JPS59173970A - Manufacture of battery - Google Patents

Manufacture of battery

Info

Publication number
JPS59173970A
JPS59173970A JP4923783A JP4923783A JPS59173970A JP S59173970 A JPS59173970 A JP S59173970A JP 4923783 A JP4923783 A JP 4923783A JP 4923783 A JP4923783 A JP 4923783A JP S59173970 A JPS59173970 A JP S59173970A
Authority
JP
Japan
Prior art keywords
electrolyte
pmma
amount
gel
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4923783A
Other languages
Japanese (ja)
Inventor
Nobuo Eda
江田 信夫
Teruyoshi Morita
守田 彰克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4923783A priority Critical patent/JPS59173970A/en
Publication of JPS59173970A publication Critical patent/JPS59173970A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/22Immobilising of electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To enable a liquid-holding member containing gel electrolyte to be manufacture in a short time successively by irradiating microwave on a gelling agent and electrolyte to turn them into a gel or a solid. CONSTITUTION:After the amount of electrolyte to be held by a nonwoven polypropylene fabric used as a base material is set, the amount of PMMA to be applied to the above nonwoven polypropylene fabric is calculated from the set amount and the specific gravity of the electrolyte. After the calculated amount of PMMA is weighed, it is dissolved in a proper amount of tetrahydrofuran or methyl ethyl ketone which is a good solvent for PMMA. After the base material coated with PMMA is put in a heat-resisting glass Petri dish, 45mul of the electrolyte is poured onto the base material and an upper lid is placed over the dish, then this is put in a microwave range having a frequency of 2,450MHz and an output of 600W before being subjected to microwave irradiation. As a result, a gel-like electrolyte is easily obtained since gamma-butyrolactone having a high boiling point is evaporated with difficulty. The thus obtained electrolyte layer 5 is combined with a sealing plate 1, a case 4, a polypropylene gasket 6 and the like, thereby constituting a battery.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、リチウムで代表される軽金属を負極活物質と
し、電解液を高分子で固形化つまりゲル化させるかある
いは、溶媒をほとんど含まない高分子と電解質(支持塩
)よりなるイオン伝導性の電解質を有する電池の製造法
に関するもので、特にこれらのイオン伝導性の固形化あ
るいは固体電解質の製造法の改良を図るものである。
[Detailed Description of the Invention] Industrial Application Field The present invention uses a light metal such as lithium as a negative electrode active material, and solidifies or gels the electrolyte with a polymer, or uses a polymer containing almost no solvent. The present invention relates to a method for producing a battery having an ion-conducting electrolyte consisting of an electrolyte (supporting salt) and an electrolyte (supporting salt), and particularly aims at solidifying these ion-conductors or improving the method for producing the solid electrolyte.

従来例の構成とその問題点 現在の小型電子機器の電源には酸化銀電池やアルカリマ
ンガン電池などのアルカリ電解液ヲ用イるものが多用さ
れている。アルカリ電解液は本質的にクリープ性を有し
、その上、電池の電位が電気化学的に相乗効果を及ぼし
、長期間に亘り漏液を抑えることは非常に困難であり、
この面からの信頼性はせいぜい3〜5年といわれている
Conventional Structures and Problems Current small electronic devices often use power sources that use alkaline electrolytes, such as silver oxide batteries and alkaline manganese batteries. Alkaline electrolytes inherently have creep properties, and in addition, the potential of the battery has a synergistic effect electrochemically, making it extremely difficult to suppress leakage over a long period of time.
Reliability from this point of view is said to be 3 to 5 years at most.

一方、゛最近脚光を浴びている有機電解液を用いたIJ
チウム電池では、耐漏液性は先のアルカリ電池より優れ
ているとはいえ、完全とはいいきれない。
On the other hand, ``IJ using organic electrolytes, which has recently been in the spotlight,''
Although lithium batteries have better leakage resistance than alkaline batteries, they cannot be said to be perfect.

そこで、本発明者らは、先にリチウムで代表される軽金
属を負極とする有機電解液電池の電解液をポリマー、と
くにポリメタクリル酸メチルあるいはポリメタクリル酸
エチルで固形化する方法を見出した。電解液を固形化す
れば、耐漏液性が極めて向上するとともに、小型電池の
封口が簡易になり、あるいは全体を樹脂によシハッケー
ジできる可能性も有する。電子機器も消費電流が小さく
なり、機器寿命と電池寿命がほぼ同一となる傾向にある
ので、この固形化によるイオン伝導度の若干の低下はほ
とんど問題とならない。
Therefore, the present inventors have previously discovered a method of solidifying the electrolyte of an organic electrolyte battery using a light metal such as lithium as a negative electrode with a polymer, particularly polymethyl methacrylate or polyethyl methacrylate. If the electrolyte is solidified, the leakage resistance will be greatly improved, and the sealing of the small battery will become easier, or there is a possibility that the entire battery can be sealed with resin. Electronic devices also tend to consume less current, and the device life and battery life tend to be almost the same, so this slight decrease in ionic conductivity due to solidification hardly poses a problem.

電解液を固形化する方法には、いくつか挙げられるが、
電解液である高沸点のγ−ブチロラクトン(GBL)や
炭酸プロピレン(PC)に対し、溶解性、安定性などか
ら、ゲル化剤としてのポリマーば、」二記のボリメタク
IJル酸メチルアルいはポリメタクリ酸エチルが適し、
電解液とゲル化剤を混合し、外部から加熱によりゲル化
する方法が採られていた。
There are several methods to solidify the electrolyte, but
Due to its solubility and stability in the electrolytic solution, such as high boiling point γ-butyrolactone (GBL) and propylene carbonate (PC), it is recommended to use polymethacrylic acid methylalcohol or polymethacrylate as described in 2. Ethyl acid is suitable;
The method used was to mix an electrolytic solution and a gelling agent and heat the mixture externally to form a gel.

このように電池をゲル化させる場合、正極はあらかじめ
合剤中に極微粒のゲル化剤を分散させて成形し、所定量
の電解液を注液、含浸させると、成形体自身が電解液の
保持力があるだめ、そのまま電池として組み込んでも、
電解液が滲出したりすることもなく、電池エージング中
に自然に正極の中でゲル化ができる。しかし、この状態
では放電に必要な電解質が不足するので、正極を極めて
多孔体にするか、さらには正負極間に別に電解質を保持
できるゲル層が必要となってくる。これまでは以下のよ
うな方法が採られていた。例えば、特開昭65〜1o○
666号公報にも示されているように、あらかじめポリ
プロピレン製などの不織布にゲル化剤であるポ1ノメタ
ク1ノル酸メチルヲ塗布しておき、所定の大きさに打ち
抜く。これを酬熱性ガラスシャーレ上に載置し、所定量
の電解液を注液してシャーレ上蓋をかぶせ、90℃の温
度で約3o分間加熱すると、ゲル化した保液材ができる
When gelling a battery in this way, the positive electrode is molded with ultrafine gelling agent particles dispersed in the mixture, and when a predetermined amount of electrolyte is injected and impregnated, the molded body itself becomes saturated with electrolyte. Because of its holding power, even if it is installed as a battery,
The electrolyte does not ooze out and can naturally gel within the positive electrode during battery aging. However, in this state, the electrolyte necessary for discharge is insufficient, so it is necessary to make the positive electrode extremely porous or to provide a separate gel layer between the positive and negative electrodes that can hold the electrolyte. Until now, the following methods have been adopted. For example, JP-A-65-1o○
As disclosed in Japanese Patent Application No. 666, a gelling agent, methyl polymonometate mononolate, is applied in advance to a nonwoven fabric made of polypropylene or the like, and the fabric is punched out to a predetermined size. This is placed on a heat-exchanging glass petri dish, a predetermined amount of electrolyte is injected, the top of the dish is covered, and the dish is heated at a temperature of 90° C. for about 30 minutes to form a gelled liquid retaining material.

こ九を電池組立時に正極上に載置し、封口する訳である
が、製造工程上、非常に時間がかがる欠点を有していた
This is placed on the positive electrode and sealed during battery assembly, but the manufacturing process has the drawback of being very time consuming.

発明の目的 本発明は、上記のような従来の欠点を解消し、短時間に
ゲル化した電解質をもつ保液材を連続的VCm製造する
方法を提供することを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to eliminate the above-mentioned conventional drawbacks and to provide a method for continuously producing VCm with a liquid retaining material having an electrolyte that gels in a short period of time.

発明の構成 本発明は、ゲル化剤と電解液にマイクロ波を照射するこ
とによりゲル化ないし固形化することを特徴とする。
Structure of the Invention The present invention is characterized in that the gelling agent and the electrolytic solution are gelled or solidified by irradiation with microwaves.

これ壕で、電池分野でマイクロ波照射を利用した方法に
は、含水二酸化マンガン、例えば電解二酸化マンガンを
直接マイクロ波照射により脱水し、リチウム電池用の脱
水二酸化マンガンを製造する方法(特開昭56−500
61号公報)や含水二酸化マンガンを有機溶媒中に浸漬
し、これにマイクロ波を照射して脱水する方法(特開昭
54−75535号公報)など知られている。いずれも
対象である水に直接働きかけて、水分子の摩擦熱により
加熱脱水させるものである。
In this regard, methods using microwave irradiation in the battery field include a method of producing dehydrated manganese dioxide for lithium batteries by directly dehydrating hydrated manganese dioxide, such as electrolytic manganese dioxide, by direct microwave irradiation (Japanese Patent Application Laid-Open No. 56 -500
61) and a method in which hydrated manganese dioxide is immersed in an organic solvent and irradiated with microwaves to dehydrate it (Japanese Patent Application Laid-open No. 75535/1983). Both methods work directly on the target water, dehydrating it by heating due to the frictional heat of water molecules.

本発明者らは、リチウム電池に用いられている炭酸プロ
ピレンやγ−ブチロラクトンなどの有機溶媒は、誘電体
でありマイクロ波照射によシ発熱することに鑑み、上記
のゲル化工程に、従来の長時間を要する外部加熱方式に
代え、短時間で効率のよいマイクロ波照射による方法を
適用することによって生産性を向上させることに成功し
た。
The present inventors considered that the organic solvents used in lithium batteries, such as propylene carbonate and γ-butyrolactone, are dielectric substances and generate heat when irradiated with microwaves. Instead of the external heating method, which requires a long time, we succeeded in improving productivity by applying a short and efficient microwave irradiation method.

実施例の説明 第1図は、実施例に用いたコイン型電池を示す。Description of examples FIG. 1 shows the coin-type battery used in the example.

図において、1は厚さ0.20mmの汎用のステンレス
鋼S U S 304よりなる封口板、2は外径14m
m、厚さ0.24mmのリチウム負極であり、負極は封
口板1の内面に圧着されている。3は正極、4は高クロ
ム含量のステンレス鋼製ケースである6正極3ば、7ノ
化黒鉛100重量部、アセチレンブラック10重量部及
び結着剤のスチレンブタジェンゴム5重量に、さらにゲ
ル化剤としてのポリメタi IJル酸メチル(以下PM
MAで゛表す)の微粒子(平均粒径0.07 mm )
を11重量部加えた混合物の1.05+ gを厚さ0.
55mmのティスフ状に成形し、乾燥して正極ケース4
へ挿入し、電解液45μlを注入したものである。
In the figure, 1 is a sealing plate made of general-purpose stainless steel SUS 304 with a thickness of 0.20 mm, and 2 is an outer diameter of 14 m.
m, a lithium negative electrode with a thickness of 0.24 mm, and the negative electrode is press-bonded to the inner surface of the sealing plate 1. 3 is a positive electrode, 4 is a case made of stainless steel with a high chromium content, 6 is a positive electrode 3, 100 parts by weight of heptanoated graphite, 10 parts by weight of acetylene black, 5 parts by weight of styrene-butadiene rubber as a binder, and further gelled. Methyl methacrylate (hereinafter referred to as PM) as an agent
Fine particles (expressed by MA) (average particle size 0.07 mm)
1.05+ g of a mixture containing 11 parts by weight of
Form into a 55mm tissue and dry to form positive electrode case 4.
45 μl of electrolyte was injected into the tube.

fx オ、電解液にばγ−ブチロラクトンに1モルフ’
llのホウフッ化リチウムを溶解させたものを用いた。
fx o, 1 morph in γ-butyrolactone in the electrolyte
A solution containing 1 liter of lithium borofluoride was used.

上記の正極では電池組立後に、電解液とPMMAにより
ゲル状の電解質が構成される。ここに用いたPMMAの
混合割合は、正極内の空孔にょる吸液量から予め計算し
、ゲル状電解質におけるポリマーPMMAの量が17重
量係になるように設定している。
In the above positive electrode, a gel-like electrolyte is formed from the electrolytic solution and PMMA after battery assembly. The mixing ratio of PMMA used here was calculated in advance from the amount of liquid absorbed by the pores in the positive electrode, and was set so that the amount of polymer PMMA in the gel electrolyte would be 17% by weight.

5は正負極間に吸持されたポリプロピレン不織布を基材
としたゲル状電解質層であり、これについても、正極と
同様にポリマー量が17重量係となるように設定されて
いる。
Reference numeral 5 denotes a gel electrolyte layer based on a polypropylene nonwoven fabric adsorbed between the positive and negative electrodes, and the amount of polymer in this layer is also set to be 17% by weight, similar to the positive electrode.

この電解質層5の製法について説明すると、まず、基材
となるポリプロピレン製不織布に保持させる電解液量を
設定し、これと電解液の比重から暴利となるポリプロピ
レン不織布に塗布すべきPMMAO量が計算される。次
に、例えば、この基材を大きさ30cmX30cmに切
断し、一方、とハ、に対するPMMA量を計算して秤取
し、適当な量のPMMAK対する良溶媒であるテトラヒ
ドロフランやメチルエチルケトンなどに溶解させる。
To explain the manufacturing method of this electrolyte layer 5, first, the amount of electrolyte to be held in the polypropylene non-woven fabric serving as the base material is set, and from this and the specific gravity of the electrolyte, the amount of PMMAO to be applied to the polypropylene non-woven fabric, which will be profitable, is calculated. Ru. Next, for example, this base material is cut into a size of 30 cm x 30 cm, and the amount of PMMA is calculated and weighed, and dissolved in an appropriate amount of tetrahydrofuran, methyl ethyl ketone, etc., which are good solvents for PMMAK.

基113にPMMAを塗布する方法については、回転印
刷法、吹き付は法、カースト法などがあるが、ここでは
、カースト法で示すと、上記のPMMA溶液を基材と同
じ寸法の金属製バフ)に注ぎ、そこに上記ポリプロピレ
ン製不織布を浸漬し、溶媒を加熱あるいは温風により留
去させるとPMMAが塗布された水利ができる。これを
所定の寸法に打抜けばよい。次に、このPMMAを塗布
した基材を耐熱性のガラスシャーレ中に載置し、その上
に46μβの上記電解液を注液し、シャーレ上蓋をかぶ
せ、周波数24501Hz、出力soowの電子レンジ
内に収納して約1分間Vマイクロ波照射を行うと高沸点
であるγ−ブチロラクトンは蒸発しにくく、ゲル状とな
った電解質が簡単に得ら−hる。どうして得た厚さo、
4mmの電解質層5を上記の封口板とケース及びポリプ
ロピレン製ガスケット6と組み合わせて電池を構成する
Methods for applying PMMA to the base material 113 include the rotary printing method, the spraying method, and the Caste method. ), the polypropylene nonwoven fabric is immersed therein, and the solvent is distilled off by heating or hot air to form a PMMA-coated irrigation system. This can be punched out to a predetermined size. Next, the base material coated with this PMMA was placed in a heat-resistant glass petri dish, 46μβ of the above electrolyte was poured onto it, the top of the petri dish was covered, and the plate was placed in a microwave oven with a frequency of 24501Hz and an output of soo. When stored and subjected to V microwave irradiation for about 1 minute, γ-butyrolactone, which has a high boiling point, is difficult to evaporate and a gel-like electrolyte can be easily obtained. How did you get the thickness o?
A battery is constructed by combining a 4 mm thick electrolyte layer 5 with the above sealing plate, case, and polypropylene gasket 6.

こうして得た電池は最大外径20.Omm、最大総高1
.6mmである。ここでは、正負極間のゲル状電解質を
製造するときだけ、マイクロ波を照射したが、上記の電
解液含没後の正極についても同じようにしてゲル化でき
る。
The battery thus obtained has a maximum outer diameter of 20. Omm, maximum total height 1
.. It is 6mm. Here, microwave irradiation was applied only when producing the gel electrolyte between the positive and negative electrodes, but the positive electrode after being impregnated with the electrolytic solution described above can also be gelled in the same manner.

第1表にマイクロ波照射して得だゲル状電解質層を用い
てなる電池aと従来の外部加熱法で得たゲル状電解質層
を用いてなる電池すの内部抵抗値を示す8 第1表 またこれらの電池を20℃において、30にΩで放電し
たときの容量(2v終止)を第2表に示す。
Table 1 shows the internal resistance values of a battery A made using a gel electrolyte layer obtained by microwave irradiation and a battery A made using a gel electrolyte layer obtained by the conventional external heating method8 Table 1 Further, Table 2 shows the capacity (2V final) when these batteries were discharged at 30Ω at 20°C.

第2表 以上の結果からも明らかなように、ゲル状の固形化電解
質を製造するのに、マイクロ波照射を用いると、従来の
外部加熱による方法に比べ製造時間の大巾な短縮ができ
、特性面では従来と同じものができる。壕だ、マイクロ
波照射を行なう電子レンジ内の庫(キャビティ)を工夫
すれば、ベルトコンベアとの組み合わせで連続製造も可
能である。
As is clear from the results in Table 2 and above, using microwave irradiation to produce a gel-like solidified electrolyte can significantly shorten the production time compared to the conventional method using external heating. In terms of characteristics, it has the same properties as conventional products. By devising the cavity inside the microwave oven that performs microwave irradiation, continuous production is possible in combination with a belt conveyor.

実施例では、負極にリチウムを用いだが、ナトリウムな
どの軽金属でもよく、また、電解液もγ−ブチロラクト
ンにかぎらず、炭酸プロピレンなどでもよく、支持塩も
過塩素酸リチウムやトリフルオロスルポン酸リチウムで
もよい。正極も二酸化マンガン、酸化銅などでもよい。
In the examples, lithium is used for the negative electrode, but a light metal such as sodium may be used.The electrolyte is not limited to γ-butyrolactone, but may also be propylene carbonate, and the supporting salt may also be lithium perchlorate or lithium trifluorosulfonate. good. The positive electrode may also be manganese dioxide, copper oxide, or the like.

ゲル化剤であるポ+jマーもポリアクリロニトリルやポ
リフッ化ビニリチンなどでもよい、、また、ここでは、
ゲル状電解質の製造に用いたが、例えばアセトニトリル
−ポリエチレンオキサイドあるいはポリプロピレンオキ
ザイドーホウ7ツ化リチウム溶液から低沸点であり、蒸
発させやすいアセトニトリルやメタノールを留去して得
られるポリエチレンオキサイドあるいはポリプロピレン
オキサトーホウフノ化リチウム錯体の薄膜電解質の製造
などにも利用できる。
The gelling agent polymer may also be polyacrylonitrile, polyvinyritine fluoride, etc. Here,
For example, polyethylene oxide or polypropylene oxide, which is obtained by distilling off acetonitrile or methanol, which has a low boiling point and is easily evaporated, from acetonitrile-polyethylene oxide or polypropylene oxide lithium borosulfate solution is used to produce a gel electrolyte. It can also be used for the production of thin film electrolytes of lithium satohufonide complexes.

発明の効果 以上のように、本発明によれば、ゲル状の固形化電解質
あるいは高分子固体電解質を用いる電池が容易に製造で
きる。
Effects of the Invention As described above, according to the present invention, a battery using a gel-like solidified electrolyte or a solid polymer electrolyte can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

図面ば実施例に用いた電池の縦断面図である。 2・・・負極、3・・・・・正極、6・・・ 電解質層
The drawing is a longitudinal cross-sectional view of a battery used in an example. 2... Negative electrode, 3... Positive electrode, 6... Electrolyte layer.

Claims (1)

【特許請求の範囲】[Claims] 軽金属を活物質とする負極と、正極と、高分子によるゲ
ル状の固形化電解質もしくは高分子固体電解質を有する
電池の製造法であって、有機溶媒と支持塩と高分子の混
合液にマイクロ波照射を行うことにより、電解液をゲル
化もしくは固体化させる工程を有することを特徴とする
電池の製造法。
A method for manufacturing a battery having a negative electrode using a light metal as an active material, a positive electrode, and a gel-like solidified electrolyte made of a polymer or a solid polymer electrolyte, the method comprising heating a mixture of an organic solvent, a supporting salt, and a polymer with microwaves. A method for manufacturing a battery, comprising the step of gelling or solidifying an electrolytic solution by irradiating it.
JP4923783A 1983-03-23 1983-03-23 Manufacture of battery Pending JPS59173970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4923783A JPS59173970A (en) 1983-03-23 1983-03-23 Manufacture of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4923783A JPS59173970A (en) 1983-03-23 1983-03-23 Manufacture of battery

Publications (1)

Publication Number Publication Date
JPS59173970A true JPS59173970A (en) 1984-10-02

Family

ID=12825273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4923783A Pending JPS59173970A (en) 1983-03-23 1983-03-23 Manufacture of battery

Country Status (1)

Country Link
JP (1) JPS59173970A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301774A2 (en) * 1987-07-28 1989-02-01 United Kingdom Atomic Energy Authority Polymer Electrolytes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301774A2 (en) * 1987-07-28 1989-02-01 United Kingdom Atomic Energy Authority Polymer Electrolytes

Similar Documents

Publication Publication Date Title
US4379817A (en) Organic solvent-treated manganese dioxide-containing cathodes
KR20020019003A (en) Thin lithium battery with slurry cathode
DE60237413D1 (en) Process for the continuous production of coated electrodes on a porous current collector and cell with such electrodes
US2542710A (en) Alkaline dry cell
South et al. Electrode Processes in Sodium Polysulfide Melts
JPS59173970A (en) Manufacture of battery
JPH07320720A (en) Electrochemical element
JPS63151010A (en) Electric double-layer capacitor
JPS5856227B2 (en) Organic electrolyte battery and its manufacturing method
JPS5856467B2 (en) Battery manufacturing method
JPS5761267A (en) Nonaqueous electrolyte cell
JPS5836828B2 (en) Battery manufacturing method
JPS62201243A (en) Film made of conductive polymer
JPH02210769A (en) Manufacture of nonaqueous battery
Egashira Capacitance Degradation in Hydrogel Electrolyte Containing Magnesium-ion Conducting Water-in-Salt Solution
JPS5553874A (en) Method of manufacturing cadmium negative electrode for alkaline battery
JPS56130082A (en) Organic solvent battery
KR900004056A (en) Negative electrode composition containing monodisperse internally added particles
JPH0558229B2 (en)
JPS56106374A (en) Solid-electrolyte battery
JPS5983354A (en) Manufacture of organic electrolyte battery
JPS6155868A (en) Nonaqueous cell
JPS6145565A (en) Storage battery
JPH01319253A (en) Lithium cell
JPS6273566A (en) Manufacture of anode plate for sealed alkaline storage battery