JPS59173749A - Plate wave transmitter and receiver - Google Patents

Plate wave transmitter and receiver

Info

Publication number
JPS59173749A
JPS59173749A JP58048283A JP4828383A JPS59173749A JP S59173749 A JPS59173749 A JP S59173749A JP 58048283 A JP58048283 A JP 58048283A JP 4828383 A JP4828383 A JP 4828383A JP S59173749 A JPS59173749 A JP S59173749A
Authority
JP
Japan
Prior art keywords
coil
plate
vibration
sample plate
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58048283A
Other languages
Japanese (ja)
Inventor
Satoru Inoue
悟 井上
Akiro Sanemori
実森 彰郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58048283A priority Critical patent/JPS59173749A/en
Publication of JPS59173749A publication Critical patent/JPS59173749A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2412Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0427Flexural waves, plate waves, e.g. Lamb waves, tuning fork, cantilever

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To make the replacement of a detecting coil unnecessary when the thickness or the like of a sample plate body is changed, by using multipitch oscillation generating and detecting coils to transmit multimode plate waves and selecting plate waves having a prescribed wavelength in the reception side. CONSTITUTION:A controller 25 excites the first and the second electromagnets 1 and 8 with a command signal Sc to supply vertical static magnetic fields to faces of a sample plate body 16 which face transmitting and receiving transducers 19 and 21. The controller 25 sends a command signal Sd to a pulser 6 to drive it and supplies a pulse current to an oscillation generating coil 20 to induce an eddy current at intervals corresponding to pitches of the coil 20. This eddy current generates the Lorentz force by the interaction with the static magnetic field, and the sample body plate 16 is expanded and contracted in the horizontal direction. This expanding and contracting motion becomes plate waves where plural wavelengths are mixed, and a current is induced in a coil part 22. Only the current, which is induced in the oscillation detecting coil part 22, of the induced current is sent to a discriminating part 24 through a signal processing part 23 to discriminate the material, defects, etc. of the sample.

Description

【発明の詳細な説明】 本発明は、電磁超音波による板波の送受信装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plate wave transmitting/receiving device using electromagnetic ultrasonic waves.

従来この種の装置として第1図に示すものがあった。図
において、(1)は第1励磁コイル(2)と第1鉄心(
3)とから成り第1直流電源(4)から電流を受けて磁
界を発生する内鉄心形の第1電磁石、(5)は第2図(
a)に示すコイル辺が直列接続された矩形波状または第
2図(b)に示すコイル辺が並列接続されたグリ・ンド
状の形状を有しパルサ(8)からの信号を受ける振動発
生コイルで、上記第1電磁石(1)および振動発生コイ
ル(5)とで送信トランスデユーサ(7)を形成してい
る。また、(8)は第2励磁コイル(9)と第2鉄心(
lO)とから成り第2直流電源(11)から電流を受け
て上述の第1電磁石(1)と同方向の磁界を発生する内
鉄心形の第2電磁石、(12)は第2図(a) 、 (
b)に示す何れかの形状を有し増幅器(13)を介して
判定器(14)に検出信号を送出する振動検出コイルで
、上記第2電磁石(8)および振動検出コイル(12)
とで受信トランスデユーサ(15)を形成して、いる。
A conventional device of this type is shown in FIG. In the figure, (1) represents the first excitation coil (2) and the first iron core (
(3) consists of an inner core type first electromagnet that receives current from a first DC power source (4) and generates a magnetic field; (5) is a first electromagnet as shown in FIG.
A vibration generating coil which has a rectangular wave shape as shown in a) in which the coil sides are connected in series or a grid wave shape in which the coil sides are connected in parallel as shown in FIG. 2(b) and receives a signal from the pulser (8). The first electromagnet (1) and the vibration generating coil (5) form a transmission transducer (7). In addition, (8) is the second excitation coil (9) and the second iron core (
The inner core type second electromagnet (12) receives current from the second DC power supply (11) and generates a magnetic field in the same direction as the first electromagnet (1). ), (
A vibration detection coil having one of the shapes shown in b) and sending a detection signal to the determiner (14) via the amplifier (13), which includes the second electromagnet (8) and the vibration detection coil (12).
and form a receiving transducer (15).

更に、(16)は導電体でなる試料板体で、上記送信ト
ランスデユーサ(7)および受信トランスデユーサ(1
5)とが該試料板体(16)上を所定圧pt離間して設
けられ、その間を矢印(17)のように送信トランスデ
ユーサ(7)側から受信トランスデユーサ(15)側へ
板波(18)が伝搬するように構成されている。
Furthermore, (16) is a sample plate made of a conductor, which is connected to the transmitting transducer (7) and the receiving transducer (1).
5) are provided on the sample plate (16) at a distance of a predetermined pressure pt, between which the plate is moved from the transmitting transducer (7) side to the receiving transducer (15) side as shown by the arrow (17). The wave (18) is configured to propagate.

なお、$3図(a)〜(d)に板波送受信装置における
板波発生時の磁界、渦電流等の状態を示す。
Note that FIGS. 3(a) to 3(d) show the states of the magnetic field, eddy current, etc. when a plate wave is generated in the plate wave transmitter/receiver.

この中、第3図(a)、(b)は横波発生法による板波
に係わり、第3図(c)、(d)は縦波発生法による板
波に係わる。
Among these, FIGS. 3(a) and 3(b) relate to plate waves produced by the transverse wave generation method, and FIGS. 3(c) and 3(d) relate to plate waves produced by the longitudinal wave generation method.

第3図(a)において、Hは第1電磁石(1)により与
えられる試料板体(16)面に対して水平な磁界、J 
i (i =1.2.3.4)は、4つのコイル辺を有
する第2図(a)に示す形状の振動発生コイル(5)に
図示のようにパルス電流を流したとき、試料板体(16
)表層部に誘導される渦電流、Fvi(i=1.2,3
.4)は水平磁界Hと渦電流Jiによりフレミングの左
手の法則に従う方向、即ち、試料板体(16)の垂直方
向ニ図示のヨウに働くローレンツ力で、該ローレンツ力
Fviにより第3図(b)に示すような板体(18)を
励振する。
In FIG. 3(a), H is a magnetic field horizontal to the surface of the sample plate (16) given by the first electromagnet (1), and J is
i (i = 1.2.3.4) is the difference between the sample plate and Body (16
) Eddy current induced in the surface layer, Fvi (i=1.2,3
.. 4) is the Lorentz force acting in the direction according to Fleming's left-hand rule due to the horizontal magnetic field H and the eddy current Ji, that is, in the vertical direction of the sample plate (16), as shown in Fig. 3(b). ) is excited.

他方、第3図(c)においては、第3図(a)と異なり
磁界Vの方向が図示の如く試料板体(16)に垂直であ
る。従って、振動発生コイル(5)の通流によって誘導
される渦電流Ji(i=1.2,3.4)の方向が第3
図(a)と同一であったとしても、磁界■と渦電流J1
の方向により向きが定まるローレンツ力Fhi(i=1
,2,3.4)は第3図(c)に示すように試料板体(
16)の平面と平行面上で交互に方向を変えて表われる
。しかして、このローレンツ力のFhiが第3図(d)
に示すような板波(18)を励振するのである。
On the other hand, in FIG. 3(c), unlike FIG. 3(a), the direction of the magnetic field V is perpendicular to the sample plate (16) as shown. Therefore, the direction of the eddy current Ji (i=1.2, 3.4) induced by the conduction of the vibration generating coil (5) is the third direction.
Even if it is the same as in Figure (a), the magnetic field ■ and the eddy current J1
The Lorentz force Fhi (i=1
, 2, 3.4) is the sample plate (
16) appears in alternating directions on the plane and the parallel plane. Therefore, Fhi of this Lorentz force is shown in Figure 3(d).
This excites a plate wave (18) as shown in FIG.

なお、このようにして励振された板波(18)の代表的
な振動モードとしては、第4図(a)に示すような試料
板体(16)の表裏面の振動が同一なaモード、および
、第4図(b)に示すような試料板体(16)の表裏面
の振動が対称なSモードが考えられる。
Note that typical vibration modes of the plate wave (18) excited in this way include the a mode in which the front and back surfaces of the sample plate (16) vibrate as shown in FIG. 4(a); Furthermore, an S mode in which the front and back surfaces of the sample plate (16) vibrate symmetrically is considered as shown in FIG. 4(b).

次に、上述した構成を有すべ′従来の板波送受信装置の
動作について説明する°。なお、以下の説明において、
板波を縦波発生法により発生したものとして説明するが
、横波発生法による場合にも同様に説明できることは勿
論である。
Next, the operation of the conventional plate wave transmitter/receiver having the above-described configuration will be explained. In addition, in the following explanation,
Although the plate waves will be explained assuming that they are generated by the longitudinal wave generation method, it goes without saying that the explanation can be made in the same way when the plate waves are generated by the transverse wave generation method.

板波を励振するために、先ず、第1直流電源(4)と第
1電磁石(1)を用いて試料板体(16)の板面に対し
て垂直方向の静磁界Vを発生する。しかる後、パルサ(
6)よりパルス電流Pを振動発生コイル(5)に供給す
ると、振動発生コイル(5)のコイルピッチDに等しい
ピッチで、試料板体(16)の表層部に渦電流JIL+
  J2.J3+j4が等間隔で誘導され、フレミング
の左手の法則に従ってローレンツ力Fhi(i=1,2
,3.4)が第3図(c)に示す矢印の方向に発生する
。これらローレンツ力の中、ローレンツ力Fh1とFh
2、および、Fb3とFh4はそれぞれ試料板体(16
)の組成粒子を圧縮し、他方、ローレンツ力Fh2とF
h3は試料板体(16)の組成粒子を引っ張り、試料板
体(1B)の表層部が伸縮運動し、て第3図(d)に破
線で示したように振動が惹起される。
In order to excite plate waves, first, a static magnetic field V is generated in a direction perpendicular to the surface of the sample plate (16) using the first DC power supply (4) and the first electromagnet (1). After that, Parsa (
When a pulse current P is supplied to the vibration generating coil (5) from 6), an eddy current JIL+ is generated in the surface layer of the sample plate (16) at a pitch equal to the coil pitch D of the vibration generating coil (5).
J2. J3+j4 are induced at equal intervals, and the Lorentz force Fhi (i=1,2
, 3.4) occur in the direction of the arrow shown in FIG. 3(c). Among these Lorentz forces, Lorentz forces Fh1 and Fh
2, and Fb3 and Fh4 are respectively sample plate (16
), and on the other hand, the Lorentz forces Fh2 and F
h3 pulls the constituent particles of the sample plate (16), causing the surface layer of the sample plate (1B) to expand and contract, causing vibrations as shown by the broken line in FIG. 3(d).

このとき、試料板体(1B)の厚みが薄いと(例えば2
mm程度)、送信トランスデユーサ(7)が対面しない
試料板体(18)の裏面をも同時に振動し、発生コイル
(5)のコイルピッチDに等しい波長のaモード(第4
図(a))の板波(18)となり第1図に示す矢印(1
7)の方向に伝搬する。なお、振動発生コイル(5)の
コイルピッチD、試料板体(16)の材質、板厚を一定
とし、送信パルス電流Pの周波数を変えると、第4図(
a)、 (b)に示すaモード、Sモード、さらには、
その中間モードに従う各種の板波を発生・伝搬させるこ
とができる。
At this time, if the sample plate (1B) is thin (for example, 2
mm), the transmitting transducer (7) simultaneously vibrates the back side of the sample plate (18) that does not face it, and vibrates the a-mode (4th
It becomes the plate wave (18) in Figure (a)) and becomes the arrow (1) shown in Figure 1.
7) propagates in the direction of Note that if the coil pitch D of the vibration generating coil (5), the material and plate thickness of the sample plate (16) are constant, and the frequency of the transmission pulse current P is changed, the result shown in Fig. 4 (
a mode, S mode shown in a) and (b), and further,
Various plate waves can be generated and propagated according to the intermediate mode.

他方、板波検出は、板波発生と逆の原理に基づき、かつ
フレミングの右手の法則に従い、送信トランスデユーサ
(7)と同様な構成の受信トランスデユーサにより行な
うことができる。
On the other hand, plate wave detection can be performed by a receiving transducer having a configuration similar to that of the transmitting transducer (7), based on the opposite principle to plate wave generation and according to Fleming's right-hand rule.

すなわち、受信トランスデユーサ(15)においては、
先ず、第2直流電源(11)と第2電磁石(8)を用い
て直流励磁し、送信側と同様に試料板体(16)面に対
し垂直な静磁界Vを発生する。この状態において、振動
検出コイル(12)4.5:対向する試料板体(1B)
の部分に板波(18)が伝搬してくると、その静磁界■
と振動との相互作用で渦電流が試料板体(16)の表層
部に発生し、その渦電流が発生する交番磁界が振動検出
コイル(12)と鎖交し、振動検出コイル(12)に電
流が誘起される。この誘起電流を増幅器(13)で増幅
し、その増幅信号に基づいて判定器(14)は伝搬時間
、受信信号の大きへを捉える。なお、試料板体(16)
が最大振幅で振動したとき、表層部に発生する渦電流も
最大となるので、振動検出コイル(12)のコイルピッ
チDを板波の波長に合わせれば、効率よく板波検出を行
なうことができる。
That is, in the receiving transducer (15),
First, DC excitation is performed using the second DC power supply (11) and the second electromagnet (8) to generate a static magnetic field V perpendicular to the surface of the sample plate (16), similar to the transmission side. In this state, vibration detection coil (12) 4.5: Opposing sample plate (1B)
When the plate wave (18) propagates to the part, the static magnetic field ■
An eddy current is generated on the surface layer of the sample plate (16) due to the interaction between the eddy current and the vibration, and the alternating magnetic field generated by the eddy current interlinks with the vibration detection coil (12). A current is induced. This induced current is amplified by an amplifier (13), and a determiner (14) determines the propagation time and the magnitude of the received signal based on the amplified signal. In addition, the sample plate (16)
When the vibration detecting coil (12) vibrates with the maximum amplitude, the eddy current generated in the surface layer becomes maximum, so plate waves can be detected efficiently by matching the coil pitch D of the vibration detection coil (12) to the wavelength of the plate wave. .

また、板波は試料板体(16)の板厚等によって伝搬速
度(速度分散)が変化し、しかも、伝搬効率1、も異な
る性質があり、従って探傷に用いる場合には、材質およ
び板厚によって定まる最適な板波モードおよび波長が存
在する。つまり、板波による探傷装置では試料板体(1
8)の板厚変化に合せて、逐、次板波の波長を変える必
要があり、振動発生コイル(5)および振動検出コイル
(12)のコイルピッチDを変える必要がある。、さら
にまた、高次モードの板波を発生する場合には、送信周
波数を高周波側に変える必要がある。
In addition, the propagation speed (velocity dispersion) of plate waves changes depending on the thickness of the sample plate (16), and the propagation efficiency 1 also differs. Therefore, when used for flaw detection, it is necessary to There is an optimal plate wave mode and wavelength determined by In other words, in a flaw detection device using plate waves, the sample plate (1
In accordance with the change in plate thickness in step 8), it is necessary to change the wavelength of the plate wave successively, and it is also necessary to change the coil pitch D of the vibration generating coil (5) and the vibration detecting coil (12). Furthermore, when generating a higher-order mode plate wave, it is necessary to change the transmission frequency to a higher frequency side.

上述のように、従来の板波送受信装置では、試料板体(
16)の板厚が変わる毎に振動発生・振動検出コイルの
コイルピッチを変化させる必要があるので、振動発生・
振動検出コイル、または送−受信トランスデューサを自
在に取り替えうる取替機構を備えなければならず、装置
が複雑で肥大化し、しかも、取替時間中はラインを停止
せざる得ないという欠点があった。
As mentioned above, in the conventional plate wave transmitter/receiver, the sample plate (
16) It is necessary to change the coil pitch of the vibration generation/vibration detection coil every time the plate thickness changes.
It is necessary to have a replacement mechanism that allows the vibration detection coil or transmitting/receiving transducer to be freely replaced, which makes the device complicated and bulky, and has the disadvantage that the line has to be stopped during the replacement time. .

本発明は、上記のような従来のものの欠点を除去するた
めになされたもので、振動発生働振動検出コイルにマル
チピッチのコイルを用いて、一時に各種モードの板波を
送信′させ得、受信側では任意のモードの板波な受信で
きる構成とし、試料板体(16)の板厚の変更に際して
も常に最適なモードの板波を捉え得るマルチピッチの板
波送受信装置の提供を目的とする。
The present invention has been made in order to eliminate the drawbacks of the conventional ones as described above, and uses a multi-pitch coil for the vibration generation and vibration detection coil to transmit plate waves in various modes at the same time. The purpose of the present invention is to provide a multi-pitch plate wave transceiver that can receive plate waves of any mode on the receiving side and that can always capture plate waves of the optimum mode even when the thickness of the sample plate (16) is changed. do.

以下、本発明の一実施例を第°1図と同一部分には同一
符号を附して示す第5図について説明する。図において
、(18)は本発明にかかる送信トランスデユーサで、
従来の場合に比べ振動発生コイル(20)が異なる。即
ち、振動発生コイル(20)は第6図(a)に示すよう
に等ピッチではなく、コイルピッチがDlの部分(2O
a) 、コイルピッチがDl(02<Ih)の部分(2
0b)およびコイルピッチがDa (Da < 02 
) (1)部分(20c) c7)直列接続で形成され
ている。また、(21)は、従来装置と異なる構成の振
動検出コイル(22)を有する受信トランスデユーサで
ある。更にまた、(23)は振動検出コイル(22)の
信号を増幅等処理する信号処理器、(24)は該信号処
理器(23)からの信号に基づき試料板体(16)の性
状を判定する判定器、(25)は該判定器(24)の出
力信号sbに基づき直流電源(4)、(11)およびパ
ルサ(6)等の動作タイミング等を制御する制御器、(
26)は該構成による板波である。これら上述した構成
要素の中、振動検出コイル(22)および信号対、理器
(23)につき第7図により詳細な構成が示されている
。図において、(22a)〜(22c)はそれぞれコイ
ルピッチD、、  Dl、  D3を有し、振動検出コ
イル(22)を形成する物裸的に別体なコイル部分、(
2?a)〜(27c)はそれぞれ信号処理器(23)に
備えられた増幅器、(28)は同様に信号処理器(23
)に備えられマルチプレクサで、各コイル部分(22a
)〜(22c)はそれぞれ対応する増幅器(2?a)〜
(27c)に検出信号を送出し、その出力をマルチプレ
クサ(28)が選択して判定器(24)に送出するよう
なされている。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. 5, in which the same parts as in FIG. 1 are denoted by the same reference numerals. In the figure, (18) is a transmitting transducer according to the present invention,
The vibration generating coil (20) is different from the conventional case. That is, the vibration generating coil (20) is not arranged at equal pitches as shown in FIG.
a) The part (2) where the coil pitch is Dl (02<Ih)
0b) and the coil pitch is Da (Da < 02
) (1) Part (20c) c7) Formed by series connection. Further, (21) is a receiving transducer having a vibration detection coil (22) having a configuration different from that of the conventional device. Furthermore, (23) is a signal processor that amplifies and processes the signal of the vibration detection coil (22), and (24) determines the properties of the sample plate (16) based on the signal from the signal processor (23). (25) is a controller that controls the operation timing of the DC power supplies (4), (11), the pulser (6), etc. based on the output signal sb of the determiner (24);
26) is a plate wave with this configuration. Among the above-mentioned components, the detailed structure of the vibration detection coil (22), signal pair, and logic device (23) is shown in FIG. In the figure, (22a) to (22c) have coil pitches D, Dl, and D3, respectively, and are clearly separate coil parts forming the vibration detection coil (22), (
2? a) to (27c) are amplifiers provided in the signal processor (23), respectively, and (28) is similarly provided in the signal processor (23).
) is provided with a multiplexer, each coil portion (22a
)~(22c) are the corresponding amplifiers (2?a)~
A detection signal is sent to (27c), and a multiplexer (28) selects the output thereof and sends it to a determiner (24).

次に、かかる構成を有する図示実施例装置の動作を第8
〜10図をも参照して説明する。
Next, the operation of the illustrated embodiment apparatus having such a configuration will be explained in the eighth section.
This will be explained with reference to FIGS.

先ず、制御器(25)は指令信号Scを第1および第2
直流電源(4)、(11)にそれぞれ送出して駆動・し
、第1、および第2電磁石(1)、(8)をそれぞれ励
磁し、送・受信トランスデユーサ(1!3)、<21)
に対向する試料板体(1B)面にそれぞれ垂直な静磁界
を供給する。
First, the controller (25) sends the command signal Sc to the first and second command signals.
The DC power supplies (4) and (11) are respectively sent to drive and energize the first and second electromagnets (1) and (8), respectively, and the transmitting/receiving transducer (1!3), < 21)
A perpendicular static magnetic field is applied to the surface of the sample plate (1B) facing the sample plate (1B).

しかる後、制御器(25)は指令信号Sdをパルサ(6
)に送出して駆動させ、振動発生コイル(2o)にパル
−スミ流Pを供給する。、どの振動発生コイル(20)
への通流により、試料板体(16)の表層部には、第6
図(b)に示すように、各コイル部分(20a) 〜(
20c) (7)ピy チD1 、  D2.034.
 対応した間隔ごとに渦電流Jj(j=1〜10)が誘
導される。この渦電流J」は静磁界゛との相互作用によ
って交互に向きを変えたローレンッカFhj(j=1〜
10)を発生させ、従って試料板体(16)は水平方向
の伸縮連動を行なう。この伸縮運動は第6図(c)に破
線で示すように複数の波長D1.D2.D3が混在した
振動(板波) (2B)となり、矢印(17)の方向に
伝搬する。
After that, the controller (25) sends the command signal Sd to the pulser (6).
) to drive the vibration generating coil (2o) and supply the pulse-sumi flow P to the vibration generating coil (2o). , which vibration generating coil (20)
As a result of the flow to the surface of the sample plate (16), the sixth
As shown in Figure (b), each coil portion (20a) ~ (
20c) (7) Pychi D1, D2.034.
Eddy currents Jj (j=1 to 10) are induced at corresponding intervals. This eddy current J'' is caused by a low roller Fhj (j=1~
10), and therefore the sample plate (16) performs horizontal expansion and contraction. This expansion/contraction movement occurs at multiple wavelengths D1. D2. The vibration (plate wave) (2B) is a mixture of D3 and propagates in the direction of the arrow (17).

受信側では、判定器(24)が予め試料板体(16)の
材質、板厚情報に基づきマルチプレクサ(28)に指令
Saを与え、何れかの増幅器を選択しておく。
On the receiving side, a determiner (24) gives a command Sa to a multiplexer (28) based on the material and thickness information of the sample plate (16) in advance to select one of the amplifiers.

今、増幅器(27a)を選択しているとするー。この状
況において、上述の板波(26)が送信側から伝搬して
くると、受信側の試料板体(16)面の表層部に渦電流
が誘起されて各振動検出コイル部分(22a)〜(22
c)にも電流が誘起される。しかるに、増幅器(27a
)が選択されているので、この各振動検出コイル部分(
22a)〜(22c)に誘起された電流のうち、振動検
出コイル部分(22a) 曝誘起された電流だけが増幅
器(2?a)を介して判定器(24)に送出される。し
かして、判定器(24)はこの信号に基づき上記板波の
伝搬時間および減衰量を捉え、試料の材質、欠陥等の性
状を判定するのである。
Assume that the amplifier (27a) is selected now. In this situation, when the above-mentioned plate wave (26) propagates from the transmitting side, an eddy current is induced in the surface layer of the sample plate (16) on the receiving side, and each vibration detection coil portion (22a) to (22
A current is also induced in c). However, the amplifier (27a
) is selected, so each vibration detection coil part (
Among the currents induced in 22a) to (22c), only the current induced in the vibration detection coil portion (22a) is sent to the determiner (24) via the amplifier (2?a). Based on this signal, the determiner (24) captures the propagation time and attenuation amount of the plate wave, and determines the properties of the sample, such as its material and defects.

次に、上述の判定器(24)が増幅器を選択する基準お
よびその選択する必要性について説明する。
Next, the criteria by which the above-described determiner (24) selects an amplifier and the necessity of the selection will be explained.

なお、以下の説明の前提として、試料板体(16)の性
状の判定には波長D1の板波が最適であると仮定する。
In addition, as a premise for the following explanation, it is assumed that a plate wave of wavelength D1 is optimal for determining the properties of the sample plate (16).

受信側において、試料板体(16)の表層部に発生する
渦電流の大きさは、板波振幅の関数であって最大振幅の
とき最大となるので、複数のコイル辺で板波の最大振幅
を渦電流を媒介として同時に捉えるためには板波波長と
等しいピッチの振動検出コイルが妥当である。即ち、第
8図(a)に示すように、振動検出コイル(22a)の
ピッチD1と板波波長D1とが等しい場合には、ある時
点では、第8図(b)に示すように各コイル、、(22
al) 〜(22a4)にそれぞれ一様に最大値の誘起
電圧eal〜ea4が表われるが、他方、第8図(C)
に示すように振動検出コイル(22b)のピッチD2と
板波波長D1とが不一致の場合には、第8図(d)に示
すように各コイル辺(22bl) 〜(22b4)に誘
起される電圧ebl〜eb4は一様でなく、最大値が表
われる時点も明確でない。
On the receiving side, the magnitude of the eddy current generated in the surface layer of the sample plate (16) is a function of the plate wave amplitude and is maximum at the maximum amplitude, so the maximum amplitude of the plate wave on multiple coil sides A vibration detection coil with a pitch equal to the plate wave wavelength is appropriate in order to simultaneously capture the eddy currents as a medium. That is, as shown in FIG. 8(a), when the pitch D1 of the vibration detection coil (22a) and the plate wave wavelength D1 are equal, at a certain point, each coil ,,(22
The maximum induced voltages eal to ea4 uniformly appear in (22a4) to (22a4), but on the other hand, in FIG. 8(C)
When the pitch D2 of the vibration detection coil (22b) and the plate wave wavelength D1 do not match as shown in FIG. The voltages ebl to eb4 are not uniform, and the point at which the maximum value appears is not clear.

第9図(a)〜(e)に、板波波長D1とピッチD1が
等しい場合に各コイル辺(22al)〜(22a4)に
誘起される電圧eal〜ea4と、その合成波eAの波
形を示し、また、第10図(a)〜(e)に不一致の場
合の誘起電圧ebl〜eb4と、その合成波eBの波形
を示す。図示の如く、板波波長とピッチが等しい場合の
合成波eAは、対称波形をなし、その最大値は大きく特
定できる波形であるか、不一致の場合の合成波eBは、
歪んでおり特定できないものである。従って板波波長と
振動検出コイルピッチが不一致の振動検出コイル部分(
例えば、(22b) 。
FIGS. 9(a) to (e) show the voltages eal to ea4 induced on each coil side (22al) to (22a4) when the plate wave wavelength D1 and pitch D1 are equal, and the waveform of the composite wave eA. In addition, FIGS. 10(a) to 10(e) show the waveforms of the induced voltages ebl to eb4 and their composite wave eB in the case of mismatch. As shown in the figure, the composite wave eA when the plate wave wavelength and pitch are equal has a symmetrical waveform, and the maximum value is a waveform that can be specified largely, or the composite wave eB in the case of mismatch is:
It is distorted and cannot be identified. Therefore, the vibration detection coil part where the plate wave wavelength and vibration detection coil pitch do not match (
For example, (22b).

(22c))、、か、らの信号に基づき試料板体(1B
)の性状を判定しても無意味であり、そこで、予め、板
波波長と同一ピッチの振動検出コイル部分(22a)に
対応する増幅器(2?a)を選択しておく必要がある。
(22c)), , etc. Based on the signals from the sample plate (1B)
) is meaningless, so it is necessary to select in advance the amplifier (2?a) corresponding to the vibration detection coil portion (22a) having the same pitch as the plate wave wavelength.

なお、上記説明において、振動検出コイル(22)と信
号処理器(23)の構成として第7図に図示したものを
用いたが第11図に示す構成のものでもよい。即ち、任
意間隔毎に単線の振動検出コイル(22d)〜(22k
)を配置し、該単線コイル(22d)〜(22k)の各
信号をそれぞれ増幅器(27d)〜(27k)で増幅し
、その増幅器(2?d)〜(27k)の中からマルチプ
レクサ(28)が任意のコイルピッチを構成するように
いくつかの増幅器を選択し、その出力信号を加算器(2
8)で加算して判定器(24)に入力するような構成の
ものであっても良い。
In the above description, the configuration of the vibration detection coil (22) and the signal processor (23) shown in FIG. 7 is used, but the configuration shown in FIG. 11 may be used. That is, single-wire vibration detection coils (22d) to (22k) are installed at arbitrary intervals.
), each signal of the single wire coils (22d) to (22k) is amplified by amplifiers (27d) to (27k), and a multiplexer (28) is selected from the amplifiers (2?d) to (27k). Select some amplifiers so that the coil pitch constitutes an arbitrary coil pitch, and send their output signals to an adder (2
8) may be added and input to the determiner (24).

また、試料板体(16)の板厚によって、伝搬しやすい
板波モードが決まるので、振動検出コイル(22)を振
動発生コイル(20)と同じ構成のものを用いたとして
も、所定波長の板波のみを受信することができる。さら
に、信号処理器(23)の一部にハンドパスフィルタを
用いればS/N比の向上が期待できる。
Furthermore, since the plate wave mode that propagates easily is determined by the thickness of the sample plate (16), even if the vibration detection coil (22) has the same configuration as the vibration generation coil (20), Only plate waves can be received. Furthermore, if a hand-pass filter is used as part of the signal processor (23), an improvement in the S/N ratio can be expected.

上記説明は、縦波発生法による板波について行なったが
、横波発生法による板波についても本発明を適用できる
ことは勿論である。なお、縦波発生法は第3図(b)に
示した方法だけでなく、磁界を与えない方法によるもの
であっても同様な効果が期待できる。
Although the above explanation has been made regarding plate waves produced by the longitudinal wave generation method, it goes without saying that the present invention can also be applied to plate waves produced by the transverse wave generation method. Incidentally, the longitudinal wave generation method is not limited to the method shown in FIG. 3(b), but similar effects can be expected even if the method is based on a method that does not apply a magnetic field.

また、上記実施例では、振動発生・検出コイル共に直線
状のミアンタラインコイルを示したが、第+21;1i
ff (a) 、 (c)に示すような曲線状のミアン
グラインコイルまたはグリッド状コイルを用いたもので
も良く、また、第12図(b)に示すような直線状のマ
ルチピッチによるグリッド状コイルを用いたものであっ
ても良い。
In addition, in the above embodiment, both the vibration generation and detection coils are linear mianta line coils, but the +21st;
ff It may be possible to use a curved mean-line coil or a grid-like coil as shown in (a) and (c), or it may be a linear multi-pitch grid-like coil as shown in FIG. 12(b). A coil may be used.

以上のように、本発明によれば、マルチピッチの振動発
生・振動検出コイルを用い、マルチモードの板波を送信
し、他方、受信側で所定波長の板波、すなわち所定モー
ドの板波を這択できる構成としたので、試料板体の材質
、板厚等が変更されても、−、コイルピッチの異なる振
動発生コイルおよび振動検出コイルに取り替える必要は
なく、操作性が良く、しかも、安価な装置を得ることが
できるという効果を有する。
As described above, according to the present invention, a multi-pitch vibration generation/vibration detection coil is used to transmit a multi-mode plate wave, and on the receiving side, a plate wave of a predetermined wavelength, that is, a plate wave of a predetermined mode is transmitted. Since it has a configuration that allows selection, even if the material, thickness, etc. of the sample plate is changed, there is no need to replace it with a vibration generating coil and a vibration detection coil with different coil pitches, making it easy to operate and inexpensive. This has the effect that it is possible to obtain a device with a high degree of accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の板波送受信装置を示すブロック図、第2
図は第1図装置における振動発生・振動検出コイルの形
状を示す概略図、第3図は板波発生の原理説明図、第4
図は板波振動モードの典型態様を示す説明図、第5図は
本発明の一実施例による板波送受信装置を示すブロック
図、第6図は第5図装置における振動発生コイルの形状
を示すと共に板波発生原理を説明するための原理説明図
、第7図は第5図装置における振動検出コイルと信号処
理器の一実施例を示す詳細構成図、第8図は板波波長と
コイルピッチとの関係により誘起電圧が異なることを示
す説明図、第9,10図はそれぞれ振動検出コイルの誘
起電圧波形図、第11図は振動検出コイルと信号処理器
の他の実施例を示す詳細構成図、第12図は振動発生・
振動検出コイルの他の実施例による形状を示す概略図の
である。 (1)、(8)・・・電磁石、   (4,)、(11
)・・・直流電源、(6)・・・パルサ、      
(16)・・・試料板体、(17)・・・伝搬方向、(
19)・・・送信トランスデユーサ(20)・・・振動
発生コイル、 (21)・・・受信トランスデユーサ、(22)・・・
振動検出コイル、 (23)・・・信号処理器、(24
)・・・判定器、      (25)・・・制御器、
(26)・・・マルチモードの板波。 なお、図中、同一符号は同−又は相当部分を示す。 代  理  人   葛  野  信  −#1 1 
 図 @  2  閏 蛤  4WJ 番 1161!! 第  7  図 第  8  図 第  9wJ 第  11  図 笛  12   図 手続補正書(自発) 特許庁長官殿 1、事件の表示   特願昭 58−48283号2、
発明の名称 板波送受信装置 3、補正をする者 代表者片山仁へ部 4、代理人 5、補正の対象 発明の名称9欄、および明細書の発明のu+ ++’t
+、’+ WM刀の欄。 6、補正の内容 (1)本願発明の名称の読み方を特定した願書の発明の
名称の欄における「バンパノ、ウジュシンソウチ」とい
うフリガナ記載部分を別紙訂正願書の如く「イタナミソ
ウジュシンソウチ」と補正する。 1舎弟3頁第13行、第5頁第7行、およ為6行の各「
横波」という記載をそれぞれ「縦波」と補正する。 (3)明細書第3頁第14行、および第5頁第6に第1
5頁第5行の各「縦波」という記載L「横波」と補正す
る。 」書落6頁第14行の「その中間モードにという記載を
「各種の高次モード」と 」舎弟14頁第1行乃至第4行の「板波波、そこで、」
という記載を削除する。 (6)明細書第15頁第8行の「第3図(b)」 とい
う記載を「第3図(a)」と補正する。 7、添付書類の目録
Figure 1 is a block diagram showing a conventional plate wave transmitter/receiver;
The figures are a schematic diagram showing the shape of the vibration generation/vibration detection coil in the device shown in Figure 1, Figure 3 is a diagram explaining the principle of plate wave generation, and Figure 4.
The figure is an explanatory diagram showing a typical mode of plate wave vibration mode, Figure 5 is a block diagram showing a plate wave transmitter/receiver according to an embodiment of the present invention, and Figure 6 shows the shape of the vibration generating coil in the apparatus shown in Figure 5. 7 is a detailed configuration diagram showing an example of the vibration detection coil and signal processor in the device shown in FIG. 5, and FIG. 8 is a diagram showing the plate wave wavelength and coil pitch. 9 and 10 are respectively induced voltage waveform diagrams of the vibration detection coil, and FIG. 11 is a detailed configuration showing another embodiment of the vibration detection coil and signal processor. Figure 12 shows vibration generation and
7 is a schematic diagram showing the shape of another embodiment of the vibration detection coil. FIG. (1), (8)...electromagnet, (4,), (11
)...DC power supply, (6)...Pulser,
(16)...Sample plate, (17)...Propagation direction, (
19)...Transmission transducer (20)...Vibration generating coil, (21)...Reception transducer, (22)...
Vibration detection coil, (23)...Signal processor, (24
)...determiner, (25)...controller,
(26)...Multimode plate wave. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Agent Shin Kuzuno -#1 1
Diagram @ 2 Leopard 4WJ No. 1161! ! Figure 7 Figure 8 Figure 9wJ Figure 11 Whistle 12 Amendment to figure procedure (voluntary) Commissioner of the Japan Patent Office 1, Indication of the case Patent Application No. 58-48283 2,
Name of the invention Plate wave transmitter/receiver 3, representative of the person making the amendment Hitoshi Katayama Department 4, agent 5, name of the invention to be amended, column 9, and u+ ++'t of the invention in the specification
+, '+ WM sword column. 6. Contents of the amendment (1) In the column of the title of the invention in the application that specifies how to read the name of the claimed invention, the part where the furigana is written as "Bampano, Ujushinsouchi" is amended to "Itanami Soujushinsouchi" as in the attached application for correction. . Line 13 on page 3, line 7 on page 5, and line 6 on page 5.
The description "transverse wave" will be corrected to "longitudinal wave." (3) Page 3, line 14 of the specification, and page 5, line 1,
In the fifth line of page 5, each description of "longitudinal wave" is corrected to "transverse wave". ” scribbles, page 6, line 14, ``The description of intermediate modes is ``various higher modes.'''' Page 14, lines 1 to 4, ``Itanami wave, there,''
Delete the statement. (6) The statement "Fig. 3 (b)" on page 15, line 8 of the specification is amended to "Fig. 3 (a)." 7. List of attached documents

Claims (1)

【特許請求の範囲】[Claims] 試料板体表面に対し平行なコイル辺を有する振動発生コ
イルを少なくとも備えた送信トランスデユーサ、上記試
料板体表面に対して水平または垂直な磁界を与える磁石
機構と、上記試料板体表面に対し平行なコイル辺を有す
る振動検出コイルとを備えて上記送信トランスデユーサ
に対し離間して設けられた受信トランスデユーサ、並び
に、その振動検出コイルからの信号を受ける判定器とを
備え、上記振動発生コイルに通流することで、上記試料
板体を振動させ、該振動を上記振動検出コイルで捉え、
その検出信号に基づき上記判定器が試料板体の性状を判
定する板波送受信装置において、上記振動発生コイルは
複数のコイルピッチを有すると共に、上記振動検出コイ
ルはその振動発生コイルの一コイルピッチにより定まる
各振動波長に対し強く応答する対応コイル部分を有し、
各対応コイル部分からの信号を信号処理部で選択して上
記判定器に送出する構成としたことを特徴とする板、2
波送受信装置。
a transmitting transducer comprising at least a vibration generating coil having coil sides parallel to the sample plate surface; a magnet mechanism for applying a magnetic field horizontally or perpendicularly to the sample plate surface; a receiving transducer provided with a vibration detecting coil having parallel coil sides and provided spaced apart from the transmitting transducer; and a determiner receiving a signal from the vibration detecting coil; By passing current through the generating coil, the sample plate is vibrated, and the vibration is captured by the vibration detection coil,
In the plate wave transmitting/receiving device in which the determining device determines the properties of the sample plate based on the detection signal, the vibration generating coil has a plurality of coil pitches, and the vibration detecting coil has one coil pitch of the vibration generating coil. It has a corresponding coil part that responds strongly to each determined vibration wavelength,
A board characterized in that the signal from each corresponding coil portion is selected by a signal processing unit and sent to the determination device, 2.
Wave transmitting and receiving device.
JP58048283A 1983-03-23 1983-03-23 Plate wave transmitter and receiver Pending JPS59173749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58048283A JPS59173749A (en) 1983-03-23 1983-03-23 Plate wave transmitter and receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58048283A JPS59173749A (en) 1983-03-23 1983-03-23 Plate wave transmitter and receiver

Publications (1)

Publication Number Publication Date
JPS59173749A true JPS59173749A (en) 1984-10-01

Family

ID=12799105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58048283A Pending JPS59173749A (en) 1983-03-23 1983-03-23 Plate wave transmitter and receiver

Country Status (1)

Country Link
JP (1) JPS59173749A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742809A (en) * 1985-02-23 1988-05-10 Toyota Jidosha Kabushiki Kaisha Fuel tank
US4790283A (en) * 1985-02-25 1988-12-13 Toyota Jidosha Kabushiki Kaisha Fuel tank
CN102721735A (en) * 2012-07-13 2012-10-10 厦门大学 Metal surface/sub-surface magnetic-acoustic imaging probe applying Lorentz force
CN114113308A (en) * 2021-11-23 2022-03-01 华中科技大学 Force-magnetic fusion metal material defect eddy current detection system and detection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742809A (en) * 1985-02-23 1988-05-10 Toyota Jidosha Kabushiki Kaisha Fuel tank
US4790283A (en) * 1985-02-25 1988-12-13 Toyota Jidosha Kabushiki Kaisha Fuel tank
CN102721735A (en) * 2012-07-13 2012-10-10 厦门大学 Metal surface/sub-surface magnetic-acoustic imaging probe applying Lorentz force
CN114113308A (en) * 2021-11-23 2022-03-01 华中科技大学 Force-magnetic fusion metal material defect eddy current detection system and detection method
CN114113308B (en) * 2021-11-23 2022-05-24 华中科技大学 Force-magnetic fusion metal material defect eddy current detection system and detection method

Similar Documents

Publication Publication Date Title
US3850031A (en) Process and apparatus for determining the variation of tensile stresses in cold-rolled strip over the width thereof
US6924642B1 (en) Magnetorestrictive transducer for generating and measuring elastic waves, and apparatus for structural diagnosis using the same
Hayashi Imaging defects in a plate with complex geometries
US4380931A (en) Apparatus and method for quantitative nondestructive wire testing
CN109142537B (en) Method for controlling polarization direction of mass point and scanning detection
JPS59173749A (en) Plate wave transmitter and receiver
CN107991393A (en) A kind of double frequency electromagnetic acoustic detecting system
JP3886843B2 (en) Electromagnetic ultrasonic transducer
JPS59173753A (en) Plate wave transmitter and receiver
JPS623900B2 (en)
JPS59173755A (en) Plate wave transmitter and receiver
JPS59173750A (en) Plate wave transmitter and receiver
JPS59173751A (en) Plate wave transmitter and receiver
JP2001013118A (en) Electromagnetic ultrasonic probe
JPS59173752A (en) Plate wave transmitter and receiver
Latimer et al. Electromagnetic Transducers for Generation and Detection of Ultrasonic Waves
JPS63139250A (en) Electromagnetic-ultrasonic transducer apparatus
JPS6225259A (en) Electromagnetic ultrasonic tranceducer
JP3341824B2 (en) Electronic scanning ultrasonic flaw detector
US20230018319A1 (en) Staggered Magnet Array (SMA) Based Electromagnetic Acoustic Transducer (EMAT)
JP3962230B2 (en) Vibration device and ultrasonic application device
JPS61245056A (en) Plate wave trasducer
JP2667016B2 (en) Electromagnetic ultrasonic transducer
KR101886935B1 (en) Apparatus and method for inline inspection of longitudinal microcrack in steel plate
JPS60122370A (en) Flaw detector for thin plate