JPS59173231A - Formation of compound ultra-conductive substance - Google Patents

Formation of compound ultra-conductive substance

Info

Publication number
JPS59173231A
JPS59173231A JP58031969A JP3196983A JPS59173231A JP S59173231 A JPS59173231 A JP S59173231A JP 58031969 A JP58031969 A JP 58031969A JP 3196983 A JP3196983 A JP 3196983A JP S59173231 A JPS59173231 A JP S59173231A
Authority
JP
Japan
Prior art keywords
compound
bcx
conductive substance
formation
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58031969A
Other languages
Japanese (ja)
Other versions
JPS646257B2 (en
Inventor
Ichiro Tsubata
津端 一郎
Tsutomu Yamashita
努 山下
Yoshio Tanmachi
反町 嘉夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58031969A priority Critical patent/JPS59173231A/en
Publication of JPS59173231A publication Critical patent/JPS59173231A/en
Publication of JPS646257B2 publication Critical patent/JPS646257B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To easily form an ultra-conductive substance comprising a two-element compound, by subjecting an element such as V, Nb, Ti, Hf or Zr, an element such as Si, Ge, Sn, Al or Ga and a compound containing O, N or S to solid phase reaction. CONSTITUTION:An element A such as V, Nb, Ti, Hf or Zr, an element B such as Si, Ge, Sn, Al or Ga and a compound BCx containing a highly reactive element C such as O, N or S are subjected to solid phase reaction to form an ultra- conductive substance AyB (wherein V3Si formed by using SiO2 as BCx is excepted) comprising a two-element compound. In this case, the element A is reacted with C in the compound BCx and, at the same time, decomposes BCx to form AyB and B is not supplied except for the decomposition of BCx and, therefore, reaction advances in such a state that the supply amount of B is limited and (y) takes a value of 1 or more, in general, 3.

Description

【発明の詳細な説明】 4、、発明は、化合物超伝導体の形成方法(=関する。[Detailed description of the invention] 4. The invention relates to a method for forming a compound superconductor.

この種超云凄体は、たとえば超高冴コンピューター用絢
理紫子のジョセフソン5g子の笑用化C二は不可欠であ
る。
This kind of super amazing body is indispensable, for example, the comical C2 of Ayari Shiko's Josephson 5g child for super high-performance computers.

丁なわち、ジョセフソン素子の実用化(=あって:ま暦
〆伝導臥界iM K ”cの筒いものが要求されるから
−Cある0 現在、最高のW Fm ’916%界7#A Ni ’
I’(はNbgGeで22.5Kか得られる。
In other words, the practical application of the Josephson element (= because it requires a cylinder of conduction field iM K "c" is presently the highest W Fm '916% field 7 # A Ni'
I'( can be obtained at 22.5K with NbgGe.

一般に超伝導金属単体より、その化合物超広導体の方が
より尚いT。を有している。
In general, compound superconductors have a higher T than superconducting metals alone. have.

そこで、より乱いTcを有する2元素化合物超伝導体(
Nb xAI 、 Nb i (jeなど)を形成する
ため(−各4″1Hの方法が試みられている。
Therefore, a binary compound superconductor with a more disordered Tc (
To form Nb x AI , Nb i (je, etc.) (-each 4″1H method has been tried.

しかし、これらの化合物は多くの場合、結晶格子の不安
定性が原因で、その形式は井帛(1豪しい。
However, these compounds are often difficult to form due to crystal lattice instability.

すなわち、記@A、 B、Cをそれぞれ元素記号とした
とき、2元素化合物rm云導体は多くの場合、A、Hの
化学式で示され、そこで従来はAaBを形成するため4
二元累Aと元g Eとを反応してしまた力・、A、 B
は通常不安定相のため、例えば安定相であるAB2゜A
B、A、Bなどが形成されてしまい、望まれるA:g+
 医う!ネ性のA、B相の形成は非′帛゛(二困姐であ
ったのである。
In other words, when A, B, and C are the element symbols, two-element compound rm conductors are often represented by the chemical formulas A and H, and conventionally, 4 is used to form AaB.
By reacting the binary sum A and the element g E, the force ・, A, B
is usually an unstable phase, so for example, AB2゜A which is a stable phase
B, A, B, etc. are formed, and the desired A:g+
Doctor! The formation of the natural A and B phases was non-structural.

ただ、わずか(=8iOz上(−■を蒸b−後熱処理し
、同相反応(=よってV、Siを得るようにしたものは
+tit究されている。
However, a method in which V and Si are obtained by heat-treating slightly (=8 iOz) after steaming b-■ to obtain an in-phase reaction (=+tit) has been investigated.

不発明は、上記の不t、15合(1婚み、製作1錘であ
るA3Bの2フC濤比合竹超云導体を、S 1(J2を
用いたV、S i(−限らず一組的な年感と順化物、水
化吻又はtvft化Ij、+)、との間の同相反応によ
って容易に得ることのできる化合I勿超云導体の形成方
法を提供しようとするものである。
The non-inventive method is to convert the above-mentioned non-t, 15-gou (1 marriage, 1 production spindle) A3B 2-fu C Tohiai bamboo superconductor to S1 (V using J2, Si (- not limited to It is an object of the present invention to provide a method for the formation of a compound I superconductor that can be easily obtained by an in-phase reaction between a set of complexes and an acclimate, hydrated or tvfted Ij, +). be.

以下不発明なん6明J−る〇 コニウム著の元素Aとシリコン・ゲルマ0つJ″′穿ヌ
ズ、アルミニウム、ガリウム寺の元糸B及びr;※系、
憾索、(べ;黄培の戊応性の強い元素Cを含む(e8 
@BCxとの固相成心(二よって2元素化合物相伝導悸
A、B(BOXとしてSiO□を用いたV3Siを除く
)を形成することを特徴とするものである。
The following is uninvented: Element A, silicon german, aluminum, gallium, element A, silicon german, aluminum, gallium, element B and r; *system,
Contains element C with strong reactivity of Huang Pei (e8
It is characterized by forming solid phase centration (therefore two-element compound phase conduction waves A and B (excluding V3Si using SiO□ as BOX) with @BCx).

これらの実施の態様としては第1図の組合せの2元素化
合物超伝導体が得られる。
In these embodiments, a two-element compound superconductor having the combination shown in FIG. 1 can be obtained.

本発明は、上述の如き方法であるから、元素Aが化合物
13Cx中の元素Cと反応すると同時に、BCxを分解
する結果としてAyBが形成されるのである。
Since the present invention is a method as described above, AyB is formed as a result of decomposing BCx at the same time as element A reacts with element C in compound 13Cx.

コ;h−二ヨツーcAllz、AB、4B トyz ラ
f cmTWiノA、B 力s形成される。
ko; h-2yotsu cAllz, AB, 4B toyz la f cmTWi no A, B force s is formed.

しかもこの場合(二は、BCxを分解しない限りBは供
給されないので、Bの供給4,4がttiiJ限された
状況で反応が進イテする結果、yは1以上の値をとり・
多くのり、″8合3となる。
Moreover, in this case (2), since B is not supplied unless BCx is decomposed, the reaction proceeds in a situation where the supply of B is limited, and as a result, y takes a value of 1 or more.
If there is a lot of glue, it will be 8 pieces and 3 pieces.

従って、容易1−A8Bか形成される。Therefore, 1-A8B is easily formed.

更に、BCxを基板として用いた場合(二は、語根との
反応の結果として価めて膏血性の良好なA、Bか形成さ
れる。
Furthermore, when BCx is used as a substrate (2), A and B with good adhesive properties are formed as a result of the reaction with the root of the word.

また更(二、基板として単結晶のBCxを用いること(
二より、形成されるAa Bを配向形成することかでき
る。
Furthermore, (2) using single crystal BCx as the substrate (
Secondly, the formed Aa and B can be oriented.

実施例1 元素A・・・Nb 反応式 %式%)( 酸化膜(SiOり伯シリコンウェハ端(反(二Nbヲ3
00 OAスパッタ魚粕し、その後、真空[5X 10
  Torr以下で900℃から1200℃、2時間の
J−1,全熱処理によりti′ii相反応させた。
Example 1 Element A...Nb Reaction formula % Formula %) (Oxide film (SiO)
00 OA sputter fish cake, then vacuum [5X 10
A ti'ii phase reaction was carried out by total heat treatment at 900° C. to 1200° C. for 2 hours at a temperature below Torr.

N1)ヌバンタ膜のX線回折パターンを弔21図(−示
す。
N1) The X-ray diffraction pattern of the Nuvanta film is shown in Figure 21 (-).

[・°n図中、斜線で示すように1100 Cの;・パ
処理堝度では明らか(二N1)6Slをボすビ〜りが確
認できる。
As shown by the diagonal lines in the figure, clear (2N1) 6Sl loss can be seen in the 1100 C;-Pa treatment brittleness.

また、この試料の超伝専臨界渦度は13゜Kであった。Moreover, the superelectric critical vorticity of this sample was 13°K.

実施例2 元素B・・・A’   V+Al2O,→VaAl+V
Ox元素C・・・0 結  果 アルミナ(AI 20m )磁器基板にVを300OA
スパツタ蒸ねし、その後、具引す×10′↓’orr以
下で600℃から900℃、2時1t1〕の真空熱処理
により11iIl相反応させた■ヌパツタ)匣のX線回
折パターンを鉛3区1;二示す。
Example 2 Element B...A' V+Al2O, → VaAl+V
Ox element C...0 Result V 300OA on alumina (AI 20m) ceramic substrate
The X-ray diffraction pattern of the 11iIl phase was reacted by steaming the spatsuta, and then vacuum heat treatment at 600°C to 900°C, 2 hours, 1t1] at a temperature of less than 10'↓'orr. 1; Show 2.

同図中、斜線で不すよう(−1700℃から900℃の
熱処理温度では、明らか4二V、AIを示すピークが確
約でさる。
In the same figure, as indicated by diagonal lines (at a heat treatment temperature of -1700° C. to 900° C., a peak clearly showing 42 V and AI is clearly visible.

また、これらの試料の超云導臨界砒度は5.2°Kから
5.4°にであった。
In addition, the superconductive critical arsenicity of these samples was from 5.2°K to 5.4°.

実施例3 元’ B” ’ ” ”   Nb +511(J2−
→N1)S(1+へ’box元素C・・・0 結  果 仙英カラス基板ζ二Snを具空介貸名し、これを熱1χ
、1化し゛(5n02膜をjし敗し、さらし、この上(
−200OAのNbYスパッタ蒸看し、その仮1,00
0℃、2時間の只空熱処理(二より固相反応させたNb
スパッタ膜のX線回折パターンを第4図(=示す。
Example 3 Element 'B''''' Nb +511 (J2-
→N1) S (to 1+'box element C...0 Result Sen'ei crow board ζ2Sn is lent by Gukusuke, and it is heated to 1χ
, unify the 5n02 film, expose it, and then (
-200OA NbY sputtering, the temporary 1,000
Air heat treatment at 0°C for 2 hours (Nb subjected to solid phase reaction)
The X-ray diffraction pattern of the sputtered film is shown in FIG.

同凶中料線を示すよう(二、明らか(二Nb口Snを示
すピークが(+’ll−詔できる。
As shown in the same line, it is clear that there is a peak indicating the Sn (+'ll-).

また、この試料のパ、ず4医導臨界温度は18゜Kであ
った。
Furthermore, the critical temperature of this sample was 18°K.

実施例4 元素B” ” ’ SIV 十5iBJ+、 −+ V
3Si +vl’Jx九素C・・・N 結果 シリコンウェハ基&(11μmの5iaN4ヲスパツタ
蒸着し、さら(=、この上(=200OAの■をヌパツ
タhA aし、その後、600℃から1100℃、2時
間の界空熱処理(二より同相反応させた■スパッタ膜の
X iJ回併パターンを第5図(=示す。
Example 4 Element B""' SIV 15iBJ+, -+ V
3Si +vl'Jx Nine elements C...N Result Silicon wafer base & Figure 5 shows the X iJ recirculation pattern of the sputtered film subjected to field heat treatment (2) and in-phase reaction.

同図中、1,1線で不すよう(−1800°Cの1ンh
処理瀝没で)ま、明らかにV、8iを示すヒーク力置面
−をできる。
In the same figure, the line 1 and 1 indicate the temperature difference (-1800°C 1 h
After processing, a heak force surface clearly showing V,8i can be obtained.

また、この試料の超云導臨界濡反は14°にであった。Further, the superconductive critical wetting of this sample was 14°.

【図面の簡単な説明】[Brief explanation of drawings]

沈1図は2元系化貨物超伝導体のに11合せ11414
椋ト!、第2図はNl)、Si形成のX線回折パターン
図、第3b It4 ViAI )し成のX線1州折パ
ターンN、第4因はNbaSn形成のX線(ロ)折パタ
ーン図、桐・5図ハVasi3’t 成ノX ?a回折
パターン図である。 昭和58年2月28日 出j帖大  津  端  −部 同     山   下       努同    反
  町  熱  夫 ]&仰 19.り4 〕t/−麹 フゲ相
Figure 1 shows 11414 binary cargo superconductors.
Mukuto! , Fig. 2 is an X-ray diffraction pattern diagram of Si formation, Fig. 3b is an X-ray diffraction pattern diagram of Si formation (It4 ViAI), and the fourth factor is an X-ray diffraction pattern diagram of NbaSn formation.・Figure 5 Ha Vasi3't Narino X? It is a diffraction pattern diagram. Published on February 28, 1981. ri4 〕t/-Koji fuge phase

Claims (1)

【特許請求の範囲】 バナジウム、ニオブ、チタン、ハフニウム、ジルコニウ
ム等の元素人と、シリコン、ゲルマニウム。 スズ、アル?ニウム、ガリウム等の元gB及びは紫、屋
素、硫黄等の反応性の強い元素Cを含む化合物BC,+
との固相反応によって2元素化合物超伝導体AyB (
BCxとしてS i02を用いたV、8iを除く)を形
成することを4¥徴と−づ°る化合物超伝導体のjし成
方法。
[Claims] Elements such as vanadium, niobium, titanium, hafnium, and zirconium, as well as silicon and germanium. Tin, Al? Element gB such as Ni, Gallium, etc. and compound BC, + containing highly reactive element C such as violet, nitrogen, sulfur, etc.
The two-element compound superconductor AyB (
A method for forming a compound superconductor in which the formation of V (excluding V, 8i) using Si02 as BCx is the 4th characteristic.
JP58031969A 1983-02-28 1983-02-28 Formation of compound ultra-conductive substance Granted JPS59173231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58031969A JPS59173231A (en) 1983-02-28 1983-02-28 Formation of compound ultra-conductive substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58031969A JPS59173231A (en) 1983-02-28 1983-02-28 Formation of compound ultra-conductive substance

Publications (2)

Publication Number Publication Date
JPS59173231A true JPS59173231A (en) 1984-10-01
JPS646257B2 JPS646257B2 (en) 1989-02-02

Family

ID=12345777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58031969A Granted JPS59173231A (en) 1983-02-28 1983-02-28 Formation of compound ultra-conductive substance

Country Status (1)

Country Link
JP (1) JPS59173231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365177U (en) * 1989-10-30 1991-06-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365177U (en) * 1989-10-30 1991-06-25

Also Published As

Publication number Publication date
JPS646257B2 (en) 1989-02-02

Similar Documents

Publication Publication Date Title
JP2723099B2 (en) Clathrate compound and method for producing the same
CN108658122A (en) A kind of two-dimensional metallic carbonitride derives nano material and preparation method thereof
Fortier et al. Structure of trirubidium hydrogenbis (sulfate), Rb3H (SO4) 2
Ihmaïne et al. Structure and magnetic properties of two niobium chlorides with¦ Nb6Cl12¦ n+ (n= 2, 3) units: KLuNb6Cl18 and LuNb6Cl18
Toda et al. Structural chemistry of new ion-exchangeable tantalates with layered perovskite structure: new dion–jacobson phase MCa2Ta3O10 (M= alkali metal) and ruddlesden–popper phase Na2Ca2Ta3O10
JPS59173231A (en) Formation of compound ultra-conductive substance
US5110790A (en) Superconducting thin films on potassium tantalate substrates
Grasset et al. Synthesis, crystal structure and magnetic properties of Ba5Ru2O9 (O2), Ba5Nb2O9 (O2) and Ba5Ru2O10 related to the perovskite-type structure, and structural relationships with corresponding sulfides
Sasaki Stability of rutile-type TiO2 under high pressure
Khan et al. Enhanced Inter-grain Connectivity in Nano-particles Doped (Cu 0.5 Tl 0.5) Ba 2 Ca 2 Cu 3 O 10− δ Superconductors
Qu et al. Composition evolution and electrical properties of VO2 thin films induced by annealing temperature
Singh et al. Effect of Ag doping on the transition temperature and critical current density of Hg1− xTlxBa2Ca2Cu3O8+ δ films fabricated through spray pyrolysis
JP2635355B2 (en) Method for producing oxide superconductor film
Soriano et al. The bremsstrahlung isochromat spectra of d0 transition-metal oxides
Takesada et al. Structural study of α-β phase transition in K2ZnBr4
Tegenfeldt et al. Hydrogen bond studies. X. The crystal structure of ammonium hydrogenperoxide
Neurgaonkar et al. Structural and thermal properties of the phase V1− xCr2x3Mx3O2, M= W6+ or Mo6+
JP3208849B2 (en) Bi-Sr-Ca-Cu-O-based superconducting thin film and method for producing the same
US5188906A (en) Substrates suitable for deposition of superconducting thin films
Chromik et al. Preparation and properties of precursor Ba–Ca–Cu–(O, F) thin films deposited from fluorides for superconducting Tl-and Hg-based films
Li et al. Structural and physical properties of Tl1− xBixSr2CuO5 (0.20≤ x≤ 0.50)
JPH0369596A (en) Substrate material for superconducting thin film
Pavuna FIRST 13 YEARS OF HIGH-T c: BRIEF REVIEW AND OPEN QUESTIONS
JPH0333052A (en) Production of oxide superconducting material
JPH0369505A (en) Oxide superconducting material