elongation and the area of area are extremely reduced.

以−1−説明してきたように、この発明によれば、1.
8〜30重量%のSiを含有する超強靭鋼を製造するに
あたり、前記鋼を通常の温度よりも高い890〜115
0°Cの温度から焼入れたのち適宜焼もどしすることに
より、高強度と同時に十分な延性および靭性を有し、と
くに高強度に調質したときでも従前の超強靭鋼よりもさ
らに優れた絞り(+fiおよび破壊靭性値を具備した超
強靭鋼を製造することが可能であり、このような超強靭
鋼を素材として航空機用部品(特にランチインクギヤ材
に好適)や自動車用部品などを製作すれば、これらの部
品の高強度・化および高靭性化をはかることが可能であ
り、部品の軽量化および高寿命化も実現することか可能
である。
As explained below-1-, according to the present invention, 1.
In producing ultra-strong steel containing 8 to 30% by weight of Si, the steel is heated to a temperature of 890 to 115% higher than normal temperature.
By quenching from a temperature of 0°C and then appropriately tempering, it has high strength and sufficient ductility and toughness, and even when tempered to a high strength, it has an even better drawing capacity than conventional ultra-strong steels. It is possible to manufacture ultra-strong steel with +fi and fracture toughness values, and if such ultra-strong steel is used to manufacture aircraft parts (particularly suitable for launch ink gear materials) and automobile parts, etc. It is possible to increase the strength and toughness of these parts, and it is also possible to reduce the weight and extend the lifespan of these parts.

特許出願人  大同特殊鋼株式会社 代理人弁理士 小  塩  豊Patent applicant: Daido Steel Co., Ltd. Representative Patent Attorney Yutaka Shio

Claims (1)

【特許請求の範囲】[Claims] (1)i;−%で、1.8〜3.0%のSiを含有する
高Si系強靭鋼を890〜1150℃の温度から焼入れ
たのち適宜焼もどしすることを特徴とする超強靭鋼の製
造方法。
(1) Ultra-strong steel characterized by i;-%, high Si-based strong steel containing 1.8 to 3.0% Si, quenched at a temperature of 890 to 1150°C, and then appropriately tempered. manufacturing method.
JP5151183A 1983-03-29 1983-03-29 Manufacture of supertough steel Granted JPS59177317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5151183A JPS59177317A (en) 1983-03-29 1983-03-29 Manufacture of supertough steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5151183A JPS59177317A (en) 1983-03-29 1983-03-29 Manufacture of supertough steel

Publications (2)

Publication Number Publication Date
JPS59177317A true JPS59177317A (en) 1984-10-08
JPH0454724B2 JPH0454724B2 (en) 1992-09-01

Family

ID=12889024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5151183A Granted JPS59177317A (en) 1983-03-29 1983-03-29 Manufacture of supertough steel

Country Status (1)

Country Link
JP (1) JPS59177317A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034070A1 (en) * 2012-08-31 2014-03-06 Jfeスチール株式会社 Steel for reinforcing bars, and reinforcing bar

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121718A (en) * 1978-03-14 1979-09-21 Nec Corp Write-read circuit of magnetic memory device
JPS5741354A (en) * 1980-08-27 1982-03-08 Daido Steel Co Ltd Superhigh strength steel
JPS586923A (en) * 1981-07-07 1983-01-14 Aichi Steel Works Ltd Production of spring steel of high resistance to permanent set in fatigue

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121718A (en) * 1978-03-14 1979-09-21 Nec Corp Write-read circuit of magnetic memory device
JPS5741354A (en) * 1980-08-27 1982-03-08 Daido Steel Co Ltd Superhigh strength steel
JPS586923A (en) * 1981-07-07 1983-01-14 Aichi Steel Works Ltd Production of spring steel of high resistance to permanent set in fatigue

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034070A1 (en) * 2012-08-31 2014-03-06 Jfeスチール株式会社 Steel for reinforcing bars, and reinforcing bar

Also Published As

Publication number Publication date
JPH0454724B2 (en) 1992-09-01

Similar Documents

Publication Publication Date Title
JP3233188B2 (en) Oil-tempered wire for high toughness spring and method of manufacturing the same
US4878955A (en) Process for preparing a high strength stainless steel having excellent workability and free form weld softening
US5286312A (en) High-strength spring steel
KR20050105281A (en) Steel wire for high strength spring excellent in workability and high strength spring
US5288347A (en) Method of manufacturing high strength and high toughness stainless steel
JPH0853714A (en) Shaft parts for machine structural use excellent in torsional fatigue strength
JPH0253506B2 (en)
JPH0253505B2 (en)
JPS61238941A (en) Untempered steel for hot forging
JPS59177317A (en) Manufacture of supertough steel
JPH0133543B2 (en)
JP4209513B2 (en) Martensitic stainless steel annealed steel with good strength, toughness and spring properties
JPS644578B2 (en)
JPS6130653A (en) High strength spring steel
JPS60114551A (en) High strength bolt steel
JPH05279788A (en) Non-heattreated steel for hot forging excellent in strength and toughness
JP2576857B2 (en) High strength non-tempered tough steel
JPS637351A (en) Body material for metal band saw
JPS5974221A (en) Production of high strength seamless steel pipe
JP2563164B2 (en) High strength non-tempered tough steel
DE10062282B4 (en) Heat-resistant cast steel and process for its production
JP3446394B2 (en) Precipitation hardening stainless steel
JPH0569884B2 (en)
JPS60218460A (en) High tension cast steel
JP3783306B2 (en) Suspension spring steel with excellent delayed fracture resistance