JPS5917510B2 - PTC heating element and its manufacturing method - Google Patents

PTC heating element and its manufacturing method

Info

Publication number
JPS5917510B2
JPS5917510B2 JP53060701A JP6070178A JPS5917510B2 JP S5917510 B2 JPS5917510 B2 JP S5917510B2 JP 53060701 A JP53060701 A JP 53060701A JP 6070178 A JP6070178 A JP 6070178A JP S5917510 B2 JPS5917510 B2 JP S5917510B2
Authority
JP
Japan
Prior art keywords
conductive layer
silver
heating element
metal
ptc heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53060701A
Other languages
Japanese (ja)
Other versions
JPS54152243A (en
Inventor
通一 竹内
捷 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP53060701A priority Critical patent/JPS5917510B2/en
Publication of JPS54152243A publication Critical patent/JPS54152243A/en
Publication of JPS5917510B2 publication Critical patent/JPS5917510B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 本発明は正の抵抗温度係数を有するチタン酸バリウム系
半導体磁器発熱体(以下PTCサーミス5 夕と記す)
を使用したPTC発熱体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a barium titanate semiconductor ceramic heating element (hereinafter referred to as PTC thermistor) having a positive temperature coefficient of resistance.
This invention relates to a PTC heating element using.

従来、PTC発熱体は、例えば定温度発熱体として、電
子蚊取器、電子保温シャー等に用いられているが、最近
、特に石油ガスコンロにおいて燃焼効率を向上させる為
に石油霧化加熱方式に実用0 化されようとしている。
このようなPTCサーミスタの定温度発熱体としての特
徴を生かした高出力定温度発熱体が注目されている。と
ころが、従来のPTC発熱体においては第1図に示すよ
うに、PTCサーミスタ素体1の両端5 面に、それぞ
れ銀合金ペースト印刷等により、銀電極2、2を被着し
てオーミック電極を形成し、この銀電極2、2の表面上
に金属板3、3を面接触させた構造になつている。
Conventionally, PTC heating elements have been used as fixed-temperature heating elements in electronic mosquito repellents, electronic heat shields, etc., but recently they have been put to practical use in oil atomization heating systems to improve combustion efficiency, especially in oil and gas stoves. It is about to be reduced to 0.
A high output constant temperature heating element that takes advantage of the characteristics of such a PTC thermistor as a constant temperature heating element is attracting attention. However, in the conventional PTC heating element, as shown in Fig. 1, ohmic electrodes are formed by depositing silver electrodes 2, 2 on both ends of the PTC thermistor body 1 by printing silver alloy paste, etc. However, the structure is such that metal plates 3, 3 are brought into surface contact with the surfaces of the silver electrodes 2, 2.

しかし、このような電極構造であると、第2図0 に示
すように、銀電極2、2の外周面が外気に直接触れ、ま
た電界の影響を直ちに受けやすいため、銀電極2、2の
間に電位差を与えた場合、銀電極2、2からPTCサー
ミスタ素体1の外周表面に沿つて銀が移動析出する銀移
動現象を生じ、つい5 には電極間短絡を生じてしまう
こともたびたびであつた。
However, with such an electrode structure, as shown in FIG. When a potential difference is applied between the silver electrodes 2 and 2, a silver migration phenomenon occurs in which silver migrates and is deposited along the outer peripheral surface of the PTC thermistor body 1, which often results in a short circuit between the electrodes. It was hot.

このような銀移動現象はシルバーマイグレーシヨン現象
(第2図の符号4で示す)と呼ばれ、高温多湿の雰囲気
中で特に著るしく促進される。
Such a silver migration phenomenon is called a silver migration phenomenon (indicated by reference numeral 4 in FIG. 2), and is particularly accelerated in a high temperature and high humidity atmosphere.

銀の代りに金、白金またはパラジウム等の貴金属を使用
して電極を形成すれば、シルバーマイグレーシヨン現象
は起らないが、製品のコスト高騰を招いてしまい実用的
でない。また、シルバーマイグレーシヨンバリアとして
、銀電極の上に半田等の金属層をコートし、または同電
位の部分にバリアを構成することにより、シルバーマイ
グレーシヨンを防止する方法も知られているが、コスト
高となつたり、PTC発熱体の場合高温の為コートする
金属層の選択も必要であり、設計上、困難度がある。
If the electrode is formed using a noble metal such as gold, platinum, or palladium instead of silver, the silver migration phenomenon will not occur, but this will increase the cost of the product and is not practical. There are also known methods of preventing silver migration by coating a silver electrode with a metal layer such as solder or configuring a barrier on parts with the same potential as a silver migration barrier, but this method is costly. In the case of a PTC heating element, it is necessary to select a metal layer to be coated due to the high temperature, which is difficult in terms of design.

本発明は、簡単な構成によつて前述するシルバーマイグ
レーシヨン現象を完全に防止すると同時に、素体の局部
的発熱に伴う熱破壊、発熱の不平衡をなくして特性を安
定させ、更に電極表面の面内抵抗を下げ、電極の導電性
を向上させたPTC発熱体とその電極製造方法を提供す
ることを目的とする。
The present invention completely prevents the above-mentioned silver migration phenomenon with a simple configuration, and at the same time stabilizes the characteristics by eliminating the thermal breakdown and imbalance of heat generation caused by local heat generation of the element body. It is an object of the present invention to provide a PTC heating element with reduced in-plane resistance and improved electrode conductivity, and a method for manufacturing the electrode.

上記目的を達成するたのに、本発明に係る円℃発熱体は
、正の抵抗温度係数を有するチタン酸バリウム系半導体
磁器素体の両端面には、銀以外の金属を主成分とし、か
つ前記チタン酸バリウム系半導体磁器素体に対してオー
ム性接触となる第1導電層が形成されるとともに、この
第1導電層上にはこの第1導電層よりも平面積が小さく
外周端全周にギヤツプを有する銀を主成分とする第2導
電層が形成されたことを特徴とする。
In order to achieve the above object, the ℃ heating element according to the present invention has a metal other than silver as a main component on both end surfaces of a barium titanate-based semiconductor ceramic body having a positive temperature coefficient of resistance, and A first conductive layer is formed in ohmic contact with the barium titanate-based semiconductor ceramic body, and a conductive layer having a smaller planar area than the first conductive layer is formed on the entire outer circumference. A second conductive layer mainly composed of silver having a gap is formed therein.

また、このPTC発熱体を得るため、本発明に係るPT
C発熱体の製造方法は、正の抵抗温度係数を有するチタ
ン酸バリウム系半導体磁器素材の両端面上に、該素材に
対してオーム性接触となるように、銀以外の金属を主成
分とする金属被覆層を形成した後、この金属被覆層の上
に、スクリーン印刷法により、前記金属被覆層より平面
積が小さい銀を主成分とする導電層を、外周端全周にギ
ヤツプが形成されるように被着させたことを特徴とする
Moreover, in order to obtain this PTC heating element, the PTC heating element according to the present invention
The manufacturing method of the C heating element is to use a metal other than silver as a main component on both end faces of a barium titanate semiconductor ceramic material having a positive temperature coefficient of resistance so as to be in ohmic contact with the material. After forming the metal coating layer, a conductive layer mainly composed of silver having a smaller planar area than the metal coating layer is formed on the metal coating layer by a screen printing method, and a gap is formed around the entire outer peripheral edge. It is characterized by being coated in a manner similar to the above.

以下実施例たる添付図面を参照し、本発明の内容を具体
的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The content of the present invention will be specifically described below with reference to the accompanying drawings, which are examples.

第3図Aは本発明に係るPTC発熱体の平面図、第3図
Bは正面断面図、第4図は斜視図である。
FIG. 3A is a plan view of a PTC heating element according to the present invention, FIG. 3B is a front sectional view, and FIG. 4 is a perspective view.

図において、21はPTCサーミスタ素体であり、この
実施例では例えば直径34m/mの円板状に形成してあ
る。この素体21の相対する両端面には、銀以外の金属
を主成分とし、かつ素体21に対してオーム性接触とな
る第1導電層22を形成する。このように、本発明にお
いては、第1導電層22を銀以外の金属を主成分とする
ものによつて構成してあるから、該第1導電層22にお
けるシルバーマイグレーシヨンの発生を防止することが
できる。またこの第1導電層22は素体21に対してオ
ーム性接触となるから、素体21自体の正の抵抗温度特
性をそのまま引出すことが可能になる。しかも、この第
1導電層22は素体2]の両端面の略全面に形成してあ
るから、第1導電層22から素体21への電流密度が、
素体21の両端面の全域に亘つて均一になる。このため
、素体21が略全面に亘つて平均に発熱し、局部的発熱
に伴う素体21の熱破壊、発熱の不平衡がなくなり、等
性が安定する。前記第1導電層22は、無電解メッキ法
による金属メツキ層として形成することができる。
In the figure, reference numeral 21 denotes a PTC thermistor element, which in this embodiment is formed into a disk shape with a diameter of 34 m/m, for example. On both opposing end surfaces of the element body 21, a first conductive layer 22, which is mainly composed of a metal other than silver and is in ohmic contact with the element body 21, is formed. In this way, in the present invention, since the first conductive layer 22 is made of a material whose main component is a metal other than silver, it is possible to prevent silver migration from occurring in the first conductive layer 22. Can be done. Furthermore, since the first conductive layer 22 is in ohmic contact with the element body 21, it is possible to directly bring out the positive resistance-temperature characteristics of the element body 21 itself. Moreover, since the first conductive layer 22 is formed on substantially the entire surface of both end surfaces of the element body 2, the current density from the first conductive layer 22 to the element body 21 is
It becomes uniform over the entire region of both end faces of the element body 21. For this reason, the element body 21 generates heat evenly over substantially the entire surface, heat destruction of the element body 21 due to localized heat generation, and heat generation imbalance are eliminated, and homogeneity is stabilized. The first conductive layer 22 may be formed as a metal plating layer using an electroless plating method.

すなわち、無電解ニツケルメツキ液に素体21を浸漬し
て、還元剤により素体21の全面に金属イオンを化学的
に還元析出させ、その後、素体21の側面の不要部分を
センタレス研削により研削するか、あるいはレジストで
溶解除去して、素体21の両端面に略同径のニツケルか
ら成る金属メツキ層、即ち第1導電層22を形成する。
なお、この第1導電層22は無電解メツキ法以外の方法
、例えばイオンプレーテイング法、スパツタリング法等
により形成してもよい。更に、前記第1導電層22上に
はこの第1導電層22よりも平面積が小さい銀を主成分
とする第2導電層23が形成されている。
That is, the element body 21 is immersed in an electroless nickel polishing solution, metal ions are chemically reduced and precipitated over the entire surface of the element body 21 using a reducing agent, and then unnecessary portions on the sides of the element body 21 are ground by centerless grinding. Alternatively, a metal plating layer made of nickel having approximately the same diameter, that is, a first conductive layer 22, is formed on both end surfaces of the element body 21 by dissolving and removing it with a resist.
Note that this first conductive layer 22 may be formed by a method other than the electroless plating method, such as an ion plating method or a sputtering method. Further, on the first conductive layer 22, a second conductive layer 23 whose planar area is smaller than that of the first conductive layer 22 and whose main component is silver is formed.

この第2導電層23を形成するには、フリツト含有銀合
金ペーストを、第1導電層22上に同心状にかつ外周に
適当なギヤツプGを残すようにスクリーン印刷法によつ
て塗布し、かつ焼付け処理する。前記ギヤツプGは直径
34m/mの素材21に対して約2m/m程度が適当で
あり、これにより第1導電層22の上に30m/m径の
第2導電層23が焼付け形成される。前述した如く、第
1導電層22は銀以外の金属、例えば無電解ニツケルメ
ツキ層等によつて構成されているため、シルバーマイグ
レーシヨンの防止、電流密度の均一化等には有効である
が、面内抵抗が大きく導電性がそれほど良くない。
In order to form the second conductive layer 23, a frit-containing silver alloy paste is applied concentrically onto the first conductive layer 22 with a suitable gap G left on the outer periphery by screen printing, and Baking treatment. The gap G is suitably about 2 m/m for the material 21 having a diameter of 34 m/m, so that the second conductive layer 23 with a diameter of 30 m/m is formed on the first conductive layer 22 by baking. As mentioned above, since the first conductive layer 22 is made of a metal other than silver, such as an electroless nickel plating layer, it is effective in preventing silver migration and making the current density uniform. Internal resistance is large and conductivity is not very good.

そこで本発明においては、この第1導電層22の上に導
電度の高い銀を主成分とする第2導電層23を設けるこ
とにより、面内抵抗を下げ、第1導電層22の持つ上記
欠点を解決できるようにした。ところが、この第2導電
層23は銀を主成分とするから、シルバーマイグレーシ
ヨンの発生が再び問題になる。
Therefore, in the present invention, by providing the second conductive layer 23 mainly composed of silver with high conductivity on the first conductive layer 22, the in-plane resistance can be lowered and the above-mentioned drawbacks of the first conductive layer 22 can be reduced. I was able to solve it. However, since the second conductive layer 23 is mainly composed of silver, the occurrence of silver migration becomes a problem again.

この第2導電層23におけるシルバーマイグレーシヨン
防止策として、本発明においては、第2導電層23の平
面積を第1導電層22のそれより小さくなるように形成
してある。このような構造であると、第2導電層23の
上に電極板等を重ねた場合、第1導電層22と第2導電
層23の上に重ねられた電極板との間に、第2導電層2
3の層厚及び第1導電層22と第2導電層22との間の
ギヤツプGに基づく空隙が形成される。この空隙のため
、銀を主成分とする第2導電層23が外気から実質的に
遮断された状態になり、まわりに高温、多湿の雰囲気が
あつたとしても、第2導電層23に触れることがないの
で、第2導電層23におけるシルバーマイグレーシヨン
の発生が防止され、素体21の外周縁に沿つた電極間短
絡が防止される。次いで、電極板をPTCサーミスタの
両端面に前記ギヤツプGを覆つて密着させて、本発明の
PTC発熱体が完成する。
As a measure to prevent silver migration in the second conductive layer 23, in the present invention, the planar area of the second conductive layer 23 is formed to be smaller than that of the first conductive layer 22. With such a structure, when an electrode plate etc. is stacked on the second conductive layer 23, the second conductive layer 22 and the electrode plate stacked on the second conductive layer 23 are separated. conductive layer 2
A gap is formed based on the layer thickness of 3.3 and the gap G between the first conductive layer 22 and the second conductive layer 22. Due to these voids, the second conductive layer 23, which is mainly composed of silver, is substantially cut off from the outside air, and even if there is a high temperature and humid atmosphere around it, the second conductive layer 23 cannot be touched. Therefore, silver migration in the second conductive layer 23 is prevented from occurring, and short circuits between electrodes along the outer periphery of the element body 21 are prevented. Next, electrode plates are brought into close contact with both end surfaces of the PTC thermistor, covering the gap G, thereby completing the PTC heating element of the present invention.

第5図はその具体的な一例としての石油霧化方式加熱用
高出力発熱体の分解斜視図である。この実施例では両端
面に金属メツキ層からなる第1導電層及び該第1導電層
上に外周にギヤツブGを設けた銀合金系からなる第2導
電層52が構成されたPTC発熱体51を用いている。
FIG. 5 is an exploded perspective view of a high-output heating element for oil atomization heating as a specific example. In this embodiment, a PTC heating element 51 is provided with a first conductive layer made of a metal plating layer on both end faces, and a second conductive layer 52 made of a silver alloy based on which a gear G is provided on the outer periphery on the first conductive layer. I am using it.

ギヤツプGは1〜3m/m程度の幅で構成されている。
そしてこのPTCサーミスタ51の両端面にそれぞれ面
接触する2枚の電極板53を、ギヤツプGを覆うように
密着させる。そして、さらに、2枚のアルミナ磁器板5
4の間に介装し、前記電極板53と前記アルミナ磁器板
54の互の接触面に互に嵌合する突起58と凹部5rと
よりなる位置決め機構を設けて固定する。次いで、前記
アルミナ磁器板54の径方向両側に電極リード線56を
挿通させる通孔を穿設した耳片55を突設し、前記2枚
のアルミナ磁器板の前記耳片の間に前記PTCサーミス
タ51と前記電極板53とを介装させた状態で、弾性止
鈎片55を掛止めて、弾力的に支持された構成になつて
いる。次に、本発明と従来品と比較した結果を第1表に
示す。
The gap G has a width of about 1 to 3 m/m.
Two electrode plates 53 are brought into close contact with both end surfaces of the PTC thermistor 51 so as to cover the gap G. Furthermore, two alumina porcelain plates 5
A positioning mechanism is provided between the electrode plate 53 and the alumina porcelain plate 54, and includes a projection 58 and a recess 5r that fit into the mutual contact surfaces of the electrode plate 53 and the alumina porcelain plate 54. Next, lug pieces 55 having through holes through which electrode lead wires 56 are inserted are protruded from both sides in the radial direction of the alumina porcelain plate 54, and the PTC thermistor is inserted between the lug pieces of the two alumina porcelain plates. 51 and the electrode plate 53 are interposed therebetween, and an elastic hook piece 55 is hooked thereon so that the electrode plate 53 is elastically supported. Next, Table 1 shows the results of comparison between the present invention and conventional products.

試料は第1図及び第3図に示すように直径34TEL×
厚み2.5m/m(7)PTCサーミスタ素体でキユリ
一点が240℃であり前述実施例と同寸法の試料を用い
、高温連続負荷試験として試験槽に入れて350℃、A
CllO印加して234時間(HR)で行なつた。
The sample is 34TEL in diameter as shown in Figures 1 and 3.
Thickness: 2.5 m/m (7) Using a PTC thermistor body with a single point at 240°C and having the same dimensions as in the previous example, it was placed in a test chamber as a high-temperature continuous load test at 350°C, A.
The test was carried out for 234 hours (HR) with ClIO applied.

第1表中、試料のR2OはPTCサーミスタの20℃に
おける抵抗値を示す。第1表に示されているように、従
来品に比べて、本発明の電極構造は高温中及び湿中負荷
での通電による銀合金電極のシルバーマイグレーシヨン
による両電極の短絡が効果的に防止出来るものである。
以上のように、本発明に係るPTC発熱体によれば、シ
ルバーマイグレーシヨン現象の発生を確実に防止して電
極間短絡を阻止し、特に発熱量の大きな石油霧化加熱方
式用の定温度発熱体等において、信頼性を著るしく向上
させる効果がある。
In Table 1, R2O of the sample indicates the resistance value of the PTC thermistor at 20°C. As shown in Table 1, compared to conventional products, the electrode structure of the present invention effectively prevents short-circuiting of both electrodes due to silver migration of the silver alloy electrode due to energization at high temperatures and under humid loads. It is possible.
As described above, the PTC heating element according to the present invention reliably prevents the occurrence of silver migration phenomenon, prevents short circuit between electrodes, and generates constant temperature heat especially for oil atomization heating method which generates a large amount of heat. This has the effect of significantly improving reliability in physical systems, etc.

また、素体の局部的発熱に伴う熱破壊、発熱の不平衡を
なくして特性を安定させ、更に電極表面の面内抵抗を下
げ、電極の導電性を向上させる効果も得られる。しかも
、PTCサーミスタの第2導電層たる銀系電極をスクリ
ーン印刷という極めて容易な方法で形成でき、しかも第
1導電層である金属メツキ層よりその平面積を小さくす
ることにより、製品コストダウンが可能であり工業上の
利益に多大なるものがある。
In addition, it is possible to stabilize the characteristics by eliminating thermal breakdown and imbalance in heat generation due to localized heat generation in the element body, and also to reduce the in-plane resistance of the electrode surface and improve the conductivity of the electrode. Moreover, the silver-based electrode, which is the second conductive layer of the PTC thermistor, can be formed by an extremely easy method of screen printing, and by making its plane area smaller than the metal plating layer, which is the first conductive layer, product costs can be reduced. Therefore, there are great industrial benefits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のPTCサーミスタの平面図および構造断
面図、第2図は同じくそのシルバーマイグレーシヨンの
状態を示す図、第3図は本発明のPTCサーミスタの平
面図および構造断面図、第4図は同じくその斜視図、第
5図は本発明の一実施例を示すPTC発熱体の分解斜視
図である。 2・・・・・・正の抵抗温度係数を有するチタン酸バリ
ウム系半導体磁器素体、22・・・・・・金属メツキ層
、23・・・・・・銀系電極層、G・・・・・・ギヤツ
プ。
FIG. 1 is a plan view and a structural cross-sectional view of a conventional PTC thermistor, FIG. 2 is a view showing the state of silver migration, FIG. The figure is a perspective view of the same, and FIG. 5 is an exploded perspective view of a PTC heating element showing an embodiment of the present invention. 2... Barium titanate based semiconductor ceramic body having a positive temperature coefficient of resistance, 22... Metal plating layer, 23... Silver based electrode layer, G... ... Gap.

Claims (1)

【特許請求の範囲】 1 正の抵抗温度係数を有するチタン酸バリウム系半導
体磁器素体の両端面には、銀以外の金属を主成分とし、
かつ前記チタン酸バリウム系半導体磁器素体に対してオ
ーム性接触となる第1導電層が形成されるとともに、こ
の第1導電層上にはこの第1導電層よりも平面積が小さ
く外周端全周にギャップを有する銀を主成分とする第2
導電層が形成されたことを特徴とするPTC発熱体。 2 前記第1導電層は、金属メッキ層で成ることを特徴
とする特許請求の範囲第1項に記載のPTC発熱体。 3 前記第1導電層は、ニッケルメッキ層であることを
特徴とする特許請求の範囲第2項に記載のPTC発熱体
。 4 正の抵抗温度係数を有するチタン酸バリウム系半導
体磁器素体の両端面上に、該素体に対してオーム性接触
となるように、銀以外の金属を主成分とする金属被覆層
を形成した後、この金属被覆層の上に、スクリーン印刷
法により、前記金属被覆層より平面積が小さい銀を主成
分とする導電層を、外周端全周にギャップが形成される
ように被着させたことを特徴とするPTC発熱体の製造
方法。 5 前記金属被覆層は、無電解メッキ法によつて形成す
ることを特徴とする特許請求の範囲第4項に記載のPT
C発熱体の製造方法。
[Claims] 1. Both end faces of a barium titanate-based semiconductor porcelain body having a positive temperature coefficient of resistance contain a metal other than silver as a main component,
A first conductive layer is formed in ohmic contact with the barium titanate-based semiconductor ceramic body, and the first conductive layer has a smaller planar area than the first conductive layer and has an outer circumferential edge. A second silver-based material with a gap around the periphery.
A PTC heating element characterized in that a conductive layer is formed. 2. The PTC heating element according to claim 1, wherein the first conductive layer is made of a metal plating layer. 3. The PTC heating element according to claim 2, wherein the first conductive layer is a nickel plating layer. 4. Forming a metal coating layer containing a metal other than silver as a main component on both end faces of a barium titanate semiconductor ceramic element having a positive temperature coefficient of resistance so as to be in ohmic contact with the element. After that, on top of this metal coating layer, a conductive layer mainly composed of silver, which has a smaller planar area than the metal coating layer, is deposited by a screen printing method so that a gap is formed around the entire outer periphery. A method for producing a PTC heating element, characterized in that: 5. The PT according to claim 4, wherein the metal coating layer is formed by electroless plating.
C. Manufacturing method of heating element.
JP53060701A 1978-05-22 1978-05-22 PTC heating element and its manufacturing method Expired JPS5917510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53060701A JPS5917510B2 (en) 1978-05-22 1978-05-22 PTC heating element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53060701A JPS5917510B2 (en) 1978-05-22 1978-05-22 PTC heating element and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS54152243A JPS54152243A (en) 1979-11-30
JPS5917510B2 true JPS5917510B2 (en) 1984-04-21

Family

ID=13149847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53060701A Expired JPS5917510B2 (en) 1978-05-22 1978-05-22 PTC heating element and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5917510B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715389A (en) * 1980-07-02 1982-01-26 Matsushita Electric Ind Co Ltd Barium titanate semiconductor porcelain heater
JPS5881889U (en) * 1981-11-28 1983-06-02 トヨタ自動車株式会社 positive characteristic heater
JPS59173996U (en) * 1983-05-09 1984-11-20 日本碍子株式会社 ceramic heater
JPS59173995U (en) * 1983-05-09 1984-11-20 日本碍子株式会社 ceramic heater
JPH01125802A (en) * 1987-11-10 1989-05-18 Murata Mfg Co Ltd Positive temperature coefficient thermistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035665A (en) * 1973-07-23 1975-04-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035665A (en) * 1973-07-23 1975-04-04

Also Published As

Publication number Publication date
JPS54152243A (en) 1979-11-30

Similar Documents

Publication Publication Date Title
JPH0211763Y2 (en)
US4831432A (en) Positive ceramic semiconductor device
JP5603904B2 (en) Electric PTC thermistor parts and manufacturing method thereof
JP3489000B2 (en) NTC thermistor, chip type NTC thermistor, and method of manufacturing temperature-sensitive resistive thin-film element
JPS5917510B2 (en) PTC heating element and its manufacturing method
US6400251B1 (en) Chip thermistor
JPH1041104A (en) Positive temperature coefficient thermistor element and positive temperature coefficient thermistor
US5557251A (en) Thermistor with electrodes for preventing inter-electrode migration
JPS643323B2 (en)
JPH09162452A (en) Ceramic device and its production
JPS62199001A (en) Positive characteristics porcelain semiconductor
JPS62238602A (en) Positive characteristics porcelain
JPH07142206A (en) Positive temperature coefficient thermistor
JPH07297008A (en) Positive temperature coefficient thermistor and thermistor device using the same
JPS62222601A (en) Positive characteristics porcelain semiconductor
JPS6010701A (en) Positive temperature coefficient thermistor
JPS62230005A (en) Positive characteristics porcelain semiconductor
JPS61105804A (en) Thermistor element and manufacuture thereof
JP4310852B2 (en) Electronic components
JPH0145721B2 (en)
JPH11345704A (en) Ceramic electronic parts element and ceramic electronic parts using the element
JPH0226761B2 (en)
JPH0851002A (en) Electronic device and production thereof
JP2001044007A (en) Thermistor element and thermistor using the same
JPH043084B2 (en)