JPS5917530B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS5917530B2
JPS5917530B2 JP51125742A JP12574276A JPS5917530B2 JP S5917530 B2 JPS5917530 B2 JP S5917530B2 JP 51125742 A JP51125742 A JP 51125742A JP 12574276 A JP12574276 A JP 12574276A JP S5917530 B2 JPS5917530 B2 JP S5917530B2
Authority
JP
Japan
Prior art keywords
porous silicon
impurity
substrate
diffusion
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51125742A
Other languages
Japanese (ja)
Other versions
JPS5350670A (en
Inventor
数利 長野
龍典 中島
孝生 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP51125742A priority Critical patent/JPS5917530B2/en
Publication of JPS5350670A publication Critical patent/JPS5350670A/en
Publication of JPS5917530B2 publication Critical patent/JPS5917530B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Element Separation (AREA)

Description

【発明の詳細な説明】 5 本発明は半導体基板内への不純物原子の拡散方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION 5 The present invention relates to a method for diffusing impurity atoms into a semiconductor substrate.

従来シリコン基板内へ不純物原子を拡散する場合次の方
法が主として用いられている。
Conventionally, the following method has been mainly used to diffuse impurity atoms into a silicon substrate.

液体の拡散源たとえばΞ臭化ホウ素BBr3を用い、ま
ず熱0 せられたシリコン基板上に酸化ホウ素B2O3
を堆積させる。次に弗化水素酸水溶液でB2O3を除去
し、高温の熱処理炉でいわゆるドライブインし不純物原
子Bをシリコン基板内へ拡散する。上記拡散方法では拡
散をしない領域にはあらか’5 じめ酸化硅素膜などの
保護膜を適当な厚さに形成しておくことによシ、所望領
域にのみ選択的に不純物拡散層を形成することができる
Using a liquid diffusion source such as Ξ boron bromide BBr3, boron oxide B2O3 is first deposited on a heated silicon substrate.
deposit. Next, B2O3 is removed using a hydrofluoric acid aqueous solution, and the impurity atoms B are diffused into the silicon substrate by a so-called drive-in process in a high-temperature heat treatment furnace. In the above diffusion method, an impurity diffusion layer can be selectively formed only in desired regions by first forming a protective film such as a silicon oxide film to an appropriate thickness in regions where diffusion is not performed. can do.

上記従来の拡散方法によると、不純物原子をシリコン基
板上に堆積するためのデポジション炉と、り 不純物原
子をシリコン基板内へ拡散させるためのドライブイン炉
が必要である。
According to the conventional diffusion method described above, a deposition furnace for depositing impurity atoms onto the silicon substrate and a drive-in furnace for diffusing the impurity atoms into the silicon substrate are required.

また、拡散層の不純物濃度はデポジション条件すなわち
キャリアガス流量、シリコン基板表面の温度、シリコン
基板のチャージ枚数および拡散源である不純物を含ん■
5 だ液体の温度などで異なるため、不純物濃度の制御
は非常に困難であつた。さらに選択拡散をする場合には
所望の領域外に拡散防止用マスクたとえば酸化硅素膜を
必要とするなどの欠点を有し、また複数の不純物拡散層
を形成する場合には同様な方法を複数回繰ね返さなけれ
ばならなかつた。本発明は上記欠点のない不純物原子の
拡散方法を提供するものであり、半導体基板主表面に陽
極処理によジ多孔質シリコンを形成する工程、前記基板
を溶液中に浸漬して前記多孔質シリコンに不純物を含有
させる工程、前記不純物を含有させた基板を洗浄する工
程、前記基板を熱処理して前記多孔質シリコンに含有さ
せた不純物を前記基板内に拡散させる工程、および前記
多孔質シリコンを絶碌物に変質させる工程とを含む工程
により構成される。従つて拡散炉としては1本の熱処理
炉しか必要なく、また拡散層の不純物濃度は多孔質シリ
コン層の形成条件、膜厚によるので、多孔質シリコン層
の形成条件を一定すると不純物濃度は多孔質シリコン層
の膜厚で決まつてしまい、不純物濃度の制御囲が良い。
また従来法で困難であつた低濃度の拡散層も多孔質シリ
コン層の膜厚を薄くすることにより形成可能である。さ
らに本発明の方法によるど選択拡散の際に拡散防止用の
マスクは必要としない。また、l回の熱処理で複数の不
純物拡散層を同時に形成することも可能である。一般に
半導体基板表面に一定量Qの不純物が与えられた場合、
これを半導体内部へ拡散すると〜深さ方向の不純物濃度
Nはで表わされる。
In addition, the impurity concentration in the diffusion layer depends on the deposition conditions, i.e., the carrier gas flow rate, the temperature of the silicon substrate surface, the number of charged silicon substrates, and the impurity that is the diffusion source.
5 It has been extremely difficult to control the impurity concentration because it varies depending on the temperature of the liquid and other factors. Furthermore, when performing selective diffusion, there are drawbacks such as the need for a diffusion prevention mask, such as a silicon oxide film, outside the desired area, and when forming multiple impurity diffusion layers, the same method must be repeated multiple times. I had to repeat it. The present invention provides a method for diffusing impurity atoms without the above-mentioned drawbacks, including a step of forming diporous silicon on the main surface of a semiconductor substrate by anodizing, and dipping the substrate in a solution to form diporous silicon. a step of cleaning the substrate containing the impurity; a step of heat-treating the substrate to diffuse the impurity contained in the porous silicon into the substrate; and a step of completely removing the porous silicon. It is composed of a process including a process of changing the quality into a fine object. Therefore, only one heat treatment furnace is required as a diffusion furnace, and since the impurity concentration in the diffusion layer depends on the formation conditions and film thickness of the porous silicon layer, if the formation conditions of the porous silicon layer are constant, the impurity concentration will be the same as in the porous silicon layer. It is determined by the thickness of the silicon layer, and it is better to control the impurity concentration.
Furthermore, a low concentration diffusion layer, which has been difficult to form using conventional methods, can be formed by reducing the thickness of the porous silicon layer. Furthermore, a mask for preventing diffusion is not required during selective diffusion according to the method of the present invention. Furthermore, it is also possible to simultaneously form a plurality of impurity diffusion layers by one heat treatment. Generally, when a certain amount of impurity Q is applied to the surface of a semiconductor substrate,
When this is diffused into the semiconductor, the impurity concentration N in the depth direction is expressed as follows.

上式より不純物濃度Nは不純物量Qに比例することがわ
かる。
From the above equation, it can be seen that the impurity concentration N is proportional to the impurity amount Q.

多孔質シリコン層中に含有される不純物量Qは多孔質シ
リコン層の膜厚をD,とし、多孔質シリコン層の形成条
件を一定とすると、で表わされる。
The amount Q of impurities contained in the porous silicon layer is expressed as follows, assuming that the thickness of the porous silicon layer is D and the conditions for forming the porous silicon layer are constant.

よつて半導体基板内の不純物濃度Nは多孔質シリコン層
の膜厚D,に比例する0従つて低不純物濃度の拡散層を
形成するには多孔質ンリコン層の膜厚D,を小さくすれ
ば良いことがわかる。以下図面に従つて本発明を詳細に
説明する。
Therefore, the impurity concentration N in the semiconductor substrate is proportional to the thickness D of the porous silicon layer. Therefore, in order to form a diffusion layer with a low impurity concentration, the thickness D of the porous silicon layer can be made small. I understand that. The present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例にかかる方法を示すものであ
る。(a)まずP形シリコン基板11の主表面に拡散層
を形成すべき所望の領域12を除いて窒化硅素膜13を
被着する。0))次に所望の領域12に多孔質シリコン
層14を選択的に形成する。
FIG. 1 shows a method according to one embodiment of the invention. (a) First, a silicon nitride film 13 is deposited on the main surface of a P-type silicon substrate 11 except for a desired region 12 where a diffusion layer is to be formed. 0)) Next, a porous silicon layer 14 is selectively formed in desired areas 12.

多孔質シリコン層14は電解液中たとえば弗化水素酸水
溶液中での陽極処理によジ形成される。この時弗化水素
酸水溶液中に不純物原子を含有させて卦くと、形成され
た多孔質シリコン層14中に不純物原子は含有される。
本実施例では弗化水素酸水溶液中にN形不純物であるリ
ンを含んだリン酸H3PO4を含有して陽極処理を行な
つた。多孔質シリコン層14を形成後電源を切つた状態
でかつ引き続き上記基板11を弗化水素酸水溶液中に浸
漬したままで、窒化硅素膜13を除去する。(c)その
後基板11を十分に洗浄した後、1000℃熱処理炉に
基板11を入れ、基板11内はN形不純物ゝ拡散層15
を形成する。この場合酸素あるいは水蒸気雰囲気中で熱
処理を行なうと多孔質シリコン層14は酸化硅素膜にな
る。以上の実施例では不純物原子を含んだ溶液を弗化水
素酸水溶液に含有した後陽極処理を行なつたが、上記不
純物原子を含んだ溶液は陽極処理後に弗化水素酸水溶液
に含有させても良く、あるいは多孔質シリコンを形成し
た後に上記基板を不純物原子を含んだ溶液に浸漬しても
良い。
The porous silicon layer 14 is formed by anodization in an electrolytic solution, for example, an aqueous hydrofluoric acid solution. If impurity atoms are included in the hydrofluoric acid aqueous solution at this time, the impurity atoms will be included in the formed porous silicon layer 14.
In this example, an anodic treatment was carried out by containing phosphoric acid H3PO4 containing phosphorus as an N-type impurity in a hydrofluoric acid aqueous solution. After forming the porous silicon layer 14, the silicon nitride film 13 is removed while the power is turned off and the substrate 11 remains immersed in the hydrofluoric acid aqueous solution. (c) After thoroughly cleaning the substrate 11, the substrate 11 is placed in a 1000°C heat treatment furnace, and the inside of the substrate 11 is filled with N-type impurity diffusion layer 15.
form. In this case, when heat treatment is performed in an oxygen or water vapor atmosphere, the porous silicon layer 14 becomes a silicon oxide film. In the above examples, a solution containing impurity atoms was added to a hydrofluoric acid aqueous solution and then subjected to anodization. Alternatively, the substrate may be immersed in a solution containing impurity atoms after forming the porous silicon.

また弗化水素酸水溶液は他の電解液たとえば塩酸でも良
い。な卦、他の方法として陽極処理の際発生する気泡を
111!シ除くため不純物原子を含んだ気体たとえばホ
スフインPH3と窒素との混合気体を電解液中にバブル
してもよい。かかる後陽極処理を行なうと前記実施例と
同様に不純物原子としてリンを含んだ多孔質シリコンが
形成される。その後前記実施例と同様な工程を行なうこ
とにより1N形不純物拡散層が形成される。この方法で
は電解液のバブルとしてホスフインを用いたが、ボロン
拡散用としてジボランB2H6あるいは三塩化ホウ素B
CI3などを用いても良い。あるいは三臭化ホウ素BB
r3などの液体中をバプルさせる窒素ガスを用いても良
い。また以上の実施例では熱処理を行なつたが、この熱
処理は必ずしも必要ではなく、不純物を含有した多孔質
シリコンをそのまま低抵抗層として用いることも可能で
ある。
Further, the hydrofluoric acid aqueous solution may be replaced by other electrolytes such as hydrochloric acid. Another method is to eliminate air bubbles generated during anodization! In order to remove impurity atoms, a gas containing impurity atoms, such as a mixed gas of phosphine PH3 and nitrogen, may be bubbled into the electrolyte. When such post-anodization is performed, porous silicon containing phosphorus as impurity atoms is formed as in the previous embodiment. Thereafter, a 1N type impurity diffusion layer is formed by performing the same steps as in the previous embodiment. In this method, phosphine was used as a bubble in the electrolyte, but diborane B2H6 or boron trichloride B was used for boron diffusion.
CI3 or the like may also be used. Or boron tribromide BB
Nitrogen gas that bubbles in a liquid such as r3 may also be used. Further, although heat treatment was performed in the above embodiments, this heat treatment is not necessarily necessary, and porous silicon containing impurities can be used as it is as a low resistance layer.

ここで、本実施例では化学吸着によジ多孔質シリコンに
不純物を含有させるので、洗浄を十分に出来、電気炉等
の汚染を防止することが可能となる。第2図は本発明の
他の実施例にかかる2重拡散の方法を示し、(a)は第
1図に示した方法によつてN形不純物拡散層15を形成
した図である。
Here, in this embodiment, since impurities are contained in the diporous silicon by chemical adsorption, it is possible to perform sufficient cleaning and prevent contamination of the electric furnace and the like. FIG. 2 shows a double diffusion method according to another embodiment of the present invention, and (a) is a diagram in which an N-type impurity diffusion layer 15 is formed by the method shown in FIG.

この場合拡散の熱処理はN2ガス雰囲気中で行なつた。
次に基板11を王臭化ホウ素BBr3溶液に浸漬し、洗
浄した後再び1000℃熱処理炉に入れ、同図bに不す
ようにP形不純物拡散層16を形成した。上記実施例で
は多孔質シリコン層14全体に三臭化ホウ素BBr3を
含有させたが、多孔質シリコン層14の所定の領域にの
み不純物を含んだ溶液を含有させることも可能である。
In this case, the diffusion heat treatment was performed in an N2 gas atmosphere.
Next, the substrate 11 was immersed in a boron king bromide BBr3 solution, cleaned, and then placed in a heat treatment furnace at 1000° C. to form a P-type impurity diffusion layer 16 as shown in FIG. In the above embodiment, the entire porous silicon layer 14 contains boron tribromide BBr3, but it is also possible to contain a solution containing impurities only in a predetermined region of the porous silicon layer 14.

この場合は所望の領域にのみ窒化硅素膜などの耐酸化マ
スクを被着し、所望の領域以外の多孔質シリコン層を酸
化硅素膜にした後、上記基板を不純物を含んだ溶液に浸
漬すれば良い。2重拡散の他の方法として、拡散係数の
異なる2種の不純物原子を含んだ溶液たとえばオキシ塩
化リンとホウ酸メチルの混合液を用いて、多孔質シリコ
ン層の形成されたシリコン基板を上記混合液に浸漬した
後、I回の熱処理で同時にP形とN形の不純物拡散層を
形成する方法も可能である。
In this case, an oxidation-resistant mask such as a silicon nitride film is applied only to the desired areas, and the porous silicon layer other than the desired areas is made into a silicon oxide film, and then the substrate is immersed in a solution containing impurities. good. Another method of double diffusion is to use a solution containing two types of impurity atoms with different diffusion coefficients, such as a mixed solution of phosphorous oxychloride and methyl borate, to spread the silicon substrate on which a porous silicon layer is formed using the above mixture. It is also possible to form P-type and N-type impurity diffusion layers at the same time through I heat treatment after immersion in a liquid.

また3種以上の不純物原子を含んだ溶液を用いることに
より、1回の熱処理で同時に腹数の不純物拡散層を形成
することも可能である。さらに2重拡散の他の方法とし
て、拡散係数の異なる2種の不純物原子を含んだ気体た
とえばホスフインPH3とジボランB2H6を窒素で稀
釈した混合気体を電解液中に同時にあるいは別個にバブ
ルさせても良い。
Further, by using a solution containing three or more types of impurity atoms, it is also possible to simultaneously form an antinominal number of impurity diffusion layers in one heat treatment. Furthermore, as another method for double diffusion, a gas containing two types of impurity atoms with different diffusion coefficients, such as a mixed gas of phosphine PH3 and diborane B2H6 diluted with nitrogen, may be bubbled simultaneously or separately into the electrolyte. .

また3種以上の不純物原子を含んだ気体を用いて、同時
に複数の不純物拡散層を形成することも可能である。上
記実施例に}ける熱処理を酸化性雰囲気中で行なうと、
多孔質シリコンは半導体装置の安定な保護膜である酸化
硅素膜になるので好ましい。
It is also possible to simultaneously form a plurality of impurity diffusion layers using a gas containing three or more types of impurity atoms. When the heat treatment in the above examples is performed in an oxidizing atmosphere,
Porous silicon is preferable because it forms a silicon oxide film that is a stable protective film for semiconductor devices.

さらに上記実施例の方法を組み合わせて、あるいは複数
回続けることにより、トランジスタ、サイリスタなどの
半導体素子も形成することが可能である。以上述べたよ
うに、本発明による不純物原子の拡散方法は熱処理炉を
1本しか必要としない。
Furthermore, semiconductor elements such as transistors and thyristors can also be formed by combining the methods of the above embodiments or by repeating them multiple times. As described above, the impurity atom diffusion method according to the present invention requires only one heat treatment furnace.

また不純物濃度は多孔質シリコン層の膜厚によつて制御
可能であるので、制御性が良く、かつ低不純物濃度を有
する拡散層の形成が制御性良く容易に可能となる。さら
に本発明による不純物原子の拡散方法ではシリコン基板
のチヤージ枚数は任意である。さらに本発明によると、
不純物原子の選択拡散の際には蝋防止用のマスクを必要
としない。また本発明によると複数の不純物拡散層をl
回の熱処理で同時に形成することも可能である。このよ
うに本発明にかかる不純物拡散方法は半導体装置の製造
に有益な方法となるものである。
Furthermore, since the impurity concentration can be controlled by the thickness of the porous silicon layer, it is possible to easily form a diffusion layer with good controllability and a low impurity concentration. Furthermore, in the impurity atom diffusion method according to the present invention, the number of silicon substrates to be charged is arbitrary. Further according to the invention,
A mask to prevent wax is not required when selectively diffusing impurity atoms. Further, according to the present invention, a plurality of impurity diffusion layers are
It is also possible to form them simultaneously through two heat treatments. As described above, the impurity diffusion method according to the present invention is useful for manufacturing semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,b,cl第2図A,bはそれぞれ本発明の各
実施例にかかる半導体基板への不純物拡散方法の工程断
面図である。 11・・・シリコン基板、13・・・窒化硅素膜、14
・・移孔質シリコン、15・・・N形拡散層、16・・
・P形拡散層。
FIGS. 1A, b, CL and 2A, 2B are process cross-sectional views of a method for diffusing impurities into a semiconductor substrate according to each embodiment of the present invention. 11... Silicon substrate, 13... Silicon nitride film, 14
...Porous silicon, 15...N-type diffusion layer, 16...
・P-type diffusion layer.

Claims (1)

【特許請求の範囲】 1 半導体基板主表面に陽極処理により多孔質シリコン
を形成する工程、前記基板を不純物を含む溶液中に浸漬
して前記多孔質シリコンに前記不純物を含有させる工程
、前記基板を洗浄する工程、前記基板を熱処理して前記
多孔質シリコンに含有させた前記不純物の少なくとも一
部を前記基板内に拡散させる工程および前記多孔質シリ
コンを絶縁物に変質させる工程とを含むことを特徴とす
る半導体装置の製造方法。 2 不純物を含んだ電解液を用いて前記電解液中で半導
体基板を陽極処理し、多孔質シリコンを形成しつつ前記
多孔質シリコンに前記不純物を含有させることを特徴と
する特許請求の範囲第1項に記載の半導体装置の製造方
法。 3 電解液中に不純物を含んで気体を流出しつつ前記電
解液中で半導体基板を陽極処理し、多孔質シリコンを形
成しつつ前記多孔質シリコンに前記不純物を含有させる
ことを特徴とする特許請求の範囲第1項に記載の半導体
装置の製造方法。 4 多孔質シリコンに少なくとも2種類以上の不純物を
含有させることを特徴とする特許請求の範囲第1項に記
載の半導体装置の製造方法。 5 熱処理を酸化性雰囲気中で行ない半導体基板内に不
純物を拡散すると同時に多孔質シリコンを酸化硅素膜に
変質させることを特徴とする特許請求の範囲第1項に記
載の半導体装置の製造方法。
[Claims] 1. A step of forming porous silicon on the main surface of a semiconductor substrate by anodizing, a step of immersing the substrate in a solution containing impurities to make the porous silicon contain the impurities, and The method includes the following steps: cleaning the substrate, heat-treating the substrate to diffuse at least a portion of the impurity contained in the porous silicon into the substrate, and transforming the porous silicon into an insulator. A method for manufacturing a semiconductor device. 2. Claim 1, characterized in that a semiconductor substrate is anodized in the electrolytic solution using an electrolytic solution containing impurities, and the impurity is made to be contained in the porous silicon while forming porous silicon. A method for manufacturing a semiconductor device according to paragraph 1. 3. A patent claim characterized in that a semiconductor substrate is anodized in the electrolytic solution while gas containing impurities is flowing out, and the impurity is made to be contained in the porous silicon while forming porous silicon. A method for manufacturing a semiconductor device according to item 1. 4. The method of manufacturing a semiconductor device according to claim 1, wherein the porous silicon contains at least two types of impurities. 5. The method of manufacturing a semiconductor device according to claim 1, wherein the heat treatment is performed in an oxidizing atmosphere to diffuse impurities into the semiconductor substrate and simultaneously change the porous silicon into a silicon oxide film.
JP51125742A 1976-10-19 1976-10-19 Manufacturing method of semiconductor device Expired JPS5917530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51125742A JPS5917530B2 (en) 1976-10-19 1976-10-19 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51125742A JPS5917530B2 (en) 1976-10-19 1976-10-19 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5350670A JPS5350670A (en) 1978-05-09
JPS5917530B2 true JPS5917530B2 (en) 1984-04-21

Family

ID=14917658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51125742A Expired JPS5917530B2 (en) 1976-10-19 1976-10-19 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5917530B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2655193B1 (en) * 1989-11-30 1994-09-23 Telemecanique SYMMETRIC POWER SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152789A (en) * 1974-11-01 1976-05-10 Mitsubishi Electric Corp PUREENAGATAHANDOTAISOCHINO SEIZOHOHO
JPS5177066A (en) * 1974-12-27 1976-07-03 New Nippon Electric Co HANDOTAISOCHINOSEIZOHOHO

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152789A (en) * 1974-11-01 1976-05-10 Mitsubishi Electric Corp PUREENAGATAHANDOTAISOCHINO SEIZOHOHO
JPS5177066A (en) * 1974-12-27 1976-07-03 New Nippon Electric Co HANDOTAISOCHINOSEIZOHOHO

Also Published As

Publication number Publication date
JPS5350670A (en) 1978-05-09

Similar Documents

Publication Publication Date Title
KR910009323B1 (en) Process for the production of a predeterminded doping in the side walls and bottoms of trenches etched into semiconductor substrates
US4433008A (en) Doped-oxide diffusion of phosphorus using borophosphosilicate glass
US3748198A (en) Simultaneous double diffusion into a semiconductor substrate
US4274892A (en) Dopant diffusion method of making semiconductor products
JPH0391239A (en) Formation of thin film
US3507716A (en) Method of manufacturing semiconductor device
US3793712A (en) Method of forming circuit components within a substrate
US5308789A (en) Method of preparing diffused silicon device substrate
JPS5917243A (en) Manufacture of semiconductor device
JPS5917530B2 (en) Manufacturing method of semiconductor device
US3681155A (en) Aluminum diffusions
US4725564A (en) Method of manufacturing a semiconductor device, in which a dopant is diffused from its oxide into a semiconductor body
JPS61114523A (en) Manufacture of semiconductor device
US4588454A (en) Diffusion of dopant into a semiconductor wafer
JPS5917529B2 (en) Manufacturing method of semiconductor device
JPS6474754A (en) Semiconductor device
JPS63102357A (en) Manufacture of semiconductor device
KR850001097B1 (en) Semiconductor manufacturing method
JP2690917B2 (en) Thin film forming method and semiconductor device manufacturing method
KR100445068B1 (en) Method for forming charge storage node of semiconductor device to maximize effective surface area of capacitor in limited area
JPH04352420A (en) Manufacture of semiconductor element
JPH0239426A (en) Manufacture of semiconductor device
JPH02114632A (en) Formation of diffused layer
JPH02303120A (en) Method of forming impurity diffused layer
JPS6261322A (en) Manufacture of semiconductor device