JPS5917513A - Focusing detector - Google Patents

Focusing detector

Info

Publication number
JPS5917513A
JPS5917513A JP12627382A JP12627382A JPS5917513A JP S5917513 A JPS5917513 A JP S5917513A JP 12627382 A JP12627382 A JP 12627382A JP 12627382 A JP12627382 A JP 12627382A JP S5917513 A JPS5917513 A JP S5917513A
Authority
JP
Japan
Prior art keywords
light
receiving element
light receiving
focus
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12627382A
Other languages
Japanese (ja)
Inventor
Masatoshi Ida
井田 正利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP12627382A priority Critical patent/JPS5917513A/en
Priority to US06/502,546 priority patent/US4593188A/en
Priority to DE3321447A priority patent/DE3321447C2/en
Publication of JPS5917513A publication Critical patent/JPS5917513A/en
Priority to US06/828,708 priority patent/US4701605A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • G02B7/38Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals measured at different points on the optical axis, e.g. focussing on two or more planes and comparing image data

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To detect a focusing state with high detection precision over an extremely wide range by detecting a focus on the basis of information on the lateral shifting of an image and information on the definition of the image. CONSTITUTION:The openings 16-n of numbers of stripe masks 17-n are given different directivity between photodetectors 15A-n and 15B-n to detect only pieces of luminous flux R and L, and photodetectors 15C-n are arranged between photodetectors 15A-n and 15B-n. Information on the definition of an image is obtained from the outputs of the photodetectors 15C-n, and the information of the lateral shifting of the image is obtained on the basis of the differences between the outputs of the photodetectors 15A-n and 15B-n; and focusing is detected on the basis of both pieces of information to realize the focusing detection with high precision over the extremely wide range.

Description

【発明の詳細な説明】 本発明は、カメラ、顕微鏡等光学装置の焦点状態を検出
する合焦検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a focus detection device for detecting the focus state of an optical device such as a camera or a microscope.

結像光学系によって形成される物体像の合焦状態検出方
法として、従来からいわゆるぼけ像検出方法と横ずれ像
検出方法がよく知られている。第1図は、そのほけ像検
出方法を実施する合焦検出装置を一眼レフカメラに適用
し次場合の構成例な示す線図である。同図において、撮
影レンズlからの光束は、一部がノ・−フミラー2に形
成されたクイックリターンミラー8によってその一部ま
たは全部を2分割し、その一方はフォーカシングスクリ
ーン44、ペンタプリズム5等から々るファインダ系に
導くとともに、そのノーーフミラー2を透過した他方は
、そのクイックリターンミラー8の後方に配置した全反
射ミラー6によって下方のビームスブリツタクに導き、
ここでさらに2分割して、たとえば前記撮影レンズlの
予定焦平面8(フィルム面)と共役な面を挾んで一定距
離を隔てた位置に配置した一対の受光素子列9a、9b
のそれぞれに結像させるようにしている。
2. Description of the Related Art Conventionally, so-called blurred image detection methods and lateral shift image detection methods are well known as methods for detecting the in-focus state of an object image formed by an imaging optical system. FIG. 1 is a diagram illustrating a configuration example of the following case where a focus detection device implementing the blur image detection method is applied to a single-lens reflex camera. In the figure, a part or all of the light beam from a photographing lens 1 is divided into two parts by a quick return mirror 8 formed on a no-f mirror 2, and one part is divided into two parts by a focusing screen 44, a pentaprism 5, etc. At the same time, the other beam transmitted through the nauf mirror 2 is guided to a downward beam splitter by a total reflection mirror 6 placed behind the quick return mirror 8.
Here, it is further divided into two, for example, a pair of light receiving element arrays 9a and 9b arranged at positions separated by a certain distance across a plane conjugate with the intended focal plane 8 (film plane) of the photographing lens l.
We are trying to form an image on each of them.

以上のような構成において、一方の受光素子列の出力を
X として、たとえば、 ”’ = ’ xn −xn−1’MAX” xn−x
n−1’ SUBMAXのような価を考えると、これは
像の鮮明度に従って変化する偉の鮮明度に関する評価値
を与える。
In the above configuration, assuming that the output of one light receiving element array is X, for example, "' = ' xn - xn - 1'MAX" xn - x
Considering a value such as n-1'SUBMAX, this gives an evaluation value for the sharpness of the image that varies according to the sharpness of the image.

゛前記2個の受光素子列91Lおよび9bの出力につい
て、上式から求めた評価値SをそれぞれSo。
゛For the outputs of the two light-receiving element arrays 91L and 9b, the evaluation values S obtained from the above equation are respectively So.

S とすると、S およびS、はデフォーカスに対1 して第2図に示したように変化する。従って80と82
の差を観測していれば、S□〈S2で前ピン、S >S
 で後ピン、S□=82で合焦というように、2 デフォーカス方向と合焦位置が検出できることに(8) なる。
S, S and S change as shown in FIG. 2 with respect to defocus. Therefore 80 and 82
If you observe the difference between S□〈S2, front pin, S > S
This means that 2 defocus directions and the in-focus position can be detected (8), such as rear focus at S = 82 and focus at S = 82.

以上のような従来例は、比較的簡単な光学系を用いるこ
とにより高い精度で合焦状態を検出し得る長所があるが
、撮影レンズ1の結像面が合焦予定位置から大きくはず
れた状態では、第2図かられかるように評価値S工と8
2の差が無く表って、両評価値S1.82を比較するこ
とが困難となるので、レンズ駆動範囲の限られた範囲で
のみ合焦、前ピンおよび後ピンの検出が可能であり、結
像光学系駆動の全範囲にわたって合焦状態を検出するこ
とはきわめて困難であった。
The conventional example described above has the advantage of being able to detect the in-focus state with high precision by using a relatively simple optical system, but it is possible to detect a state in which the image-forming surface of the photographic lens 1 is far away from the expected focus position. Now, as shown in Figure 2, the evaluation value is S and 8.
Since there is no difference between the two evaluation values S1.82 and it becomes difficult to compare the two evaluation values S1.82, it is possible to focus, detect the front focus and the rear focus only within a limited range of the lens drive range, It has been extremely difficult to detect the in-focus state over the entire driving range of the imaging optical system.

着た、横ずれ像検出方法を用いた従来例としては、第8
図に示した構成のものがある。同図において第1図と同
一機能部分は、同一符号を付しである。この合焦検出装
置においては、全反射ミラー6に゛よって反射した撮影
レンズ1からの光束を撮影レンズ1の予定焦平面すなわ
ちフィルム面8と共役々面またはその近傍に配置し九レ
ンチキュラーレンズ等の微少な補助光学系10’E−介
して、この補助光学系1oに対する撮影レンズ1の射出
(4) 瞳面と光学的にほぼ共役々面に配置した受光素子列11
に入射させている。受光素子列11は第4図にも示すよ
うに受光素子群11A、IIBを具え、これら受光素子
群11A、IIBの各受光素子11 A −1〜IIA
−nおよびl IB −1〜11B−nはそれぞれ対応
する1個ずつが受光素子対11A−1、11B  1 
; 11 A −n 、  11 B  nを形成し、
これらの全ての受光素子が一直編上に位置するように配
列されている。また、補助光学系10は受光素子対11
A−1,IIB−1i11A−n、IIB−nに対応し
てn個有し、各受光素子対を構成する2個の受光素子が
、撮影レンズ1のほぼ射出瞳面上で、受光素子の配列方
向に垂直で撮影レンズ1の光軸を含む平面(第8図では
光軸を含む紙面に垂直な面)V境としてそれぞれの側に
位置する部分、す彦わち第8図では光軸を境とする射出
瞳面の上および下側部分の像を受光するように配置され
ている。
As a conventional example using the lateral shift image detection method,
There is a configuration shown in the figure. In this figure, the same functional parts as in FIG. 1 are given the same reference numerals. In this focus detection device, the light beam from the photographing lens 1 reflected by the total reflection mirror 6 is arranged at or near the predetermined focal plane of the photographing lens 1, that is, the plane conjugate to the film surface 8. Emission of the photographing lens 1 to this auxiliary optical system 1o via a minute auxiliary optical system 10'E (4) Light receiving element array 11 arranged in a plane optically almost conjugate with the pupil plane
It is input to. As shown in FIG. 4, the light-receiving element row 11 includes light-receiving element groups 11A and IIB, and each light-receiving element 11A-1 to IIA of these light-receiving element groups 11A and IIB.
-n and l IB -1 to 11B-n each have a corresponding one light receiving element pair 11A-1, 11B 1
; form 11A-n, 11Bn;
All of these light receiving elements are arranged in a straight line. Further, the auxiliary optical system 10 includes a light receiving element pair 11.
There are n light-receiving elements corresponding to A-1, IIB-1i11A-n, and IIB-n, and the two light-receiving elements constituting each light-receiving element pair are located approximately on the exit pupil plane of the photographing lens 1, and A plane perpendicular to the arrangement direction and containing the optical axis of the photographing lens 1 (in Fig. 8, a plane perpendicular to the plane of the paper containing the optical axis), the portions located on each side as V boundaries, that is, the optical axis in Fig. 8 It is arranged so as to receive images of the upper and lower parts of the exit pupil plane bordering on .

か\る構成において、撮影レンズlおよび補助光学系l
Oを経て被写体の像の少く共一部を受光素子列11に投
影すると、受光素子群11Aには撮影レンズlの図にお
いて下側部分を透過し次光束のみが入射し、受光素子群
11Bには反対に上側部分を透過し次光束のみが入射す
ることになり、受光素子群11AおよびIIBに投影さ
れる像の照度分布は、合焦時において一致し、非合焦時
においてはそのずれの方向に応じて互いに反対方向に横
ずれする。第8図に示す合焦検出装置においては、受光
素子群11AおよびIIBの出力を適当に処理して像の
横ずれ方向を検出し、これに基いて前ピン、後ピンおよ
び合焦の各焦点状態を検出している。
In such a configuration, the photographic lens l and the auxiliary optical system l
When a small common part of the image of the subject is projected onto the light-receiving element group 11 through the light receiving element group 11A, only the following light beam passes through the lower part of the photographic lens l in the figure and enters the light-receiving element group 11B. On the contrary, only the secondary light beam passes through the upper part and enters, and the illuminance distribution of the images projected onto the light receiving element groups 11A and IIB match when in focus, and when out of focus, the illuminance distribution of the images is the same. They shift laterally in opposite directions depending on the direction. In the focus detection device shown in FIG. 8, the outputs of the light receiving element groups 11A and IIB are appropriately processed to detect the lateral shift direction of the image, and based on this, each focus state of front focus, rear focus, and focus is detected. is being detected.

このような横ずれ像検出方法にょる合焦検出装置の長所
は、合焦検出可能範囲が第1図により説明したぼけ像検
出方法によるものに較べて格段に広いことである。その
反面、合焦近傍における横ずれ信号の利得が小さくなり
、また一般に構成が複雑であり、特に第8図に示す従来
の合焦検出装置においては、レンチキュラーレンズ等の
微少す補助光学系lOの製作が困難で、これがため装置
全体が高価でかつ大きくなる等の欠点があると共に、各
補助光学系とこれと対応する受光素子対との光学的調整
が容易でない難点がある。
The advantage of a focus detection device based on such a lateral shift image detection method is that the range in which focus can be detected is much wider than that of the focus detection device based on the blurred image detection method explained with reference to FIG. On the other hand, the gain of the lateral shift signal near the in-focus area is small, and the configuration is generally complicated. In particular, in the conventional focus detection device shown in FIG. This has drawbacks such as making the entire device expensive and large, as well as making it difficult to optically adjust each auxiliary optical system and its corresponding light-receiving element pair.

本発明の目的は、前述の如きぼけ像検出方法および横ず
れ像検出方法のそれぞれの長所をもち、しかも前述の如
き不具合を解消した構成簡易な合焦検出装置を提供しよ
うとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a focus detection device with a simple structure that has the respective advantages of the blurred image detection method and the lateral shift image detection method as described above, and eliminates the above-mentioned disadvantages.

本発明の合焦検出装置は、結像光学系の予定焦平面また
はその面と共役表面の前後に配置した多数の受光素子対
とそれら受光素子対間にそれぞれ配置した受光素子とを
直線的に配列してなる一対受光素子列と、この一対の受
光素子列の光入射側に配置され各受光素子列の前記受光
素子対を形成す−る各受光素子に前記結像光学系の光軸
を含む面を境とする第1および第2の領域からの光束を
各別に主に入射させ、かつ前記受光素子対間の受光素子
にはそれら両頭域からの光束を入射させるように形成し
た開口を有する遮光部材とを具え、前記各受光素子列の
前記結像光学系の第1の領域からの光束を受光する受光
素子群と、第2の領域か(7) らの光束を受光する受光素子群とにそれぞれ形成される
各物体像の横ずれをそれぞれ検出するとともに、前記各
受光素子列の前記各受光素子対間に配置した受光素子群
に形成される各物体像の鮮明度を検出し、これらの検出
情報に基づいて前記結像光学系によりその予定焦平面ま
たはその面と共役な面に形成される物体像の焦点状態を
検出するように構成したことを特徴とするものである。
The focus detection device of the present invention linearly connects a large number of light receiving element pairs arranged before and after a predetermined focal plane of an imaging optical system or a surface conjugate to that plane, and light receiving elements arranged respectively between the light receiving element pairs. A pair of light receiving element rows are arranged, and an optical axis of the imaging optical system is connected to each light receiving element arranged on the light incident side of the pair of light receiving element rows and forming the light receiving element pair of each light receiving element row. An aperture is formed so that the light beams from the first and second regions bounded by the surface containing the light beams are mainly incident thereon, and the light receiving element between the pair of light-receiving elements is formed so that the light beams from the two head regions are incident thereon. (7) a light-receiving element group that receives a light beam from a first area of the imaging optical system of each light-receiving element array; and a light-receiving element that receives a light beam from a second area (7). detecting the lateral shift of each object image formed in each group, and detecting the sharpness of each object image formed in each light receiving element group disposed between each pair of light receiving elements of each light receiving element row, The present invention is characterized in that it is configured to detect the focal state of an object image formed by the imaging optical system on its predetermined focal plane or on a plane conjugate to the predetermined focal plane, based on the detected information.

以下、本発明を図面に基づいて詳細に説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

第5図は、本発明装置を一眼レフカメラに適用した場合
の実施例の構成の一例を示す線図である。
FIG. 5 is a diagram showing an example of the configuration of an embodiment in which the device of the present invention is applied to a single-lens reflex camera.

同図において、第1図と同一部分は同一符号を付して示
してあり、これら部分については、さきに説明したので
ここではそれらの説明を省略する。
In this figure, the same parts as those in FIG. 1 are designated by the same reference numerals, and since these parts have been explained previously, their explanation will be omitted here.

同図に示したように本発明装置は、従来のぼけ像検出方
法によるものと同様に、結像光学系たとえば撮影レンズ
lの予定焦平面またはその面と共役な面の前後の各光束
を受光するように第1受光素子列12Aと第2受光素子
列12Bを具えている。各受光素子列12A、12Bは
詳細を後記す(8) るように二つの受光素子からなる受光素子対と、それら
受光素子対間に配置した受光素子とを直線的に交互に配
列した構成となっている。また、それら受光素子列12
A、12Bと前記撮影レンズ1との間の光路中、すなわ
ちビームスプリンタフと各受光素子列12A、12B間
には、各受光素子列12A、12B中の対をなす隣接す
る受光素子に対し、前記撮影レンズの光軸を含む面を境
と゛ する第1の領域からの光束と第2の領域からの光
束を主して各別に入射させ、かつ各受光素子対間の各受
光素子には、前記第1および第2の領域からの各光束な
入射させるように構成した遮光部材たとえば詳細を後記
するストライプマスク板18が配置しである。々お、1
4は受光素子列形成基板である。
As shown in the figure, the apparatus of the present invention receives each light beam before and after the predetermined focal plane of the imaging lens l or a plane conjugate to the plane of the imaging optical system, for example, as in the conventional method for detecting blurred images. A first light receiving element array 12A and a second light receiving element array 12B are provided. Each of the light receiving element rows 12A and 12B has a structure in which a light receiving element pair consisting of two light receiving elements and a light receiving element arranged between the light receiving element pairs are linearly and alternately arranged as shown in (8), details of which will be described later. It has become. In addition, those light receiving element rows 12
In the optical path between A, 12B and the photographic lens 1, that is, between the beam splinter and each light receiving element row 12A, 12B, for the adjacent light receiving elements forming a pair in each light receiving element row 12A, 12B, The light flux from the first region and the light flux from the second region bordered by a plane including the optical axis of the photographic lens are mainly incident on each light receiving element separately, and each light receiving element between each light receiving element pair is provided with: A light shielding member, such as a stripe mask plate 18, the details of which will be described later, is arranged to allow each of the light beams from the first and second regions to enter. 1, 1
4 is a light receiving element array forming substrate.

第6図Aは、受光素子列1’/Aおよびストライブマス
ク板18の構成と配置関係を示す上面図であり、同図B
は、側面から眺めた説明図である。
FIG. 6A is a top view showing the configuration and arrangement relationship of the light-receiving element array 1'/A and the stripe mask plate 18, and FIG.
is an explanatory diagram viewed from the side.

受光素子列14AとIBBのそれぞれは、同一基板14
(第5図参照)上に形成しである。
Each of the light receiving element rows 14A and IBB is mounted on the same substrate 14.
(See Figure 5).

とれら一対の受光素子列12A、12Bは、同一構成を
有し、その作用も同一であるので、説明を簡潔にするた
め、以下その一方の受光素子列12Aについてのみ説明
する。
The pair of light-receiving element arrays 12A and 12B have the same configuration and have the same function, so in order to simplify the explanation, only one of the light-receiving element arrays 12A will be described below.

第6図AおよびBにおいて、受光素子列12Aは、多数
の受光素子対15A−1,15B−1ニー: l 6A
−n、 11SB−n、と、それら各受光素子対間にそ
れぞれ挿入配置し穴受光素子15〇−1〜11So−n
を交互に直線的に配列した構成となっている。
In FIGS. 6A and 6B, the light receiving element array 12A includes a large number of light receiving element pairs 15A-1, 15B-1 knee: l 6A
-n, 11SB-n, and hole light receiving elements 150-1 to 11So-n inserted between each pair of light receiving elements.
are arranged alternately in a straight line.

一方、ストライプマスク板18は、ガラス、高分子フィ
ルム等の透明基板と、その表面に蒸着法あるいは印刷等
により、各前記受光素子対15A−1,1!IB−1:
・・−:15A−n、15B−nに対応して開口16−
1〜16−nを形成した多数のストライブマスク17と
から成っている。その開口16−1〜16−nと各受光
素子対15A1、15B−1:−−−: l 5A−n
、 15B−nとの配置関係を第6図Bに示す。すなわ
ち各開口−1〜16−n 111J¥膚光素子対15A−1,15B−0: −:
 15 A −n 、  15 B −nのそれぞれを
構成する2個の受光素子に、受光素子の配列方向に垂直
で撮影レンズlの光軸を含む平面を境とする第1および
第2の領域、すなわち第5図では光軸を境とする射出瞳
面の上および下側部分を透過した光束R,Lを各別に主
として入射させ、各受光素子対間に配置した各受光素子
150−1〜15C1−〇には、それら両領竣からの光
束を入射させるように形成されている。
On the other hand, the stripe mask plate 18 is made of a transparent substrate such as glass or a polymer film, and each of the light-receiving element pairs 15A-1, 1! IB-1:
...-: Opening 16- corresponding to 15A-n and 15B-n
1 to 16-n. The apertures 16-1 to 16-n and each light-receiving element pair 15A1, 15B-1: ---: l 5A-n
, 15B-n is shown in FIG. 6B. That is, each aperture -1 to 16-n 111J\skin light element pair 15A-1, 15B-0: -:
15A-n and 15B-n, first and second regions bordered by a plane perpendicular to the arrangement direction of the light-receiving elements and including the optical axis of the photographing lens l; That is, in FIG. 5, the light fluxes R and L that have passed through the upper and lower parts of the exit pupil plane bordering the optical axis are mainly incident on each of the light receiving elements 150-1 to 15C1 arranged between each light receiving element pair. −〇 is formed so that the light beams from both of these areas are incident.

このように構成すれば、各受光素子対を構成する2個の
受光素子、たとえば受光素子15A−1゜15B−1は
第7図に示すように互いに異々る方向に指向性を持つよ
うになり、受光素子群15A−1〜15ム−nには第5
図において撮影光学系lの光軸を境とする主として上側
を透過した光束が入射し、受光素子群15B−1〜15
B−nには主として下側を透過した光束が入射すること
になる。したがって、それら各受光素子群15A−1〜
15A−n : 1 !IB−1〜15B−nにそれぞ
れ形成される像の照度分布は、受光素子列12A上に合
焦したときは一致するが、非合焦時においては前ピンま
たは後ピンのずれの方向に応じて互いに反対方向にずれ
るから、その像の横ずれ方向を検出することにより、そ
の受光素子列12A上における焦点状態を検出すること
ができる。しかも、横ずれ像検出方法の長所が活かされ
ることと々るので第1図で説明したぼけ像検出方法によ
るものに比べ、合焦検出範囲が一段と拡大する。一方、
その受光素子列12Aの各受光素子15A  1.15
B−1:・・・:15A−n、15B−n間に配置した
受光素子群150−1〜150−nには、射出瞳分割さ
れない光束が投影されることとなるので、この受光素子
群150−1〜150−nに投影される像は横ずれを生
ぜず、撮影レンズ1の受光素子列12A上における焦点
状態に応じた鮮明度のものとなる。
With this configuration, the two light-receiving elements constituting each light-receiving element pair, for example, light-receiving elements 15A-1 and 15B-1, have directivity in mutually different directions as shown in FIG. Therefore, the fifth light receiving element group 15A-1 to 15A-n has a fifth
In the figure, the light beam that has passed mainly above the optical axis of the photographing optical system l enters the photodetector groups 15B-1 to 15B-15.
The light beam that has passed through the lower side is mainly incident on B-n. Therefore, each of these light receiving element groups 15A-1 to
15A-n: 1! The illuminance distribution of the images formed on each of IB-1 to IB-15B-n is the same when focused on the light-receiving element array 12A, but when out of focus, the illuminance distribution varies depending on the direction of the front focus or rear focus shift. Since the images are shifted in opposite directions, by detecting the direction of the lateral shift of the image, the state of focus on the light receiving element array 12A can be detected. Moreover, since the advantages of the lateral shift image detection method are fully utilized, the focus detection range is further expanded compared to the method using the blurred image detection method described in FIG. on the other hand,
Each light receiving element 15A of the light receiving element row 12A 1.15
B-1: ...: Since a light beam that is not divided into exit pupils is projected onto the light receiving element groups 150-1 to 150-n arranged between 15A-n and 15B-n, this light receiving element group The images projected on 150-1 to 150-n do not cause lateral shift and have a sharpness that corresponds to the focal state on the light-receiving element array 12A of the photographic lens 1.

本発明装置においては、以上説明したような横ずれ像の
検出と、鮮明度の検出を他方の受光素子列IBBについ
ても行ない、各受光素子列12A。
In the apparatus of the present invention, the above-described horizontal shift image detection and sharpness detection are also performed for the other light-receiving element array IBB, and each light-receiving element array 12A.

12Bから得られ次像の横ずれ情報と、像の鮮明度に関
する情報に基づいて焦点状態を検出するものである。
The focus state is detected based on the lateral shift information of the next image obtained from 12B and information regarding the sharpness of the image.

たとえば、受光素子列12A、12Eにおける各受光素
子対15A−1,15B−1:・・・=15ム−”+1
5B  n0間に配置した受光素子群1150−1〜1
50−nの出力をOnとし、受光素子列12Aに投影さ
れる像の鮮明度を表わす評価関数F1として、 F=IO−01・・・ (1) l     n    n+1  !laXを用い、ま
た、受光素子列12Bに投影される像の鮮明度を表わす
評価関数を同様にF、とすると、F□およびF2は、第
8図(a)に示したように各受光素子列12A、12B
上に投影像が結像したとき、評価値F□ F、がピーク
値とガるようにそれぞれ変化する。
For example, each light-receiving element pair 15A-1, 15B-1 in the light-receiving element rows 12A, 12E:...=15mm-"+1
5B Light receiving element group 1150-1 to 1 arranged between n0
When the output of 50-n is turned on, the evaluation function F1 representing the sharpness of the image projected onto the light receiving element array 12A is as follows: F=IO-01... (1) l n n+1! la Columns 12A, 12B
When a projection image is formed on the projection image, the evaluation values F□F change so as to differ from the peak value.

一方、の各受光素子対を構成する一方の受光素子からな
る受光素子群15A−1−15ム−nの出力をin、他
方の受光素子からなる受光素子群15B−1〜15B−
nの出力をBnとし、受光素子列12A上の像の横ずれ
を表わす評価関数F8として、たとえば F8=Σ(IA、、、−Bn、1−IAn−Bn+、l
 ’)   ・・・(2)を用い、他方の受光素子列1
2B上の像の横ずれな表わす評価関数を同様にしてF 
とすると、F。
On the other hand, the output of the light-receiving element group 15A-1-15-n consisting of one of the light-receiving elements constituting each light-receiving element pair is inputted, and the output of the light-receiving element group 15B-1 to 15B-n consisting of the other light-receiving element is inputted.
Let the output of n be Bn, and as the evaluation function F8 representing the lateral shift of the image on the light receiving element array 12A, for example, F8=Σ(IA, , -Bn, 1-IAn-Bn+, l
')...Using (2), the other light receiving element row 1
Similarly, the evaluation function representing the lateral shift of the image on 2B is
Then, F.

F、は第8図(b)に示したように、前記ぼけ像検出方
法による評価関数F、F、の各ピーク値の位置では、像
に横ずれを生じないので、零の値となり、この位置から
外れると横ずれを生じ、デフォーカスの方向に応じて正
負の符号が反転する曲線となる。従って、前ピン、後ピ
ンのデフォーカス方向につbでは、前記(2)式の評価
関数F8.F、を演算し、そのF8.?、が同符号のと
きには内符号の正、負によって判断し、F8.F、が異
符号ときには前記(1)式による評価関数F、F、を用
いてデフォーカス方向と合焦を判定−するようにすれば
、@1図で説明した従来のぼけ像検出方法による合焦検
出装置に比べ、極めて広い結像光学系の駆動範囲にわた
って、合焦状態を検出することが可能と々す、しかも、
はけ像検出方法の長所である高い検出精度ごもって合焦
状態を検出することができる。
As shown in FIG. 8(b), F has a value of zero at the position of each peak value of the evaluation functions F and F by the blurred image detection method because no lateral shift occurs in the image, and the value is zero at this position. If it deviates from this, a lateral shift occurs, resulting in a curve whose sign reverses depending on the direction of defocus. Therefore, in the defocus direction of front focus and rear focus, the evaluation function F8 of equation (2) above. F8. ? , are the same sign, it is determined by the positive or negative inner sign, and F8. If the defocus direction and focus are determined using the evaluation functions F and F according to equation (1) when F and F have different signs, the conventional blurred image detection method explained in Figure @1 can be used to determine the defocus direction and focus. Compared to focus detection devices, it is possible to detect the in-focus state over an extremely wide driving range of the imaging optical system.
The in-focus state can be detected with high detection accuracy, which is an advantage of the blurred image detection method.

第9図は、各受光素子列12A、12Bの出力に基いて
、合焦、前ピンおよび後ピンを表わす焦点情報を得る信
号処理回路の一例の概略構成を示すブロック図である。
FIG. 9 is a block diagram showing a schematic configuration of an example of a signal processing circuit that obtains focus information representing in-focus, front focus, and back focus based on the output of each light receiving element array 12A, 12B.

本例では、各受光素子列12A、12Bの多数の受光素
子の出力を同時にサンプルホールド回路20にホールド
し、このホールド値を各受光素子列12A、12B別の
出力別に、受光素子の配列順序に従って順次読み出し、
これをA/D変換回路21で順次アナログ−デジタル変
換してffVlおよび第2演算回路22.28に取り込
む。その第1演算回路22では、各受光素子列12A、
12Bの隣接する受光素子対間に受光素子からなる受光
素子群の出力c c′をそれぞれ用い、前記(1)n、
   n 式に基づいて各受光素子列12A、12B上の像の鮮明
度を表わす評価関数F0およびF2を演算するとともに
、第2演算回路28では、各受光素子12A、12Bの
それぞれの受光素子対を構成する各別の受光素子からな
る各二つの受光素子群の出力AB  およびA’  B
’ を用い、前記(2)式にn、n         
  n、n 基づいて各受光素子列12A、12B上の像の横ずれ方
向を表わす評値関数F およびF、?演算し、各演算結
果を判定(ロ)路2番に導く。
In this example, the outputs of a large number of light receiving elements of each light receiving element row 12A, 12B are simultaneously held in the sample and hold circuit 20, and this hold value is determined for each output of each light receiving element row 12A, 12B according to the arrangement order of the light receiving elements. read sequentially,
This is sequentially converted from analog to digital by the A/D conversion circuit 21 and taken into ffVl and the second arithmetic circuit 22.28. In the first arithmetic circuit 22, each light receiving element array 12A,
Using the output c c' of the light receiving element group consisting of light receiving elements between the adjacent light receiving element pairs of 12B, the above (1) n,
The evaluation functions F0 and F2 representing the sharpness of the image on each light receiving element row 12A, 12B are calculated based on the formula n, and the second calculation circuit 28 calculates each light receiving element pair of each light receiving element 12A, 12B. Outputs AB and A' B of each two light-receiving element groups consisting of different light-receiving elements
' to the equation (2) above, n, n
Evaluation functions F and F, ? representing the lateral shift direction of the image on each light-receiving element array 12A, 12B based on n, n? The calculation results are led to judgment (b) path No. 2.

それらの評価関数F□、F2.F8およびF、は、第8
図で説明したように所定焦千面ま7?1.けそれと共役
な面に対し、前ビン状態のときに、F8とF、が異符号
となる範囲でF、 > F、となり、それ以外の範囲で
F<0.F、<Oとなる。後ピン状態のときには、F8
とF、が異符号となる範囲でFx〈Fsと々す、それ以
外の範囲でF>0.F、>Oとなる。また結像光学系が
予定焦平面もしくはそれと共役な面に合焦したときは、
1゛8とF、が異符号でかつF□=F2となる。
Their evaluation functions F□, F2. F8 and F are the eighth
As explained in the figure, the predetermined focus is 7?1. For a surface conjugate to Kesore, in the front bin state, F, > F in the range where F8 and F have different signs, and F < 0 in other ranges. F, <O. When in rear pin state, F8
Fx<Fs in the range where and F have different signs, and F>0 in other ranges. F,>O. Also, when the imaging optical system focuses on the predetermined focal plane or a plane conjugate to it,
1゛8 and F have different signs and F□=F2.

すなわち、FoとF2を比較し得ない前ビン方向および
後ビン方向の範囲については、F、とF4の符号の正、
負によって容易に判別でき、F8とF。
That is, for the range in the front and rear bin directions where Fo and F2 cannot be compared, the positive sign of F and F4,
They can be easily distinguished by their negative values, F8 and F.

の異符号の範囲ではF□とF、の比較によって合焦状態
を精度高く判別することができることとなる。
In the range of opposite signs, the in-focus state can be determined with high accuracy by comparing F□ and F.

(15) 前記判定回路24では、F□、F1+、’8およびF、
について上記の関係を判定し、その結果を表示回路25
により表示する。受光素子列12A。
(15) In the determination circuit 24, F□, F1+, '8 and F,
The above relationship is determined with respect to
Displayed by Light receiving element row 12A.

IBB、サンプルホールド回路20.A/D変換回路2
1、第1および第2演算回路22.28、判定回路24
および表示回路25の各動作は、制御回路z6により制
御する。
IBB, sample and hold circuit 20. A/D conversion circuit 2
1. First and second arithmetic circuits 22.28, determination circuit 24
Each operation of the display circuit 25 is controlled by a control circuit z6.

なお、上述した実施例では合焦位置から外れているとき
には横ずれ情報を、また合焦点近傍になったらぼけ像情
報を用いて焦点状態を検出するようにしているが、全領
域に亘って双方の情報を用いて検出したり、合焦近傍に
おAても横ずれ情報を用いて検出したりするようにして
もよいことは勿論である。
In the embodiment described above, the focus state is detected using lateral shift information when the focus is out of focus, and using blurred image information when the focus is near the focus, but both It goes without saying that detection may be performed using information, or lateral shift information may be used to detect A near focus.

以上詳細に説明したように本発明の合焦検出装置は、結
像光学系の予定焦平面またはその面と共受光素子とによ
って構成し、これを前記結像光学系の駆動に伴々うほけ
像の強度分布の検出と、当(16) 該結像光学系の光軸を含む面を境とする第1およ   
 □び第2の領域からの光束による像の横ずれの検出に
共用した構成となっている。そして前記ぼけ像の準較が
困鼎な結儂光学系駆動範囲については横ずれ像検出方法
によって非合焦方向を検出するとともに、ぼけ像の比較
が容易表結像光学系の駆動範囲については、横ずれを生
じない像を用いてi了は像検出方法により焦点状態を検
出するようにしたものである。従って、本発明装置によ
れば、比較的簡易な構成によって、横ずれ像検出方法の
長所である結像光学系の全駆動範囲にわたる広い範囲に
ついての非合焦方向の検出効果と、ぼけ像検出方法の長
所である高精度な合焦状態検出効果を併せもった合焦検
出装置を提供することができる。
As explained above in detail, the focus detection device of the present invention is configured by the predetermined focal plane of the imaging optical system or its surface and a co-receiving element, and the focus detection device is configured by the predetermined focal plane of the imaging optical system or its surface and the co-receiving element. (16) detecting the intensity distribution of the image; and (16) detecting the first and
□The configuration is commonly used for detecting lateral shift of an image due to the light flux from the second area. Regarding the driving range of the optical system where it is difficult to compare the blurred images, the out-of-focus direction is detected by the lateral shift image detection method, and regarding the driving range of the front imaging optical system where it is easy to compare the blurred images, The focus state is detected using an image detection method using an image that does not cause lateral shift. Therefore, according to the apparatus of the present invention, with a relatively simple configuration, it is possible to achieve the out-of-focus direction detection effect over a wide range over the entire driving range of the imaging optical system, which is an advantage of the lateral shift image detection method, and the blurred image detection method. It is possible to provide a focus detection device that also has the advantage of highly accurate focus state detection.

また、上記実施例に示し九構成のように、結像光学系の
射出瞳からの光束を、その結像光学系の光軸を含む面を
境とする第1および1g2の領域からのそれぞれの光束
を分割するための遮光部材としてストライプマスクを用
いたものにおいては、構成が簡単になるばかりでなく、
製作や受光素子との光学的調整も容易であり、経済性に
も優れしかも小形にできる等の利点がある。
In addition, as in the nine configurations shown in the above embodiments, the light flux from the exit pupil of the imaging optical system is divided into the first and 1g2 areas bordered by the plane containing the optical axis of the imaging optical system. In the case of using a stripe mask as a light shielding member for dividing the luminous flux, the structure is not only simple, but also
It has the advantage of being easy to manufacture and optically adjusting with the light-receiving element, being economical, and being able to be made compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のぼけ像検出方法による合焦検出装置の
構成例を示す線図、 第2図は、第1図のものにおける像の鮮明度を表わす評
価値のテフォーカス方向に対する変化を示す曲線図、 第8図は、横ずれ像検出方法による従来例の焦合検出装
置の構成例を示す線図、 第4図は、第8図に示した従来例における補助光学系と
受光素子列との配置関係を示す平面図、第5図は、本発
明の実施例の構成の一例を示す線7図、 第6図ムおよびB(ゴ、第4図に示すストリップマスク
と受光素子列の構成ならびにそれらの配置関係を示す線
図、 第7図は、同一受光素子列の対をなす受光素子の指向特
性の一例図、 第8図は、本発明装置における像の鮮明度を表わす信号
と、像の横ずれを表わす信号の関係の一例を示す図、 第9図は、本発明の合焦検出装置の信号処理回路の一例
の概略的構成を示すブロック線図である。 ■・・・撮影レンズ、2・・・ハーフミラ−18・・ク
イックリターンミラー、6・・・全反射ミラー、7・・
・ビームスプリッタ、8・・・フィルム面、12A、1
2B・・・受光素子列、18・・・ストライプマスク板
、14・・・基板、15A、15B・・・受光素子群、
15A−1〜15A−n、 15B−1〜15B−n、
  150−1〜150−n−・−受光素子、l 6−
1〜16− n −開口、17−1〜17−n・・・ス
トライプマスク、BO・・・サンプルホールド回路、2
1・・・A/D変換回路、22・・・第1演算回路、2
8・・・第2演算回路、z4・・・判定回路、25・・
・表示回路、26・・・制御回路。 11flBi159−17513 (7)第S図 第9図 手続補正書 昭和58年7月18日 1、事件の表示 昭和57年 特 許 願第126273号2、発明の名
称 合焦検出装置 3、補正をする者 事件との関係  特許出願人 (037)   オリンパス光学工業株式会社外1名 5゜ 1明細書第4頁第19行中に「微少な補助光学系10j
とあるのを「複数の微小レンズからなる補助光学系10
」と訂正する。 2、同第5頁第11行中に「n個有し・」とあるのを、
「n個の微小レンズ1 (1−IP−1,11−nを有
し、かつ前記」と訂正し、 同頁第17行中に「像を」とあるのを、[像を、前記微
小レンズ10−1〜to−nのそれぞれを介して各別に
」と訂正する。 8同第6頁第19行中の「の微少な」を、「の多数の微
小レンズからなる」と訂正する。 4同第10頁第15.17.20行中に「t 6−nJ
とあるのを、各116−+n+1)Jと訂正し、同頁第
16行中に「ストライプマスク17」とあるのヲ[スト
ライプマスク17−1”−17nJと訂正する。 5、同第11頁第7〜8行中、同第12頁第11〜12
行中および同頁第14行中、ならびに同第18頁第6行
中に「15C−nJとあるのをそれぞれ[150−1n
−1)Jと訂正する。 6、同第19頁第7行中に「デフォーカス方向」とある
のを「デフォーカス方向」と訂正し、同N第15〜16
行中に「ストリップマスク」とあるのを「ストライプマ
スク」と訂正スる。 7同第20頁第11行中に「15cmn」とあるのを「
15cm(n−1)Jと訂正しN同頁同行中の[t6−
nJを[e−1n+1)Jと訂正する。 8図面中筒6図Aおよび第6図Bを別紙訂正図のとおり
訂正する。
Fig. 1 is a diagram showing an example of the configuration of a focus detection device using a conventional blurred image detection method, and Fig. 2 shows a change in the evaluation value representing the sharpness of an image with respect to the telefocus direction in the one shown in Fig. 1. 8 is a diagram showing a configuration example of a conventional focus detection device using the lateral shift image detection method. FIG. 4 is a diagram showing an auxiliary optical system and a light receiving element array in the conventional example shown in FIG. 8. FIG. 5 is a plan view showing the arrangement relationship between the strip mask and the light receiving element array shown in FIG. FIG. 7 is a diagram showing the configuration and their arrangement relationship; FIG. 7 is an example of the directivity characteristics of a pair of light-receiving elements in the same row of light-receiving elements; FIG. , a diagram showing an example of the relationship between signals representing the lateral shift of an image, and FIG. 9 is a block diagram showing a schematic configuration of an example of the signal processing circuit of the focus detection device of the present invention. Lens, 2... Half mirror 18... Quick return mirror, 6... Total reflection mirror, 7...
・Beam splitter, 8... Film surface, 12A, 1
2B... Light receiving element row, 18... Stripe mask plate, 14... Substrate, 15A, 15B... Light receiving element group,
15A-1 to 15A-n, 15B-1 to 15B-n,
150-1 to 150-n-・-light receiving element, l 6-
1 to 16-n-aperture, 17-1 to 17-n...stripe mask, BO...sample hold circuit, 2
1... A/D conversion circuit, 22... First arithmetic circuit, 2
8... Second arithmetic circuit, z4... Judgment circuit, 25...
- Display circuit, 26... control circuit. 11flBi159-17513 (7) Figure S Figure 9 Procedural Amendment July 18, 1981 1. Indication of the case 1987 Patent Application No. 126273 2. Name of the invention Focus detection device 3. Make the amendment Patent applicant (037) One person other than Olympus Optical Industry Co., Ltd.
It says, "Auxiliary optical system 10 consisting of multiple microlenses.
” he corrected. 2.In the 11th line of page 5 of the same page, there is a statement that says, “I have n pieces.”
Corrected "n microlenses 1 (1-IP-1, 11-n, and the above"), and changed the phrase "image" in line 17 of the same page to 8. In the 19th line of page 6 of the same page, the word "minor" is corrected to "consist of a large number of microlenses." 4, page 10, line 15.17.20, “t 6-nJ
116-+n+1)J, and in line 16 of the same page, the line ``Stripe Mask 17'' is corrected to read [Stripe Mask 17-1''-17nJ. 5, Page 11 of the same page. Lines 7-8, page 12, 11-12
"15C-nJ" in the line 14 of the same page, and in the 6th line of the 18th page are replaced with [150-1nJ, respectively.
-1) Correct it as J. 6. Corrected "defocus direction" in line 7 of page 19 to "defocus direction" and added
Correct "strip mask" in the line to "stripe mask". 7 In the same page 20, line 11, replace “15cmn” with “
Corrected 15cm (n-1)J to N on the same page [t6-
Correct nJ to [e-1n+1)J. Figures 6A and 6B of the cylinder in Figure 8 are corrected as shown in the attached correction diagram.

Claims (1)

【特許請求の範囲】 1 結像光学系の予定焦平面またはその面と共役な面の
前後に配置され、かつ多数の受光素子対とそれら受光素
子対間にそれぞれ配置した受光素子とを直線的に配列し
てなる一対の受光素子列と、この一対の受光素子列の光
入射側に配置され各受光素子列の前記受光素子対を形成
する各受光素子に前記結像光学系の光軸を含む面を境と
する第1および第2の領域からの光束を各別に主に入射
させ、かつ前記受光素子対間の受光素子にはそれら両頭
域からの光束を入射させるように形成した開口を有する
遮光部材とを具え、 前記各受光素子列の前記結像光学系の第1の領域からの
光束P受光する受光素子群と、第2の領域からの光束を
受光する受光素子群とにそれぞれ形成される各物体像の
横ずれをそれぞれ検出するとともに、前記各受光素子列
の前記各受光素子対間に配置した受光素子群に形成され
る各物体像の鮮明度を検出し、これらの検出情報に基づ
いて前記結像光学系によりその予定焦面マf:、はその
面と共役な面に形成される物体像の焦点状態を検出する
ように構成したことを特徴とする合焦検出装置。
[Scope of Claims] 1. A plurality of light receiving element pairs arranged in front of and behind a predetermined focal plane of an imaging optical system or a plane conjugate to that plane, and light receiving elements respectively arranged between the light receiving element pairs, are arranged in a straight line. a pair of light-receiving element rows arranged in a row, and an optical axis of the imaging optical system to each light-receiving element arranged on the light incident side of the pair of light-receiving element rows and forming the light-receiving element pair of each light-receiving element row. An aperture is formed so that the light beams from the first and second regions bounded by the surface containing the light beams are mainly incident thereon, and the light receiving element between the pair of light-receiving elements is formed so that the light beams from the two head regions are incident thereon. a light-shielding member having a light-shielding member, and a light-receiving element group that receives the luminous flux P from the first region of the imaging optical system of each of the light-receiving element arrays and a light-receiving element group that receives the luminous flux from the second region, respectively. In addition to detecting the lateral shift of each object image formed, the sharpness of each object image formed on the light receiving element group arranged between each light receiving element pair of each light receiving element row is detected, and these detected information are detected. A focus detection device characterized in that the imaging optical system is configured to detect a focal state of an object image formed on a plane conjugate to the planned focal plane f:, based on the imaging optical system.
JP12627382A 1982-06-14 1982-07-20 Focusing detector Pending JPS5917513A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12627382A JPS5917513A (en) 1982-07-20 1982-07-20 Focusing detector
US06/502,546 US4593188A (en) 1982-06-14 1983-06-09 Apparatus and method for detecting focus condition of an imaging optical system
DE3321447A DE3321447C2 (en) 1982-06-14 1983-06-14 Method and device for determining the focus state of an optical imaging system
US06/828,708 US4701605A (en) 1982-06-14 1986-02-12 Apparatus and method for detecting focus condition of an imaging optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12627382A JPS5917513A (en) 1982-07-20 1982-07-20 Focusing detector

Publications (1)

Publication Number Publication Date
JPS5917513A true JPS5917513A (en) 1984-01-28

Family

ID=14931113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12627382A Pending JPS5917513A (en) 1982-06-14 1982-07-20 Focusing detector

Country Status (1)

Country Link
JP (1) JPS5917513A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178095U (en) * 1987-05-11 1988-11-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178095U (en) * 1987-05-11 1988-11-17

Similar Documents

Publication Publication Date Title
US7745772B2 (en) Image forming state detection device
US4855777A (en) Apparatus for detecting the focus adjusted state of an objective lens
US4251143A (en) Photographic camera with means indicating the state of focus
JP2006071950A (en) Optical equipment
US4097881A (en) Focussing apparatus for cameras
US4200786A (en) Electrooptical focusing apparatus for photographic cameras
US4593188A (en) Apparatus and method for detecting focus condition of an imaging optical system
JPS5917513A (en) Focusing detector
JPS6037509A (en) Focus detector
JPH0473566B2 (en)
JPH03604B2 (en)
JP3134429B2 (en) Focus detection device
JP5043402B2 (en) Photometric device and camera
JPS59146009A (en) Focusing detecting method
JPS597322A (en) Focus detector
US4428653A (en) Mirror reflex camera with an electronic range finder
JPS59129811A (en) Focusing detecting device
JPS5994723A (en) Complex focusing detector
JP2600823B2 (en) Focus detection device
JP2757373B2 (en) Focus detection device
JPH01266503A (en) Focus detecting device
JPS62183416A (en) Focus detecting device
JP4289707B2 (en) Focus detection device
JP2001021797A (en) Focus detector
JPS5915207A (en) Focusing detecting device