JPS59175774A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59175774A
JPS59175774A JP1515784A JP1515784A JPS59175774A JP S59175774 A JPS59175774 A JP S59175774A JP 1515784 A JP1515784 A JP 1515784A JP 1515784 A JP1515784 A JP 1515784A JP S59175774 A JPS59175774 A JP S59175774A
Authority
JP
Japan
Prior art keywords
layer
impurity
semiconductor device
impurities
fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1515784A
Other languages
Japanese (ja)
Other versions
JPH0444431B2 (en
Inventor
Juichi Shimada
嶋田 寿一
Yasuhiro Shiraki
靖寛 白木
Keisuke Kobayashi
啓介 小林
Yoshifumi Katayama
片山 良史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1515784A priority Critical patent/JPS59175774A/en
Publication of JPS59175774A publication Critical patent/JPS59175774A/en
Publication of JPH0444431B2 publication Critical patent/JPH0444431B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To obtain the FET having a substantially high mobility by a method wherein when a layer not-including an impurity and a layer including it are laminated on a semiconductor substrate to be subjected to an epitaxial growth, these layers are selected to be a single-atom layer or a thin layer according to that and the layer including impurities is doped with the specified impurity. CONSTITUTION:On an N type Si substrate 11, a single crystal layer 12 not- including an impurity and an Si layer 13 to which As of 10<16>/cm<3> is added, which are about 1,000Angstrom thick, are alternately grown by a molecular beam epitaxial method. The base for FET is thus formed and the upmost layer is covered with a Shottky electrode 14. Consequently, the characteristics of voltage- electrostatic capacitance of the FET shows a steps form as is shown in the drawing. In this constitution, the thickness of the epitaxial layer is not limitted to the present one. The thickness of 100-1,000Angstrom is also efficient and as for the concentration for adding impurities, 10<15>-5X10<16>/cm<3> may be preferable.

Description

【発明の詳細な説明】 本発明はfr規な構成原理tこ基づく半導体装置pこ関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device based on a conventional construction principle.

従来半導体装置の主安部分であるp−n接合は、拡散法
、合金法、イオン打込み法、生長接合形成法号によって
作らイtていた。しかしこれ尋の方法で作成したp−n
接合は、いずれにおいてもイ細物濃度は統計的に分布し
、空間的にも連続的に変化している。このためたとえば
半導体素子を微細化しようさする時、この不純物濃度が
統計的に分布していることから来る物理的限界が存在し
た。
Conventionally, p-n junctions, which are the main component of semiconductor devices, have been made by diffusion methods, alloy methods, ion implantation methods, and growth junction formation methods. However, p-n created using this method
In both junctions, the concentration of fine particles is statistically distributed and continuously changes spatially. For this reason, when attempting to miniaturize semiconductor devices, for example, there are physical limits due to the statistical distribution of this impurity concentration.

本発明は半導体層中に不純物を添加する場合、不純物原
子を単原子層の単位で制御し不純物を半導体層内の所定
領域に局在せしめることにより、従来の方法では達成す
ることが出来ない特性を有する半導体装置を提供するこ
とを目的とする。
When doping impurities into a semiconductor layer, the present invention controls impurity atoms in units of monoatomic layers and localizes the impurities in predetermined regions within the semiconductor layer, thereby achieving characteristics that cannot be achieved with conventional methods. An object of the present invention is to provide a semiconductor device having the following features.

本発明は半導体材料を母材々して構成された半導体装置
であって、 前記母材内に導入される不純物項域として単原子層もし
くはそれに準する薄層内に不純物が限定された不純物領
域を有する点に特徴がある。
The present invention relates to a semiconductor device constructed using semiconductor materials as base materials, wherein the impurity region introduced into the base material is an impurity region in which impurities are limited within a monoatomic layer or a thin layer similar thereto. It is characterized by having the following.

こうした構造は分子線゛エピタキシャル法の開発を待っ
てはじめて実現出来たものである。
This structure was only realized after the development of the molecular beam epitaxial method.

本発明の半導体装置は上述の如き特徴ある半導”体積層
愕造を有するが由に、従来の半導体装置では実現出来な
かった棟々の特徴ある特性を有する半導体装置を実現し
得るものである。
Since the semiconductor device of the present invention has the characteristic semiconductor multilayer structure as described above, it is possible to realize a semiconductor device having distinctive characteristics that could not be realized with conventional semiconductor devices. .

なお、不純物の導入は、通常空乏層を含む半導体装置に
おいては単原子層もしくは該空乏層と同号またはそれよ
り薄い単一または複数の層に、特に集中して不純物を含
むか、または特に少なくとも不純物を含む層を1以上含
む如く設計されている。以下の本実施例では不純物を添
加する層は単原子層一層のみであるがこれは多原子層で
あってもよいし、これらの複数の層から成っている場合
でもよい。
In general, in a semiconductor device including a depletion layer, impurities are introduced in a concentrated manner into a monoatomic layer or a single or multiple layers having the same number or thickness as the depletion layer, or in particular at least It is designed to include one or more layers containing impurities. In this example below, the layer to which impurities are added is only one monoatomic layer, but it may be a polyatomic layer or may be composed of a plurality of these layers.

階段状の電圧−容量特性を有する半導体装置、および短
チャネルの高速電界効果トランジスタ(FET)の例を
具体的に説明する。
Examples of a semiconductor device having stepped voltage-capacitance characteristics and a short channel high speed field effect transistor (FET) will be specifically described.

先ず階段状の電圧−容量特性の例について説明する。First, an example of step-like voltage-capacitance characteristics will be explained.

Siの分子線源および砒素の分子緋源を用い基板結晶上
に81の分子線エピタキシ一層および砒素添加層を交互
に成長させるこきにより第1図に示すような構造をした
多層構造を作成する。11はP型シリコン(Si)基板
、12はシリコン半導体層、13は砒素号の不純物が局
在しているシリコン層、14は電極である。この際砒素
の添加時にはSiの分子緋源の前にはシャッターをおき
砒素の添加は単分子層以下におさえる。第2図はこのよ
うにして作成した多層構造の不純物原子の分布を示した
ものである。
Using a Si molecular beam source and an arsenic molecular beam source, a multilayer structure as shown in FIG. 1 is created by alternately growing 81 molecular beam epitaxy layers and arsenic-doped layers on a substrate crystal. 11 is a P-type silicon (Si) substrate, 12 is a silicon semiconductor layer, 13 is a silicon layer in which arsenic impurities are localized, and 14 is an electrode. At this time, when adding arsenic, a shutter is placed in front of the Si molecular source to suppress the addition of arsenic to less than a monomolecular layer. FIG. 2 shows the distribution of impurity atoms in the multilayer structure thus created.

次に第2図に示すような不純物濃度の分布を有する半導
体装置に電界を印加した場合の特性について説明する。
Next, the characteristics when an electric field is applied to a semiconductor device having an impurity concentration distribution as shown in FIG. 2 will be described.

第2図のごときδ−関数型の不純物濃度分布の両側にお
ける′電界強度の差ΔE1は1−次元のボアソノ方程式 を積分することによって求めるこさができる。
The difference .DELTA.E1 in electric field strength on both sides of the .delta.-function type impurity concentration distribution as shown in FIG. 2 can be determined by integrating the one-dimensional Boissono equation.

但しψは、ポテンシャル・エネルギー、ρ(x)は不純
物による電荷の分布でρ(X)−ρ。δ(x−ai )
で表わされる。ここにε8は半導体の静電誘電率a1は
不純物層の位置を示す。式(1)をalの近情で積分す
ることにより、 aiの両側での電界強度の差ΔEiは
、 となる。ここで、ρ0を単位面積当りの不純物濃度Ni
[m−2)におきかえると(2)式のΔE1はΔE; 
= 1.56X10−9N、 〔V/m、l   (3
)となる。
However, ψ is the potential energy, and ρ(x) is the charge distribution due to impurities, which is ρ(X) - ρ. δ(x-ai)
It is expressed as Here, ε8 indicates the electrostatic dielectric constant a1 of the semiconductor and the position of the impurity layer. By integrating equation (1) in the vicinity of al, the difference ΔEi in electric field strength on both sides of ai is as follows. Here, ρ0 is the impurity concentration per unit area Ni
When replaced with [m-2), ΔE1 in equation (2) becomes ΔE;
= 1.56X10-9N, [V/m, l (3
).

またこの場合厚さd [m ] 0.)半導体層の静電
容量Cは1m2当り (4) である。
In this case, the thickness d [m] 0. ) The capacitance C of the semiconductor layer is (4) per m2.

従って第1図に示した半導体装置の電圧−容量特性は第
3図のように階段状になる。また容量および電圧の段の
大きさは、(3)式から明らかなように不純物濃度およ
び不純物添加層の間隔を適当にすることにより任意に変
えることができる。
Therefore, the voltage-capacitance characteristic of the semiconductor device shown in FIG. 1 becomes step-like as shown in FIG. Further, as is clear from equation (3), the size of the capacitance and voltage step can be arbitrarily changed by appropriate impurity concentration and interval between impurity-doped layers.

本発明の特徴たる単原子層もしくはそれに準する薄層内
に不純物が限定された不純物領域を柑≠弁電界効果トラ
ンジスタに適用した例を説明する。
An example will be described in which an impurity region in which impurities are limited in a monoatomic layer or a thin layer similar thereto, which is a feature of the present invention, is applied to a field effect transistor.

不純物は局在して設けられ、チャネルから離れた領域に
存在する。ゲート電極に印加した電圧と不純物を含む半
導体層に依存する不純物分布とによりてキャリア濃度が
決められる。
The impurity is provided locally and is present in a region away from the channel. The carrier concentration is determined by the voltage applied to the gate electrode and the impurity distribution depending on the semiconductor layer containing impurities.

こうした構成上の特徴を有するか故に次の如き利点を有
する。
Because of these structural features, it has the following advantages.

(1)チャネル領域に不純物を含有しないので、キャリ
アは不純物散乱を受けることがない。従って、より高移
動度となし得る。
(1) Since the channel region does not contain impurities, carriers are not subject to impurity scattering. Therefore, higher mobility can be achieved.

通常のMOSFETの場合、チャネル長(、l)は基板
の不純物濃度(Ni)に対してlαNi −2の関係に
保って設計される。しかし、この場合、基板の不純物濃
度に従って第1表に示す程度のキャリアの移動度を越え
るものはいかなる製造方法を用いても実現し得ない。
In the case of a normal MOSFET, the channel length (,l) is designed to maintain a relationship of lαNi −2 with respect to the impurity concentration (Ni) of the substrate. However, in this case, no matter what manufacturing method is used, it is impossible to achieve a carrier mobility exceeding the level shown in Table 1 depending on the impurity concentration of the substrate.

これに対し、本発明の半導体装置においては第1表に示
す通り、従来例に比較してはるかに高移動度のFETを
実現出来る。なお、比較を容易ならしめるため表中、本
発明の場合の添加不純物濃度はチャネル領域におけるデ
ィプレッショノ領域(depletion regio
n )で平均した実効的不純物濃度として示した。
In contrast, in the semiconductor device of the present invention, as shown in Table 1, an FET with much higher mobility than the conventional example can be realized. In order to facilitate comparison, the added impurity concentration in the case of the present invention is shown in the table as the depletion region in the channel region.
n ) as the average effective impurity concentration.

(2)短チヤネル化、即ち半導体装置の微細化を表1 
移動度の比較 可能さする。従来MOSトランジスタの微細化の限界は
基板Si中の不純物濃度によって決まるとされていた。
(2) Shorter channels, that is, miniaturization of semiconductor devices (Table 1)
Allows for comparison of mobilities. Conventionally, it has been thought that the limit of miniaturization of MOS transistors is determined by the impurity concentration in the Si substrate.

すなわちMOS)う/ジスタのチャンネル長lを小さく
するには、基板の不純物濃度Niを篩くすることが必安
であり、その最小のチャンネル長l(!:不純物濃度N
iは前述したようにlαN1−2の関係にある。しかし
、不純物濃度Niを大きくするとMOS)ランジスタの
チャ/ネル内のポテンシャルの空間的f、IK動が大き
くなることから、N1の上限は、約IQ”[m”)であ
る。
In other words, in order to reduce the channel length l of a transistor (MOS), it is necessary to sieve the impurity concentration Ni of the substrate, and the minimum channel length l(!: impurity concentration N
As described above, i is in the relationship lαN1-2. However, if the impurity concentration Ni is increased, the spatial f and IK movement of the potential within the channel/channel of the MOS transistor increases, so the upper limit of N1 is approximately IQ''[m'').

この場合不純物原子間の平均距離はR”=10’mりの
チャンネル長をR*の10倍(10−7m(1000人
))以下にするこさは原理的に不可能であった。
In this case, it was theoretically impossible to reduce the channel length to less than 10 times R* (10-7 m (1000 people)) when the average distance between impurity atoms was R''=10'm.

しかし、本発明の半導体装置においてはチャネル近傍に
不純物がすく、ポテンシャルの井戸に空間的変動が極め
て小さくすることが出来、従って短チヤネル化を実現す
ることが出来る。
However, in the semiconductor device of the present invention, there are few impurities near the channel, so that spatial fluctuations in the potential well can be made extremely small, and therefore a short channel can be realized.

たとえば、Δ/i0Sトランジスタの5in2とSiの
界面からノ単さDの範囲にある不純物原子数と同数の不
純物原子をSiO□すSiの界面から距離りだけはなれ
た単原子層だけ集中して添加した場合を考えてみる。従
来の基板に不純物を均一に添加した場合のMOS)ラン
ジスタのチャンネルのポテンシャルの空間変動は〜e2
/ε5ε。Pで与えられるのに対し、単原子層に添加し
た場合(こけポテンシャルの変動は の変動は(R’/D)3倍だけ小さくなる。ここでR/
” は単原子層内の不純物原子間の平均距離である。
For example, the same number of impurity atoms as the number of impurity atoms in the range of D from the interface between 5in2 and Si of a Δ/i0S transistor are added concentratedly to a single atomic layer separated by a distance from the interface between SiO□ and Si. Let's consider the case. When impurities are uniformly added to a conventional substrate, the spatial variation of the channel potential of a MOS transistor is ~e2
/ε5ε. When added to a monoatomic layer, the fluctuation of the moss potential becomes smaller by three times (R'/D). Here, R/
” is the average distance between impurity atoms in a monoatomic layer.

これを不純物濃度の上限Nl ” 1024m ”とす
るとR*=10  ’m、R”’=0.5X10  a
mとなり、D=500人とするき、従来の場合より、チ
ャンネルにおけるポテンシャルの変動は1/100以下
になる。
If this is the upper limit of impurity concentration Nl ``1024m'', then R*=10'm, R'''=0.5X10 a
m, and when D=500 people, the variation in potential in the channel will be 1/100 or less compared to the conventional case.

チャネル内のポテンシャルの変動が少ないこさから尚周
波での雑晋も低い。
Since there is little variation in potential within the channel, noise at frequencies is also low.

(3)  多数の半導体素子のしきい値のばらつきが小
さくなる。従って歩留りが向上する。
(3) Variations in threshold values of a large number of semiconductor elements are reduced. Therefore, the yield is improved.

これは前述した通りチャネル近傍に不純物がなく、ポテ
ンシャルの井戸ζこ空間的変動が極めて小さくなるため
である。ポテンシャルの井戸の空間的変動が大きい場合
、ゲート電圧■。によってドレイン電流■9がどの様に
立ち上るかを測定すると、ゲート電圧のしきい電圧値(
V、h)がはっきりしなくなる。しかも多数の半導体素
子において、このしきい電圧値が統計的にばらつくこと
となる。
This is because, as described above, there are no impurities near the channel, and spatial fluctuations in the potential well ζ are extremely small. If the spatial variation of the potential well is large, the gate voltage ■. By measuring how the drain current ■9 rises, the threshold voltage value of the gate voltage (
V, h) becomes unclear. Moreover, the threshold voltage values of a large number of semiconductor devices will vary statistically.

本発明の構成においてはこうした問題点は大巾に小さい
ものと1aL、得る。
In the configuration of the present invention, these problems can be greatly reduced.

即ち、しきい電圧近傍でのソースとドレイン間の電流の
立ち上がりが鋭くなる。
That is, the rise of the current between the source and the drain becomes sharp near the threshold voltage.

実施例 Siおよび砒素の分子線源を用いてSiのn型基板結晶
1上に厚さam10  ’m(1000人)のSi単結
晶層12および単原子層内にAsを10  m(101
2cm−2)添加したSi層13を交互に分子線エピタ
キシャル法によって成長させ第1図に示した積層構造を
作成する。艷にこの積層構造表面上にAI!を電子線蒸
着してショットキー電極14を形成する。なお装置の面
積はlQ  XIOmである。この半導体装置の電圧−
静を容量特性は第3図に示すような階段状になった。S
lの分子線エピタキシ一層の厚さlXl0 ”m(10
0人)から1’0−6m(10000人)不純物添加層
の1!に#1015m’−2(10” cm−2)から
5×1016m−2(5×1012cm’−2)の間に
わたって同様の階段状の電圧−容量特性を得ることがで
きjこ。
Example Using a molecular beam source of Si and arsenic, a Si single-crystal layer 12 with a thickness of 10' m (1000 m) was deposited on a Si n-type substrate crystal 1, and As was deposited within the monoatomic layer of 10 m (101 m).
2cm-2) doped Si layers 13 are grown alternately by molecular beam epitaxial method to create the laminated structure shown in FIG. AI is on the surface of this laminated structure! The Schottky electrode 14 is formed by electron beam evaporation. Note that the area of the device is lQXIOm. The voltage of this semiconductor device -
The static capacitance characteristics became step-like as shown in Figure 3. S
Thickness of one layer of molecular beam epitaxy of lXl0 ”m (10
0 people) to 1'0-6m (10,000 people) impurity doped layer 1! A similar step-like voltage-capacitance characteristic can be obtained from #1015 m'-2 (10" cm-2) to 5 x 1016 m-2 (5 x 1012 cm'-2).

実施例2 第4図、第5図は本発明の半導体装置の製造工程の各段
階を示す装置断面図である。
Embodiment 2 FIGS. 4 and 5 are cross-sectional views of a semiconductor device of the present invention showing each step of the manufacturing process.

シリコン(Si)基板41を分子線エビクキシャル装置
内に装着し、Siおよびほう素(B)の分子線源準備す
る。分子線エピタキシャル装置内を真空度1O−9To
rr以下となし、Si基板41ffこ厚さ10’mの5
iN42を分子線エピタキシャル成長し、更に続けて8
4層42上に単原子層内にほう素を濃度5X1016m
”で含有せしめたSi層43、およびこのS1層43上
に厚さ10’−7m(100’l)のS1層44を分子
線エピタキシャル成長する。第4図はこの状態を示した
断面図である。この例では不純物は単原子層内に局在せ
しめたが、更に多数層に不純物を導入しても良い。
A silicon (Si) substrate 41 is mounted in a molecular beam eviction device, and molecular beam sources of Si and boron (B) are prepared. The vacuum inside the molecular beam epitaxial equipment is 1O-9To
rr or less, Si substrate 41ff, thickness 10'm 5
iN42 was grown by molecular beam epitaxial growth, and then 8
Boron concentration 5x1016m in monoatomic layer on 4th layer 42
A Si layer 43 with a thickness of 10'-7 m (100'l) is grown on this S1 layer 43 by molecular beam epitaxial growth. FIG. 4 is a cross-sectional view showing this state. In this example, the impurity is localized within a single atomic layer, but the impurity may be introduced into multiple layers.

この場合肝女なことは従来の如き不純物導入の方法と異
なり、不純物濃度が実質的に縦針的分布を有さないよう
局在せしめることである。
In this case, unlike conventional impurity introduction methods, it is important to localize the impurity concentration so that it does not substantially have a vertical needle distribution.

ゲート酸化膜56としてはg4図に示した多層構造体の
上部を周知の熱酸化法によって厚さ500人のSiO2
膜としこれを用いた。又ソースおよびドレイン電極領域
55.55’の形成はCVD法によるSiO2膜を拡散
用マスクとして砒素を第1の半導体層に熱拡散法によっ
て形成した。
The gate oxide film 56 is made of SiO2 with a thickness of 500 nm by a well-known thermal oxidation method on the upper part of the multilayer structure shown in Figure G4.
This was used as a membrane. The source and drain electrode regions 55 and 55' were formed by thermally diffusing arsenic into the first semiconductor layer using a CVD SiO2 film as a diffusion mask.

ゲート電極57は前記ゲート酸化膜56上に金属AI!
を蒸着して形成した。第5図がこの状態を示す断面図で
ある。
The gate electrode 57 is made of metal AI! on the gate oxide film 56.
was formed by vapor deposition. FIG. 5 is a sectional view showing this state.

この様にしてFET(電界効果トランジスタ)を作製す
ることができた。そのチャネル畏は10−7m(100
0大)で、従来のシリコン・プロセスを用いた技術で製
造されたF’ E Tでは動作不能であったものである
In this way, an FET (field effect transistor) could be manufactured. Its channel length is 10-7 m (100
0 large), which would have been inoperable with F'ET manufactured using conventional silicon process technology.

【図面の簡単な説明】 第1図は階段状の電圧−容量特性を有する半導体装置の
断面図、第2図は該半導体装置の不純物濃度の分布を示
す図、第3図は該半導体装置の電圧−容量特性を示す図
、第4図および第5図は本発明の半導体装置の製造工程
を説明するための装置の断面図である。 11.41:半導体基板、13,43:不純物を含有す
る第2の半導体層、12.44:不純物を含有しない第
1の半導体層、14.57:電極あ 3 図 LpFノ 4℃ rL V   tvノ
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a cross-sectional view of a semiconductor device having stepped voltage-capacitance characteristics, FIG. 2 is a diagram showing the impurity concentration distribution of the semiconductor device, and FIG. 3 is a diagram of the semiconductor device. Figures 4 and 5 showing the voltage-capacitance characteristics are cross-sectional views of the device for explaining the manufacturing process of the semiconductor device of the present invention. 11.41: Semiconductor substrate, 13, 43: Second semiconductor layer containing impurities, 12.44: First semiconductor layer containing no impurities, 14.57: Electrode A 3 Figure LpF 4°C rL V tv of

Claims (1)

【特許請求の範囲】 ■、半導体材料を母材として構成された半導体装置であ
って、 前記母材内に導入される不純物領域として単原子層もし
くはそれに準する薄層内に不純物が限定された不純物領
域を有することを特徴とする半導体装置。
[Claims] (1) A semiconductor device constructed using a semiconductor material as a base material, wherein the impurity is limited to a monoatomic layer or a thin layer equivalent thereto as an impurity region introduced into the base material. A semiconductor device characterized by having an impurity region.
JP1515784A 1984-02-01 1984-02-01 Semiconductor device Granted JPS59175774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1515784A JPS59175774A (en) 1984-02-01 1984-02-01 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1515784A JPS59175774A (en) 1984-02-01 1984-02-01 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11273183A Division JPS5910278A (en) 1983-06-24 1983-06-24 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS59175774A true JPS59175774A (en) 1984-10-04
JPH0444431B2 JPH0444431B2 (en) 1992-07-21

Family

ID=11880960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1515784A Granted JPS59175774A (en) 1984-02-01 1984-02-01 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59175774A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175471A (en) * 1987-01-16 1988-07-19 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505477A (en) * 2003-07-23 2007-03-08 エーエスエム アメリカ インコーポレイテッド Silicon-on-insulator structures and SiGe deposition on bulk substrates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175471A (en) * 1987-01-16 1988-07-19 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device

Also Published As

Publication number Publication date
JPH0444431B2 (en) 1992-07-21

Similar Documents

Publication Publication Date Title
US5108935A (en) Reduction of hot carrier effects in semiconductor devices by controlled scattering via the intentional introduction of impurities
US8173495B2 (en) Semiconductor on insulator
JPH03233937A (en) Semiconductor device structure using multilevel epitaxial structure and manufacture thereof
KR970053503A (en) Semiconductor device having a gate electrode and a shallow impurity region that eliminates short circuit between source and drain regions and process for manufacturing same
US5028973A (en) Bipolar transistor with high efficient emitter
US5907168A (en) Low noise Ge-JFETs
US4412376A (en) Fabrication method for vertical PNP structure with Schottky barrier diode emitter utilizing ion implantation
JPS5915388B2 (en) semiconductor equipment
US5371378A (en) Diamond metal base/permeable base transistor and method of making same
US4549193A (en) Field effect transistor device utilizing critical buried channel connecting source and drain
US4785340A (en) Semiconductor device having doping multilayer structure
JP3122118B2 (en) Semiconductor device
US5024955A (en) Variable-capacitance diode element having wide capacitance variation range
US4440580A (en) Method of fabricating an integrated bipolar planar transistor by implanting base and emitter regions through the same insulating layer
JPS62271475A (en) Semiconductor device
JPS59175774A (en) Semiconductor device
EP0756760B1 (en) Semiconductor device with guard ring and process for its production
JPS5910278A (en) Semiconductor device
JPH0330309B2 (en)
US5212100A (en) P-well CMOS process using neutron activated doped N-/N+ silicon substrates
US5017950A (en) Variable-capacitance diode element having wide capacitance variation range
JPS59188175A (en) Semiconductor device
JP2978499B2 (en) Manufacturing method of varicap diode
JPS63148684A (en) Hyper abrupt type varactor diode
JP3186265B2 (en) Bipolar transistor and method of manufacturing the same