JPS59177130A - Vacuum vapor deposition method - Google Patents

Vacuum vapor deposition method

Info

Publication number
JPS59177130A
JPS59177130A JP5032583A JP5032583A JPS59177130A JP S59177130 A JPS59177130 A JP S59177130A JP 5032583 A JP5032583 A JP 5032583A JP 5032583 A JP5032583 A JP 5032583A JP S59177130 A JPS59177130 A JP S59177130A
Authority
JP
Japan
Prior art keywords
evaporation material
hearth
evaporation
vapor deposition
conductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5032583A
Other languages
Japanese (ja)
Other versions
JPS621470B2 (en
Inventor
Yuichi Mikata
見方 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Science & Tech Agency
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Science & Tech Agency
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Science & Tech Agency, Agency of Industrial Science and Technology filed Critical Science & Tech Agency
Priority to JP5032583A priority Critical patent/JPS59177130A/en
Publication of JPS59177130A publication Critical patent/JPS59177130A/en
Publication of JPS621470B2 publication Critical patent/JPS621470B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To enhance productivity by accelerating the accumulation speed of a thin membrane, in vacuum vapor deposition, by filling the gap between a hearth part and an evaporation material with a heat conductive member having a m.p. lower than that of the evaporation material. CONSTITUTION:In performing vacuum vapor deposition, the gap between an evaporation material 1 such as a silicon ingot and a hearth part 14 is filled with a heat conductive member 4 comprising In or Ga having a m.p. extremely lower than that of the evaporation material 1. A molten liquid part 2 is formed to the upper central part of the evaporation material 1 to perform vapor deposition. In this case, the heat of the solid part of the vapor deposition material is transferred to the hearth part 14 through the heat conductive member 4 to perform heating and vapor deposition. By this method, the accumulation speed of a thin membrane can be accelerated and productivity can be enhanced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高純度の物質の蒸着に係り、特に高純度、高融
点の物質の分子線エビタクシ−(Mo1ecular 
Beam Epitaxy )も可能な真空蒸着方法の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to the vapor deposition of high-purity substances, and particularly to molecular beam epitaxy of high-purity, high-melting-point substances.
Beam Epitaxy) also relates to improvements in possible vacuum deposition methods.

〔発明の技術的背景〕[Technical background of the invention]

近年、真空技術の発展と相俟って超高真空中での薄膜形
成が可能(こなっている。この超高真空中での薄膜型成
は金属あるいは非金属の小片を加熱蒸発させて、例えば
、ガラス、水晶板等の表面(こ薄膜として凝着させる蒸
着や、金属あるいは非金属の小片を加熱蒸発させ、中性
分子からなる粒子線を作って結晶を成長させる分子線エ
ビタクシ−等がある。本明細書ではこれらを総称して真
空蒸着と言う。
In recent years, along with the development of vacuum technology, it has become possible to form thin films in an ultra-high vacuum. Thin film formation in an ultra-high vacuum involves heating and evaporating small pieces of metal or non-metal. Examples include vapor deposition, which deposits a thin film on the surface of glass, quartz plates, etc., and molecular beam epitaxy, which heats and evaporates small pieces of metal or non-metal to create particle beams made of neutral molecules to grow crystals. In this specification, these are collectively referred to as vacuum evaporation.

一般に、分子線エビタクシ−は半導体の製造に用いられ
ることが多いが、周知の如く、半導体(こ結晶を成長さ
せる場合、分子線を高純度に保たなければならず、この
ためには高純度の蒸発材料を用いることの他、溶融状態
の蒸発材料を収容する容器の組成物が蒸発材料中に拡散
し難いものを用いなければならない。
Generally, molecular beam epitaxy is often used in the production of semiconductors, but as is well known, when growing semiconductor crystals, the molecular beam must be kept at a high purity. In addition to using an evaporation material of 100%, the composition of the container containing the molten evaporation material must be such that it is difficult to diffuse into the evaporation material.

しかして、比較的低融点のガリウム(Ga )、ヒ累(
八&)、アルミニウム(At)の分子線を得るにはその
容器としてP −B N (Pyroritic −B
oron N1telide )法によるクヌーセンセ
ル(Knudsen Ce1l )  が用いらnてい
る。このクヌーセンセルは耐熱性が低いので、融点の高
いケイ素(Si)(以下シリコンとも言う)の分子線を
得る(ζはシリコンインゴットの上方中央部分に融液部
を形成し、シリコンインゴット自体をるつぼとする手法
が採られる。
However, gallium (Ga), which has a relatively low melting point,
8), to obtain a molecular beam of aluminum (At), use P-B N (Pyroritic-B
A Knudsen cell (Knudsen Cell) based on the OronNtelide method was used. Since this Knudsen cell has low heat resistance, a molecular beam of silicon (Si) (hereinafter also referred to as silicon) with a high melting point is obtained (ζ is a molten liquid part formed in the upper central part of the silicon ingot, and the silicon ingot itself is placed in a crucible). This method is adopted.

この融液部の形成をこけ、例えば加速電子像によって衝
撃加熱するEガ・ンが使用される。
To avoid the formation of this melt, for example, an E-gun is used which performs impact heating using an accelerated electron image.

第1図はケイ素等の高融点の蒸発材料に部分的な融液部
を形成する加熱系の概念図で、第2図はEガンの要部の
構成を示す斜視図である。
FIG. 1 is a conceptual diagram of a heating system for forming a partial melt in an evaporation material with a high melting point such as silicon, and FIG. 2 is a perspective view showing the configuration of the main parts of an E gun.

ここで、Eガン10は架台11の内部に′電子線を放射
するフィラメント11、この電子線を適切な方向に向け
る偏向コイル13等が配置され、架台11の上面には図
示しない冷却器によって強制冷却されるハース部14が
設けら、nている。
Here, the E gun 10 is equipped with a filament 11 that emits an electron beam, a deflection coil 13 that directs the electron beam in an appropriate direction, etc. inside a pedestal 11. A hearth portion 14 to be cooled is provided.

このハース部14にはるつぼの底部形状に類似した渾み
15が設けられ、ここに塊状の蒸発材料としてのシリコ
ンインゴット1が装填されている。このとき、シリコン
インゴット1もまた、るつぼの底部形状に似せて作られ
、上方端部を除く他の外表面ができるだけ多く、窪み1
5の内面に接触する如くなされる。
This hearth portion 14 is provided with a recess 15 similar to the bottom shape of a crucible, into which a silicon ingot 1 as a bulk evaporation material is loaded. At this time, the silicon ingot 1 is also made to resemble the bottom shape of the crucible, with the other outer surface as much as possible except for the upper end, and the depression 1
It is made so as to contact the inner surface of 5.

しかして、フィラメント11より放射される電子線16
を図示しない加速系によって加速させると同時に、偏向
コイルI3によって電子線16を偏向せしめて、電子線
16をシリコンインゴット1の上方中央部分なこ集中的
(こ衝突させると、この部分が加熱される。一方、シリ
コンインゴット1の下底面および側面は強制冷却される
ハース部14に接触しているため、表面部の熱が奪われ
ること(こなる。すなわち、シリコンインゴット1は上
方中央部で加熱される一方、下底面および側面より冷却
されるため、電子線16による流入熱fit Q t 
とハース部14に奪われる熱11とが適切な状態で平衡
したとき、インゴット1の上方中央部分(こ融液部2を
形成することができる。
Therefore, the electron beam 16 emitted from the filament 11
is accelerated by an acceleration system (not shown), and at the same time, the electron beam 16 is deflected by the deflection coil I3 so that the electron beam 16 collides intensively with the upper central part of the silicon ingot 1, thereby heating this part. On the other hand, since the lower bottom and side surfaces of the silicon ingot 1 are in contact with the hearth part 14 that is forcibly cooled, the heat from the surface part is removed (that is, the silicon ingot 1 is heated in the upper central part). On the other hand, since it is cooled from the bottom and side surfaces, the inflow heat from the electron beam 16 fit Q t
When the heat 11 absorbed by the hearth portion 14 and the heat 11 are balanced in an appropriate state, the upper central portion of the ingot 1 (the melt portion 2 can be formed).

この場合、シリコンインゴット1がるつほの役目をする
ことから、シリコンインゴット1の温度を高めるだけで
、るつぼの組成等チこ影響を受けることのない、高純度
の薄膜の形成が可能になる。
In this case, since the silicon ingot 1 acts as a crucible, simply by increasing the temperature of the silicon ingot 1, it is possible to form a highly pure thin film that is not affected by the composition of the crucible. .

〔背景技術の問題点〕[Problems with background technology]

斯かる従来の、分子線エビタクシ−を含めた真空蒸着法
にあっては、熱の伝導効率石よび融液の取扱いの利便さ
を考慮して、一般(こ使用さnるるつほの内面形状(若
しくは外面形状)に合わせて絆み15およびシリコンイ
ンゴット1の形状を決定しており、両者が予定された領
域の全体に亘って均等に接触しておれば、少なくともシ
リコンインゴット1の上方中央部に融液部2を形成させ
ることができる。
In conventional vacuum evaporation methods including molecular beam taxis, the inner surface shape of the general The shapes of the bond 15 and the silicon ingot 1 are determined according to the (or external shape), and if they are in even contact over the entire planned area, at least the upper central part of the silicon ingot 1 The melt portion 2 can be formed in the following manner.

しかしながら、この両者は共(こ三次元の曲面を有する
ことから、確実な面接触を図ることが難しく、これらの
間の熱伝導率は平面部を相互に接触させる場合に比べて
、かなり低いものであった。
However, since both of these have three-dimensional curved surfaces, it is difficult to achieve reliable surface contact, and the thermal conductivity between them is considerably lower than when flat parts are in contact with each other. Met.

このため、インゴット全体の温度が上昇するととも(こ
融液部が拡がって側方(ここぼれ落ちることになり、結
局、電子線の形で導入される電力量が低く抑さえられて
いた。
For this reason, as the temperature of the entire ingot rises, the melt spreads and falls from the sides, and as a result, the amount of electricity introduced in the form of electron beams is kept low.

このことを、数式を用いてさら(こ説明する。This will be further explained using mathematical formulas.

先ず、電子線の衝突(こよって発生する熱量をQ□、ハ
ース部に奪われる熱量をQ2とすわば次式が成立する。
First, if the amount of heat generated by the collision of the electron beam is Q□, and the amount of heat taken away by the hearth portion is Q2, the following equation holds true.

Q1= 61(Tt  Tt)  ・・・・・(1)Q
z = 6t (Tt  Ts )  ・・・・・(2
)ただし、 61:インゴットおよびハース部間の熱伝導率 6、:インゴットの熱伝導率 T1 :電子線照射部の温度 Ttaインゴットの表面部の温度 T、:ハース部の温度 である。
Q1= 61(Tt Tt) ・・・・・・(1)Q
z = 6t (Tt Ts) (2
) However, 61: Thermal conductivity between the ingot and the hearth part 6, : Thermal conductivity of the ingot T1 : Temperature Tta of the electron beam irradiation part Temperature T of the surface part of the ingot, : Temperature of the hearth part.

次に、熱の平衡状態をこあってはQ□=Q2 が成立す
るので、上記(1) 、 (2)式は次のように変形さ
孔る0 ここで、インゴットオよびハース部間の熱伝導率6Iが
インゴットの熱伝導率よりも小さく、したがって、6+
<6x であるとき次式が成立する。
Next, when the thermal equilibrium state is established, Q□=Q2 holds, so the above equations (1) and (2) are transformed as follows. Thermal conductivity 6I is smaller than that of the ingot, therefore 6+
<6x, the following equation holds true.

(’r、−’rt) □く1・・・・・(4) (Tz   Ts) この(4)式はインゴット自体の温度差(T、−T2)
が少ないことを意味すると同時に、融液のこぼn洛ちを
防ぐには電子線照射部の温度T1を低く抑えなければな
らないことを意味している。
('r, -'rt) □ku1...(4) (Tz Ts) This equation (4) is the temperature difference (T, -T2) of the ingot itself.
This means that the temperature T1 of the electron beam irradiation section must be kept low in order to prevent the melt from spilling or falling.

一方、融液部からの蒸発速度は電子線照射部の温度T、
が高い程大きく、その分だけ薄膜の堆積速度を増し得る
ものであるが、上述したように電子線照射部の温度T1
に制限を受けると、薄膜の堆積速度も低くなり、こnが
生産性を向上させ得ない原因になっていた。
On the other hand, the evaporation rate from the melt part is determined by the temperature T of the electron beam irradiation part,
The higher the value, the larger the value, and the deposition rate of the thin film can be increased accordingly, but as mentioned above, the temperature T1 of the electron beam irradiation part
Due to this limitation, the deposition rate of the thin film also becomes low, which is the reason why productivity cannot be improved.

ンゴットおよびハース部間の熱伝導率の低さに起因して
、電子線照射部の温度が制限され、これ(こよって薄膜
の堆積速度が低く抑さえられて了うという欠点があった
Due to the low thermal conductivity between the gold and hearth parts, the temperature of the electron beam irradiation part is limited, which has the disadvantage that the deposition rate of the thin film is kept low.

〔発明の目的〕[Purpose of the invention]

本発明は上記の欠点を除去するためになされたもので、
薄膜の堆積速度を著しく大きくし得、これによって生産
性の向上を図り得る真空蒸着方法の提供を目的とする。
The present invention has been made to eliminate the above-mentioned drawbacks.
The object of the present invention is to provide a vacuum deposition method that can significantly increase the deposition rate of a thin film and thereby improve productivity.

〔発明の概要〕[Summary of the invention]

この目的を達成するために、本発明は、強制冷却される
ハース部の窪みに、塊状の蒸発材料を装填し、前記ハー
ス部から露出する前記蒸発材料の上方中央部分に融液部
を形成して蒸着を行う真空蒸着方法において、前記ハー
ス部と蒸発材料との間隙(こ該蒸発材料よりも融点が格
段(こ低い伝熱性部材を充填し、該伝熱性部材を介して
前記蒸発材料の固形部の熱を前記ハース部(こ伝導せし
めて加熱および蒸着を行うことに特徴を有するものであ
る。
In order to achieve this object, the present invention charges a lump of evaporative material into the recess of a hearth part to be forcibly cooled, and forms a melt part in the upper central part of the evaporative material exposed from the hearth part. In a vacuum evaporation method in which the gap between the hearth part and the evaporation material is filled with a heat conductive member whose melting point is much lower than that of the evaporation material, the solid state of the evaporation material is It is characterized in that heat from the hearth section is conducted to the hearth section for heating and vapor deposition.

〔発明の実施例〕[Embodiments of the invention]

以下、添付図面を参照して本発明を一実施例について説
明する。
Hereinafter, one embodiment of the present invention will be described with reference to the accompanying drawings.

第3図は本発明を実施する加熱系の概念図で第1図と同
一の符号を付したものはそれぞれ同一の要素を示し、シ
リコンインゴット1とハース部14との間隙(こ、シリ
コンインゴット1よりも融点が格段tこ低いガリウム(
Ga)4を充填した点が第1図と異っている。
FIG. 3 is a conceptual diagram of a heating system for implementing the present invention. The same reference numerals as in FIG. 1 indicate the same elements, and the gap between the silicon ingot 1 and the hearth part 14 Gallium has a much lower melting point than gallium (
It differs from FIG. 1 in that it is filled with Ga)4.

なお、ガリウム(Ga ) 4の充填は、ハース部14
が強制冷却されていない状態で、予め液化さnたガリウ
ム(Ga ) 4を窪み15(こ流し込み、次いで、シ
リコンインゴット1をこの窪み15に装填すると、シリ
コンインゴット1の外表面および窪み■5の丙辰面間に
形成される間隙にガリウム(Ga)4が残り、余分とな
ったガリウム(Qa)4がハース部14の上面すこ溢れ
出ることになり、この溢れ出た分を掃き取るようにして
いる。
Note that gallium (Ga) 4 is filled in the hearth part 14.
When liquefied gallium (Ga) 4 is poured into the recess 15 (into the recess 15) without being forcedly cooled, and the silicon ingot 1 is then loaded into the recess 15, the outer surface of the silicon ingot 1 and the recess 5 are Gallium (Ga) 4 remains in the gap formed between the two surfaces, and the excess gallium (Qa) 4 overflows onto the top surface of the hearth portion 14. This overflowing portion is swept away. ing.

ところで、分子線エビタクンーを含めた超高真空中での
蒸着の利点は、真空中における不純物、例えば、酸素、
炭素が極めて少なく高純度め薄膜を堆積し得る点にある
。この場合、蒸発材料を高純度警こ維持すると同時に、
粒子線の純度を高くしなければならない。
By the way, the advantage of vapor deposition in ultra-high vacuum, including molecular beam evaporation, is that impurities in vacuum, such as oxygen,
The advantage is that it contains extremely little carbon and can deposit highly pure thin films. In this case, while maintaining the high purity of the evaporated material,
The purity of the particle beam must be increased.

この点、ガリウム(Ga )の融点は約30でで、これ
がシリコンインゴット舎ζ長時間接触したとしても、内
部fこ拡散される速度は極めて小さく、したがって、シ
リコンインゴットの純度を下げることはない。
In this regard, the melting point of gallium (Ga) is approximately 30,000 yen, and even if it comes into contact with the silicon ingot for a long time, the rate at which it diffuses into the interior of the ingot is extremely small, and therefore the purity of the silicon ingot will not be reduced.

また、ガリウム(Ga )の温度と蒸気圧とは第4図の
直線Aに示す関係にあり、その温度を低く保ちさえすれ
ば蒸気圧も低く、超高真空の粒子線の純度をも維持する
ことができる。
In addition, the temperature and vapor pressure of gallium (Ga) have a relationship as shown in straight line A in Figure 4, and as long as the temperature is kept low, the vapor pressure will be low, and the purity of ultra-high vacuum particle beams will also be maintained. be able to.

したがって、ガリウム(Ga )は蒸発材料の純度およ
び粒子線の純度を低下させることのない好適な伝熱性部
材となり得、しかも、予測される温度領域の殆んど(こ
亘って液体として存在することから、シリコンインゴッ
ト1およびハース部14間の熱伝導率を著しく大きくす
ることができる。
Therefore, gallium (Ga) can be a suitable heat conductive material that does not reduce the purity of the evaporation material and the purity of the particle beam. Therefore, the thermal conductivity between the silicon ingot 1 and the hearth portion 14 can be significantly increased.

以下、この方法によって真空蒸着を行った実例を挙げる
Examples of vacuum deposition performed using this method will be given below.

先ず、Eガン10として最大入力5[KSV]のものを
用いるとともに、ノ・−ス部14としてるつぼの容積が
2.6 [: ec 〕のものを用い、ここをこ装填さ
れるシリコンインゴット1との間隙に、純度が99.9
9991以上のガリウム(Ga )を上述した手法で充
填する。
First, an E gun 10 with a maximum input of 5 [KSV] is used, a crucible with a volume of 2.6 [: ec] is used as the nose part 14, and the silicon ingot 1 to be loaded therein is used. The purity is 99.9 in the gap between
Fill with 9991 or more gallium (Ga) using the method described above.

次に、フィラメント11より放射される電子線16に対
して、略10 [KV ]の電圧で加速する一方、偏向
コイル13により225°の偏向を加えると電子線16
はるつぼの中心部、すなわち、シリコンインゴット1の
上方中心部に到達した。
Next, when the electron beam 16 emitted from the filament 11 is accelerated with a voltage of approximately 10 [KV] and deflected by 225° by the deflection coil 13, the electron beam 16
The center of the crucible, that is, the upper center of the silicon ingot 1 has been reached.

かくして、ハース部14を強制冷却しなから電子線16
を照射し続けると融液部2が形成される。この場合、従
来の方法では電子線の形で導入し得る電力、rなわち、
上方中央部のみを融液状態に保持し得る最大電力は僅か
O05[:KW]であったがこの方法によれば2〔歴〕
以上の電力を供給することができた。
In this way, the electron beam 16 is not forced to cool down the hearth portion 14.
When irradiation is continued, a melt portion 2 is formed. In this case, in the conventional method, the power that can be introduced in the form of an electron beam, r,
The maximum power that could keep only the upper central part in a melted state was only 005 [:KW], but according to this method, it was 2 [history]
We were able to supply more than enough power.

また、蒸発材料から被蒸着部材までの距離すなわち蒸発
距離を250[mm]として薄膜の堆積速度で比較した
場合、従来の方法では50CA/n+in ]程度であ
ったものが、本方法では1000[X/面n〕の蒸着が
できた。
Furthermore, when comparing the thin film deposition rate assuming that the distance from the evaporation material to the member to be evaporated, that is, the evaporation distance, is 250 [mm], the conventional method was about 50 CA/n+in, but the present method was about 100 CA/n+in. /surface n] was successfully deposited.

この間、ガリウム(Ga ) 4は、銅が用いられるハ
ース部に密着し、また薄膜つ1ら判断するガリウム(G
a ) 4の影響は皆無で、その蒸発はなかったものと
推定される。
During this time, gallium (Ga) 4 is in close contact with the hearth part where copper is used, and gallium (Ga) 4 is in close contact with the hearth part where copper is used.
a) There was no effect of 4, and it is presumed that there was no evaporation.

この実験結果から、ガリウム(Ga ) 4は超高真空
下の薄膜形成(こ何等の感作用を及ぼすことなく、しか
も、熱伝導率を向上させる好適な伝熱部材になっている
と言える。
From the results of this experiment, it can be said that gallium (Ga) 4 is a suitable heat transfer member that can be formed into a thin film under ultra-high vacuum (without any sensitizing effects) and improves thermal conductivity.

lよお、上記実施例では、分子i線エビタクシ−を起こ
して半導体を製造することを想定し、蒸発材料としてシ
リコンインゴットを、その伝熱性部材としてガリウム(
Ga )を用いているが、蒸発材料はこイtに限定され
るものではなく、また伝熱性部材としてのガリウム(G
a )の代イつりにインジウム(In )の使用も可能
であり、要は蒸発材料よりも融点が格段に低いものであ
れば上述したと同様に熱伝導率を向上させ得、且つ、取
扱いも容易である。
In the above example, it is assumed that a semiconductor is manufactured by causing molecular i-ray epitaxy, and a silicon ingot is used as the evaporation material and gallium (
Although the evaporation material is not limited to gallium (Ga), the evaporation material is not limited to gallium (G).
It is also possible to use indium (In) instead of a), and the point is that if it has a much lower melting point than the evaporation material, it can improve the thermal conductivity in the same way as mentioned above, and is easy to handle. It's easy.

また、上記実施例では、蒸発材料の上方中央部(本発明
では上方の中心に限らず、縁端部でない意味で用いてい
る)に融液部を形成するためにEガンを用いているが、
この加熱手段は例えばレーザ等の他の加熱方法による蒸
着装置にも同様に適用することができる。
Further, in the above embodiment, an E gun is used to form a melt part in the upper central part of the evaporation material (in the present invention, the term is used not only in the upper center but also in the meaning other than the edge part). ,
This heating means can be similarly applied to vapor deposition apparatuses using other heating methods such as laser.

〔発明の効果〕〔Effect of the invention〕

以上の発明によって明らかな如く、本発明の真空蒸着方
法によれば、薄膜の堆積速度を著しく増大し得、これに
よって生産性を一段と向上させることができるという優
れた効果が得られる。
As is clear from the above invention, according to the vacuum evaporation method of the present invention, it is possible to significantly increase the deposition rate of a thin film, thereby achieving the excellent effect of further improving productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の真空蒸着方法を説明するために、Eガン
を用いた真空蒸着装置の加熱系の概念図、第2図はこの
Eガンの要部の構成を示す斜視図、第3図は本発明の真
空蒸着方法を実施する装置の一例の加熱糸の概念図、第
4図はこの加熱系に用いられる伝熱性部材としてのカリ
ウム(Ga’)の温度と蒸気圧との関係を示す線図であ
る。 1・・・蒸発材料としてのシリコンインゴット、2・・
・融液部、3・・・固形部、4・・・伝熱性部材として
のガリウム、10・・・Eガン、11・・・架台、12
・・・フィラメント、13・・・偏向コイル、14・・
・ハース部、15・・・窪み、16・・パ電子線。 出願人代理人  猪 股    清 h I 囚 II 燃2図        1 薫 牛  4 M 高旨&(’C) −
Fig. 1 is a conceptual diagram of a heating system of a vacuum evaporation apparatus using an E gun to explain the conventional vacuum evaporation method, Fig. 2 is a perspective view showing the configuration of the main parts of this E gun, and Fig. 3 4 is a conceptual diagram of a heating thread of an example of a device for carrying out the vacuum evaporation method of the present invention, and FIG. 4 shows the relationship between the temperature and vapor pressure of potassium (Ga') as a heat conductive member used in this heating system. It is a line diagram. 1... Silicon ingot as evaporation material, 2...
- Melt part, 3... Solid part, 4... Gallium as a heat conductive member, 10... E gun, 11... Frame, 12
... filament, 13... deflection coil, 14...
- Hearth part, 15... hollow, 16... pa electron beam. Applicant's agent Kiyoshi Inomata I Prisoner II Moen 2 Figure 1 Kaorugyu 4 M Takaji &('C) -

Claims (1)

【特許請求の範囲】 1、強制冷却されるハース部の窪みすこ、塊状の蒸発材
料を装填し、前記ハース部から露出する前記蒸発材料の
上方中央部分子こ融液部を形成して蒸着を行う真空蒸着
方法において、前記ハース部と蒸発材料との間隙(こ該
蒸発材料よりも融点が格段に低い伝熱性部材を充填し、
該伝熱性部材を介して前記蒸発材料の固形部の熱を前記
ハース部に伝導せしめて加熱および蒸着を行うことを特
徴とrる真空蒸着方法。 2、前記融液部を電子線の衝撃加熱によって形成するこ
とを特徴とする特許請求の範囲第1項記載の真空蒸着方
法。 3、前記伝熱性部材としてインジウム(1n)またはガ
リウム(Ga )を用いたことを特徴とする特許請求の
範囲第1項記載の真空蒸着方法。
[Claims] 1. A lump of evaporation material is loaded into the recess of the hearth part to be forcibly cooled, and a molecular melt part is formed in the upper center of the evaporation material exposed from the hearth part to perform evaporation. In the vacuum evaporation method carried out, the gap between the hearth part and the evaporation material (filling with a heat conductive member whose melting point is much lower than that of the evaporation material,
A vacuum evaporation method characterized in that heating and evaporation are performed by conducting heat of the solid portion of the evaporation material to the hearth portion via the heat conductive member. 2. The vacuum evaporation method according to claim 1, wherein the melt portion is formed by impact heating with an electron beam. 3. The vacuum evaporation method according to claim 1, wherein indium (1n) or gallium (Ga) is used as the heat conductive member.
JP5032583A 1983-03-28 1983-03-28 Vacuum vapor deposition method Granted JPS59177130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5032583A JPS59177130A (en) 1983-03-28 1983-03-28 Vacuum vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5032583A JPS59177130A (en) 1983-03-28 1983-03-28 Vacuum vapor deposition method

Publications (2)

Publication Number Publication Date
JPS59177130A true JPS59177130A (en) 1984-10-06
JPS621470B2 JPS621470B2 (en) 1987-01-13

Family

ID=12855749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5032583A Granted JPS59177130A (en) 1983-03-28 1983-03-28 Vacuum vapor deposition method

Country Status (1)

Country Link
JP (1) JPS59177130A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1466998A1 (en) * 2003-04-09 2004-10-13 Dr. Eberl MBE-Komponenten GmbH Effusion cell with improved temperature control of the crucible

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1466998A1 (en) * 2003-04-09 2004-10-13 Dr. Eberl MBE-Komponenten GmbH Effusion cell with improved temperature control of the crucible

Also Published As

Publication number Publication date
JPS621470B2 (en) 1987-01-13

Similar Documents

Publication Publication Date Title
US3607222A (en) Method for evaporating alloy
US3344505A (en) Method of bonding a boron nitride body to a refractory metal
JPS59177130A (en) Vacuum vapor deposition method
US3373050A (en) Deflecting particles in vacuum coating process
JP2502653B2 (en) Metal thin film manufacturing equipment
JPS60100669A (en) Apparatus for producing thin compound film
JPH06340967A (en) Vapor deposition device
JPH01263265A (en) Vacuum arc deposition method
JPH09111441A (en) Magnesium evaporating method
JPS5887269A (en) Vapor source device
JPS59172715A (en) Molecular beam generating equipment
JPS61141697A (en) Molecular beam source for molecular beam crystal growth device
JPH06136520A (en) Method for producing thin film and device therefor
JPH0428678B2 (en)
JPH0892734A (en) Evaporation of mg
JPH0369990B2 (en)
JPS6091625A (en) Manufacture of thin film
JPH0261059A (en) Vapor deposition apparatus
JPH02104659A (en) Device for producing thin film
JPS6347362A (en) Ion plating device
KR100216925B1 (en) Laser deposition apparatus for high temperature superconducting thin film
JPS63262457A (en) Preparation of boron nitride film
JPH0544023A (en) Method and device for evaporating substance
RU2083025C1 (en) Method for producing supporting layer of silicon-on-insulator semiconductor structure
JP2001081549A (en) Electron beam vapor deposition method