JPS59173024A - Heat storing and heating method and apparatus of greenhouse by solar energy - Google Patents

Heat storing and heating method and apparatus of greenhouse by solar energy

Info

Publication number
JPS59173024A
JPS59173024A JP58046891A JP4689183A JPS59173024A JP S59173024 A JPS59173024 A JP S59173024A JP 58046891 A JP58046891 A JP 58046891A JP 4689183 A JP4689183 A JP 4689183A JP S59173024 A JPS59173024 A JP S59173024A
Authority
JP
Japan
Prior art keywords
heat
air
heat storage
greenhouse
storage chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58046891A
Other languages
Japanese (ja)
Other versions
JPH035772B2 (en
Inventor
大久保 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP58046891A priority Critical patent/JPS59173024A/en
Publication of JPS59173024A publication Critical patent/JPS59173024A/en
Publication of JPH035772B2 publication Critical patent/JPH035772B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、特に農業用ビニールハウス、きのこ栽培室な
どの温室栽培室等の暖房に適した太陽熱利用の蓄熱暖房
方法及びその装置に関するものである。農業用温室に消
費される石油類の量は膨大なものであるが、この省エネ
ルギ一対策として太陽熱の地中への蓄熱による利用が実
用化されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermal storage heating method and apparatus using solar heat, which is particularly suitable for heating greenhouse cultivation rooms such as agricultural greenhouses and mushroom cultivation rooms. A huge amount of petroleum is consumed in agricultural greenhouses, and as a measure to save energy, storage of solar heat underground has been put into practical use.

これは、塩化ビニールパイプを多数地中に埋設シフ、こ
れに日中の温室内の高温空気を送風機により送入循環し
て、熱容量の大きい温室地面の湿度を上昇させ、夜間、
温室内の低温の空気を送入循環して、蓄熱量をとり出す
ものである。しかし、この蓄熱方法は、塩化ビニールパ
イプ内の凝縮水などにより、夜間の温室内の湿度が異常
に高くなりトマト、キラリなどの植物体に整しい結露が
生じ様々な病気の原因になること、蓄熱時において炭酸
ガス濃度が減少すること及び、特に冬期、日中気温が上
がらず、温室内の温度と地中流との差があまりない地方
においては、殆んど効果が期待できない等の欠点があっ
た。本発明は、このような事情に鑑みてなされたもので
あって、従来の方法が太陽熱により、熱容量の大きな地
中を利用して、それに熱を蓄える方法、換言すれば顕熱
による蓄熱であるのに対して、本願の方法は、空気中の
水分を選択的に吸収する物質により、夜間の温室内の相
対温度の高い空気から水分を吸収して適度に乾燥すると
共に、吸湿剤において水蒸気が凝縮する際放出する凝縮
熱、凝縮水が吸湿剤に付着する際に発生する濡らし熱等
により、空気温度を上昇させて温室内の暖房を行い、昼
間温室内の低湿空気により吸湿剤の水分の脱離再生を行
うものであって、地中熱方式の顕熱利用に対して、主と
して潜熱を利用するものである。本願方法及び装置にお
いても当然、吸湿剤の比熱に比例した熱容量により、こ
れに顕熱が蓄熱されるが、これは潜熱に比して、その効
果はほぼ1/6〜1/10程度であ、るので、前記濡ら
し熱と共に今後の記述においては、説明を省略する。以
下、本方法を実施するための装置の一実施例に基づいて
詳細に説明する。
This involves burying a large number of vinyl chloride pipes underground, and circulating high-temperature air inside the greenhouse during the day using a blower to increase the humidity on the ground of the greenhouse, which has a large heat capacity.
The amount of heat stored in the greenhouse is extracted by circulating low-temperature air inside the greenhouse. However, with this heat storage method, the humidity inside the greenhouse becomes abnormally high at night due to condensed water inside the PVC pipes, causing condensation on plants such as tomatoes and Kirari, which can cause various diseases. Disadvantages include that the carbon dioxide concentration decreases during heat storage, and that it is hardly effective, especially in winter, in regions where the daytime temperature does not rise and there is not much difference between the temperature inside the greenhouse and the underground flow. there were. The present invention has been made in view of these circumstances, and the conventional method is to use solar heat to store heat in the underground, which has a large heat capacity, in other words, to store heat by sensible heat. On the other hand, the method of the present application uses a material that selectively absorbs moisture in the air to absorb moisture from the relatively high temperature air in the greenhouse at night and dry it appropriately, and also prevents water vapor in the moisture absorbent. The condensation heat released during condensation and the wetting heat generated when condensed water adheres to the moisture absorbent increase the air temperature and heat the greenhouse. It performs desorption and regeneration, and mainly uses latent heat, as opposed to the sensible heat used in geothermal systems. Naturally, in the method and apparatus of the present invention, sensible heat is stored in the moisture absorbent due to its heat capacity proportional to its specific heat, but the effect of this is approximately 1/6 to 1/10 of that of latent heat. , so the explanation will be omitted in the future description along with the wetting heat. Hereinafter, a detailed description will be given based on one embodiment of an apparatus for carrying out the present method.

本願方法に用いる吸湿剤は、空気中の水(5) 蒸気を選択的に吸収することのできる物質が望ましく、
その意味では分子篩として用いられている合成物質など
は理想的であるが、一方、本願方法の目的は、あくまで
石油エネルギーの代替としての役割を果すことであるか
ら、価格的に高価なものは、本願方法及び装置の吸湿剤
として使用し得ないことは明白である。本願発明者は、
水分の選択的吸収能を有し、しかも経済性を備えた物質
を検討した結果、一定の活性化処理を施した天然沸石、
昏質土が、これらの諸要件を充して好適であり、中でも
モルデン沸石が最適であることを見い出した。又、上記
の他にも、シリカゲル、アルミナゲル、或は多孔性物質
に吸湿性の強い物質たとえば塩化カルシウム、塩化リチ
ウム、グリコール類などの水溶液を含浸させたものなど
が、本願方法の吸湿剤として用い得る。上記において、
多孔性物質とは、硅藻土、軽石、レンガなど化学物質の
担体となるもの(6) であり、又、活性化処理とは、150 oO〜5000
0の範囲において、少なくとも30分以上焼成処理する
ことを意味し、この処理により、沸石等の細孔が焼きし
められて、水分の選択的吸収能が賦与される。150”
’0以下ではこの効果は殆んど期待できず、又、約50
000以上では、組織の破壊が生じて、これ又、吸収能
を失う。ソリ力ゲル等は、]、50C′O〜25000
位で活性化処理するのが望ましい。これらの吸湿剤は、
適当な大きさに砕かれ或は成型されたものを用いるが、
その大きさは後述する送風機の出力との関連において決
められる。吸湿剤は、一種類のみ用いてもよいし、又、
適当に組合せて用いてもよいことは勿論である。このよ
うな吸湿剤1を、空気の出入口を設けた気密容器から成
る蓄熱室2中に充填する。蓄熱室2は、周囲の環境と気
密に分離されていれはよく、必らずしも、地中に埋設さ
れる必要はない。ただ、地表面の有効利用の見地から、
地中に埋設されること、或は、断熱材等により周囲を被
覆されること等は外部環境に熱が失なわれるのを防止す
るので望ましいことである。本願方法及び装置の効果を
十分に発揮させるためには、温室3の少なくとも天井部
、望ましくは全周囲を、透明体3Cを若干の空間を隔て
て張設することにより二重の構造にし、外側の分画であ
る集熱室3aには、内側の地表、植物体などからの水蒸
気を多量に含んだ栽培室3b側の空気が入らないように
しておくことが好ましい。本装置を、きのこ栽培室など
、周囲が断熱材により囲まれている栽培室などの暖房に
用いる場合、きのこ栽培室の屋根面を透明にして屋根裏
を集熱室とするか、或は、太陽熱温水器により吸収した
太陽熱を、ラジェーターなどで放熱させ、これにより、
温度上昇した空気を用いてもよく、本願において集熱室
とは、このような二次加熱された空気を送り出す場合を
も含むものとする。集熱室3aの上部及び栽培室3bの
上部には、吸気管4a、4bが夫々配設されて開口して
おり、これらの吸気管4 a。
The desiccant used in the present method is preferably a substance that can selectively absorb water (5) vapor in the air.
In this sense, synthetic materials used as molecular sieves are ideal, but on the other hand, since the purpose of the present method is to serve as an alternative to petroleum energy, expensive materials are not suitable. It is clear that it cannot be used as a hygroscopic agent in the present method and apparatus. The inventor of this application is
As a result of studying materials that have the ability to selectively absorb water and are also economical, we found natural zeolite, which has been subjected to a certain activation treatment.
It has been found that comatose soil is suitable as it satisfies these requirements, and among these, mordenite is most suitable. In addition to the above, silica gel, alumina gel, or porous materials impregnated with aqueous solutions of strongly hygroscopic substances such as calcium chloride, lithium chloride, and glycols can be used as moisture absorbing agents in the present method. Can be used. In the above,
Porous materials are those that serve as carriers for chemical substances, such as diatomaceous earth, pumice, and brick (6), and activation treatment refers to
In the range of 0, it means that the firing treatment is performed for at least 30 minutes or more, and by this treatment, the pores of the zeolite etc. are fired and the selective absorption ability of water is imparted. 150”
' Below 0, this effect can hardly be expected;
If it exceeds 000, tissue destruction occurs and absorption capacity is also lost. Sori force gel etc. is ], 50C'O ~ 25000
It is preferable to perform activation treatment at a certain point. These moisture absorbers are
Use crushed or molded pieces to an appropriate size,
Its size is determined in relation to the output of the blower, which will be described later. Only one type of moisture absorbent may be used, or
Of course, they may be used in appropriate combinations. Such a moisture absorbent 1 is filled into a heat storage chamber 2 consisting of an airtight container provided with an air inlet and outlet. The heat storage chamber 2 may be airtightly separated from the surrounding environment, and does not necessarily need to be buried underground. However, from the standpoint of effective use of the ground surface,
It is desirable to bury it underground or to cover the surrounding area with a heat insulating material or the like to prevent heat from being lost to the outside environment. In order to fully demonstrate the effects of the method and device of the present invention, at least the ceiling of the greenhouse 3, preferably the entire periphery, is made of a double structure by extending the transparent body 3C with a slight space between the outside and the outside. It is preferable to prevent air from the cultivation chamber 3b side, which contains a large amount of water vapor from the ground surface, plants, etc., from entering the heat collecting chamber 3a, which is a fraction of the heat collecting chamber 3a. When using this device to heat a cultivation room surrounded by heat insulating material, such as a mushroom cultivation room, the roof of the mushroom cultivation room should be made transparent and the attic used as a heat collection room, or the attic should be used as a heat collection room. The solar heat absorbed by the water heater is radiated by a radiator, etc., and as a result,
Air whose temperature has been increased may be used, and in this application, the term "heat collection chamber" includes cases where such secondary heated air is sent out. Intake pipes 4a and 4b are disposed and opened at the upper part of the heat collection chamber 3a and the upper part of the cultivation room 3b, respectively.

4bは流路切替弁5を介して、送風管6に連結し、この
送風管6は、送風機7を介して、蓄熱室2中の吸湿剤1
中に埋設されている空気を噴出する有孔バイブ2Gに連
結している。一方、蓄熱室2内の上部空間に開口する排
気管8は、流路切替弁9を介して二分岐し、一方の、分
岐管10aは、大気中に開口し、他方の分岐管10bは
、栽培室3b中に開口して成るものである。このように
構成された装置の運転方法の概略を説明すると、先ず、
日照によって上昇した集熱室の空気は、送風機7によっ
て蓄熱室1に送り込まれる。送入される空気は、太陽熱
によって温度が上昇することにより、著しく相対湿度が
低下しているので吸湿剤からの水分の鋭部蒸発を促進す
る。集熱室の空気は温室下部などに設けた外気数X口(
図示(9) せず)から補給される。蓄熱室を通った空気は、蒸発熱
等により湿度が低下し且つ湿度が上昇しているので、必
要な場合にのみ栽培室3bに導入され、太くは分岐管1
0aから大気中に放出される。このようにして吸湿能力
を再生した吸湿剤は、開閉弁11.12を閉じて吸湿能
を相当期間温存することが可能である。次に夜間、温室
内の温度が低下してくると、温室内の空気は、土壌、植
物体等から供給される水蒸気を多量に含んでいるので、
相対湿度が100%に近くなって結露が生じ始める。こ
のような多湿の  ′空気を、流路切替弁5を切り替え
ることにより、吸気管4bから蓄熱室に送入する。
4b is connected to a blower pipe 6 via a flow path switching valve 5, and this blower pipe 6 is connected to a blower pipe 6 through a blower 7 to
It is connected to a perforated vibrator 2G that blows out the air buried inside. On the other hand, the exhaust pipe 8 that opens into the upper space in the heat storage chamber 2 branches into two branches via a flow path switching valve 9, one branch pipe 10a opens into the atmosphere, and the other branch pipe 10b, It opens into the cultivation chamber 3b. To outline the operating method of the device configured in this way, first,
Air in the heat collection chamber that has risen due to sunlight is sent into the heat storage chamber 1 by the blower 7. The temperature of the introduced air has increased due to solar heat, and the relative humidity has decreased significantly, which promotes acute evaporation of moisture from the moisture absorbent. The air in the heat collection room is supplied by the number of outside air ports installed at the bottom of the greenhouse (
It is replenished from (9) (not shown). The air that has passed through the heat storage chamber has lower humidity and higher humidity due to heat of evaporation, etc., so it is introduced into the cultivation room 3b only when necessary, and the thick branch pipe 1
It is released into the atmosphere from 0a. The hygroscopic agent whose hygroscopic ability has been regenerated in this manner can retain its hygroscopic ability for a considerable period of time by closing the on-off valves 11 and 12. Next, at night, when the temperature inside the greenhouse drops, the air inside the greenhouse contains a large amount of water vapor supplied from the soil, plants, etc.
When the relative humidity approaches 100%, condensation begins to form. By switching the flow path switching valve 5, such humid air is sent into the heat storage chamber from the intake pipe 4b.

ここに於て、空気中の水蒸気は、吸湿剤に吸収されて凝
縮し、凝縮熱を放出する。したがって、蓄熱室を出て、
流路切替弁9、分岐管10bから温室内に戻る空気は適
当に、乾燥され且つ温度が上昇′しているため、栽培室
内の温度低下及び結露を未然に防止す(10) る。上記、送風機の運転は通常、サーモスタンドと連動
させ、設定温度の範囲内で、送風機が作動するようにし
ておく。本願吸着剤として用いられる天然沸石としては
、例えば、ホウ沸石、ホウソーダ石、ジヨウN15石、
ソーダ沸石、シュウジ沸石、モルデン沸石゛などを挙げ
ることができる。これらの天然沸石を活性化処理したも
のは、炭酸ガスに対しても選択的な吸着能を有し、この
吸着平衡は主として温度に依存するので、昼間の高い温
度の空気が接触する場合には、炭酸ガスはこれに放出さ
れ、夜間は逆に吸着するので栽培室内の炭酸ガス濃度の
調整作用をも併有するという副次効果をも有する。上記
したように、本願暖房方法は、吸湿剤の1吸湿能力、換
言すれば、吸湿剤から水分を放遂してこれを再生する空
気の相対濃度に大きく依存する。周知のように、絶蘂湿
度が一定ならば、空気温度約10旬の上昇に伴って相対
湿度が約半分に低下し、したがって、fPA室をとりま
く外気温が零度を越えない真冬日でも、この外気が集熱
室中にとりこまれ、その温度が上昇すれは、相対湿度は
低下し、これが蓄熱室に送入されると吸湿剤から水分の
脱離蒸発が行なわれる。したがって、本願方法では、日
中の外気温が一2°C付近の真冬日で、しかも蛍天であ
っても集熱室の温度は、日中には10°C以上に上昇す
る場合が多いのでこの空気によって吸湿剤の再生が行な
われ、夜間にはこれに見合った凝縮熱の発生、利用が可
能である。この点は地中熱方式が、温室内空気温度が地
温より高いこと(通常、地温より10〜15°a高くな
いと実効が期待できない)を絶対条件とするのと顕著に
異なるところである。上記にのべた特色の他、本願発明
は、従来の地中熱方式と比較して、炭酸ガス成分の調整
作用及びハウス内結露の防止作用を有し、更に温室は、
一般に3年に一度位の割合で場所換えをして連作の害を
防止するが、地中熱方式は移動が容易でなかったのに対
して、本願発明の場合は、地中設置が必須要件ではない
ので設置及び移動が極めて簡単であり、又、開閉弁11
 a。
Here, water vapor in the air is absorbed by the moisture absorbent and condensed, releasing heat of condensation. Therefore, leaving the heat storage chamber,
Since the air returning into the greenhouse from the flow path switching valve 9 and the branch pipe 10b is properly dried and the temperature has increased, a drop in temperature and condensation inside the cultivation room are prevented (10). The above-mentioned blower is usually operated in conjunction with a thermostand so that the blower operates within a set temperature range. Examples of the natural zeolite used as the adsorbent of the present application include borazite, borosodite, dianite,
Examples include soda zeolite, oxalisite, and morden zeolite. These activated natural zeolites have a selective adsorption ability for carbon dioxide gas, and this adsorption equilibrium mainly depends on temperature, so when exposed to high-temperature air during the day, Carbon dioxide gas is released into this, and at night it is adsorbed, so it also has the secondary effect of adjusting the carbon dioxide concentration within the cultivation room. As mentioned above, the present heating method is highly dependent on the hygroscopic capacity of the hygroscopic agent, in other words, on the relative concentration of air which releases moisture from the hygroscopic agent and regenerates it. As is well known, if the absolute humidity is constant, the relative humidity will drop by about half as the air temperature rises, so even on a midwinter day when the outside temperature surrounding the fPA room does not exceed zero, this When outside air is taken into the heat collection chamber, its temperature rises and its relative humidity decreases, and when this air is introduced into the heat storage chamber, moisture is desorbed and evaporated from the moisture absorbent. Therefore, in the method of the present invention, even on a midwinter day when the outside temperature during the day is around 12°C, and even in the firefly sky, the temperature in the heat collection room often rises to 10°C or more during the day. Therefore, this air regenerates the moisture absorbent, and at night it is possible to generate and utilize the corresponding heat of condensation. This point is significantly different from the geothermal method, which requires the greenhouse air temperature to be higher than the ground temperature (normally, it cannot be expected to be effective unless it is 10 to 15 degrees higher than the ground temperature). In addition to the above-mentioned features, the present invention has the ability to adjust carbon dioxide gas content and prevent condensation within the greenhouse compared to conventional geothermal systems, and the greenhouse also has the following features:
Generally, the location is changed about once every three years to prevent damage from continuous cropping, but while geothermal systems are not easy to move, in the case of the present invention, underground installation is an essential requirement. It is extremely easy to install and move, and the on-off valve 11
a.

12a、 11b、 12b等によって遮断され独立し
ている数個の蓄熱室2a、2bを並列に連結することに
より、条件のよい日に、蓄熱してこれを温存し、条件の
悪い日のための予備蓄熱室としての作用を営ませること
ができる。以下に実施例を掲げる。
By connecting several independent heat storage chambers 2a, 2b in parallel and isolated by 12a, 11b, 12b, etc., heat can be stored and conserved on days when conditions are good, and it can be used for days when conditions are bad. It can function as a preliminary heat storage chamber. Examples are listed below.

〔実施例〕〔Example〕

長野型に設置したガラス張り温度(たて7m、横9m、
高さ5m)内にビニールシートによるテントを外周壁、
屋根面から0.5〜1.0m離して張設することにより
集熱室、栽培室に分画し、暖房装置は第1図に示したも
のと殆んど同一のものを用いて11月中旬〜翌2月にか
けて、実験を行った。吸湿剤は、こぶし大のモルデン沸
石を200%付近の温度で1時間焼成処理したものl、
 000(13) kgを蓄熱室に充填し、蓄熱室のまわりには、厚さ10
 amの発泡スチロールで被包したものを野外において
用いた。一方、対照区として、は!同形同大、同構造の
温室の地下60cmに直径10 cmのバイブを延べ2
10 mにわたって埋設し、これに毎分60立方米で連
続送風し、一方、本願装置には、毎分20立方米を送り
、蓄熱送風時間は約7時間、連続送風することにより行
った。尚、夜間の放熱送風時間は、両者とも、栽培案内
の温度が5匍以下になると送風(放熱)を開始し、7o
Oに温度が上がると送風が止るように送風機運転をサー
モスタットにより制御した。その結果、期間中、温室内
の温度は、対照区において、200まで下がったが、本
願装置を有する温室は600以下に下らなかった。本願
方法による蓄熱量及び放熱量は、第3図にかかげた水蒸
気−活性モルデ、J・乏とができる。たとえば、吸湿剤
の温度が(14) 8oOで平衡含水率14o10のとき(第3図のA点)
、33°am度25%の空気で吸湿剤の再生を行い、吸
湿剤の温度が27oO,平衡含水率1o、5%(a点)
で再生を中止し、ついで5°C湿度100cyo の空
気を送って、凝縮熱をとり出すとすれは、第3図におい
て平衡はけ’?、A−)B→0→D→A′のようなサイ
クルで、移動したと考えることができ、したがって、線
分ABの長さが“蓄積(放熱)された顕熱を、線分AB
と線分Doとの距離が蓄積(放熱)された潜熱に相当し
、第3図の上辺及び右辺に目盛られた単位あたりの比熱
及び蒸発熱(凝縮熱)により、蓄熱量放熱量の推定が容
易である。
Temperature glass installed in Nagano type (height 7m, width 9m,
A tent made of vinyl sheets is placed on the outer wall within a height of 5m.
The heating system is separated into a heat collection room and a cultivation room by installing it at a distance of 0.5 to 1.0 m from the roof surface, and the heating system is almost the same as that shown in Figure 1. The experiment was conducted from mid-February to the following February. The moisture absorbent is a fist-sized piece of mordenite that has been calcined at a temperature of around 200% for 1 hour.
000 (13) kg is filled into the heat storage chamber, and around the heat storage chamber there is a thickness of 10
am Styrofoam encapsulated and used outdoors. On the other hand, as a control area, ha! Two vibrators with a diameter of 10 cm were installed 60 cm underground in a greenhouse with the same shape, size, and structure.
It was buried over a distance of 10 m, and air was continuously blown at a rate of 60 cubic meters per minute.On the other hand, 20 cubic meters per minute was sent to the device of the present invention, and the heat storage air was continuously blown for about 7 hours. In addition, the heat dissipation air blowing time at night for both plants starts blowing (heat dissipation) when the temperature in the cultivation guide falls below 5 o'clock, and then
The blower operation was controlled by a thermostat so that the blowing of air stopped when the temperature rose to O. As a result, during the period, the temperature in the greenhouse dropped to 200℃ in the control area, but did not drop below 600℃ in the greenhouse equipped with the device of the present invention. The amount of heat stored and the amount of heat released by the method of the present application are equal to the water vapor-activated mold, J. shown in FIG. For example, when the temperature of the moisture absorbent is (14)8oO and the equilibrium moisture content is 14o10 (point A in Figure 3)
, the moisture absorbent is regenerated with air at 33°am and 25%, the temperature of the moisture absorbent is 27oO, the equilibrium moisture content is 1o, 5% (point a)
If regeneration is stopped at , then air at 5°C and humidity 100cyo is sent to extract the heat of condensation. , A-) B → 0 → D → A'. Therefore, the length of line segment AB is ``accumulated (radiated) sensible heat is transferred to line segment AB.
The distance between and the line segment Do corresponds to the accumulated (radiated) latent heat, and the amount of heat storage and heat radiated can be estimated from the specific heat and heat of vaporization (heat of condensation) per unit scaled on the upper and right sides of Figure 3. It's easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本願装置の一実施例を示す概念図。第2図は
、本願装置の要部を示す説明図。第3図は水蒸気−活性
モルデナイト吸着平衡線図である。 (15) 145− 特開昭59−173024(6)
FIG. 1 is a conceptual diagram showing an embodiment of the device of the present application. FIG. 2 is an explanatory diagram showing the main parts of the device of the present application. FIG. 3 is a water vapor-active mordenite adsorption equilibrium diagram. (15) 145- JP 59-173024 (6)

Claims (1)

【特許請求の範囲】 (])  一定温度域で焼成することにより活性化処理
した天然沸石、膠質上、シリカゲル、アルミナゲル、又
は多孔性物質に吸湿性の強い化学物質たとえば塩化カル
シウム、塩化リチウム、グリコール類等の水溶液を含浸
させたものから成る吸湿剤の1以上を、空気の出入口を
有する気密容器からなる蓄熱室に充填し、太陽熱により
高温低湿化した空気を該蓄熱室に送入することにより、
吸湿剤の水分の脱離を促進し、夜間など温室暖房が必要
な場合に、温室内の相対温度の高い空気を蓄熱室に送入
循環させ、吸湿剤に選択的に@JJy、された水蒸気が
凝縮する際の凝縮熱を取り出すことを特徴とする太陽熱
による温室等の蓄熱暖房方法。 (2)活性化処理が、15080〜500°Cの範囲で
少なくとも30分以上焼成することである請求の範囲第
1項記載の蓄熱暖房方法。 0)吸湿剤として、150°C〜500°Cの範囲で3
0分以上焼成、処理した天然モルデン沸石を用いる請求
の範囲第1項記載の蓄熱暖房方法。 (4)太陽熱の集熱室と栽培室とに夫々開口する空気吸
入管が流路切替弁を介して送風管に連結し、該送風管は
、送風機を介して、気密容器中に、活性化処理を施した
天然沸石、膠質上、シリカゲル、アルミナゲル、若しく
は、多孔性物質に吸湿性の強い化学物質たとえば塩化カ
ルシウム、塩化リチウム、グリコール類等の水溶液を含
浸させたものなどから成る吸湿剤の1以上を充填したも
のから成る蓄熱室に連結して前記吸湿剤に送風し、一方
蓄熱室内に一端が開口する排気管は、流鮎切替弁を介し
て二分岐し、分岐管の一方は大気中に開[1し、他方は
栽培室内に開口して成る太陽熱による温室の暖房装置。 (5)蓄熱室が断熱材により被包されている請求の範囲
第4項記載の暖房装置。 (6)吸湿剤の活性化処理が15000 〜5000C
の範囲で少なくとも30分以上焼成処理することである
請求の範囲第4項記載の暖房装置。
[Claims] (]) Natural zeolite, colloid, silica gel, alumina gel, or porous materials activated by firing in a certain temperature range, and highly hygroscopic chemicals such as calcium chloride, lithium chloride, Filling a heat storage chamber consisting of an airtight container with an air inlet/outlet with one or more moisture absorbing agents impregnated with an aqueous solution of glycols, etc., and supplying air that has become high temperature and low humidity due to solar heat into the heat storage chamber. According to
This promotes the desorption of water from the hygroscopic agent, and when heating the greenhouse is necessary, such as at night, the air with a high relative temperature inside the greenhouse is circulated through the heat storage chamber, and water vapor is selectively added to the hygroscopic agent. A solar heat storage heating method for greenhouses, etc., characterized by extracting condensed heat when water condenses. (2) The regenerative heating method according to claim 1, wherein the activation treatment is baking at a temperature in the range of 15,080 to 500°C for at least 30 minutes. 0) As a moisture absorbent, 3 in the range of 150°C to 500°C
2. The thermal storage heating method according to claim 1, which uses natural mordenite that has been calcined and treated for 0 minutes or more. (4) Air suction pipes opening into the solar heat collection room and the cultivation room are connected to a blower pipe via a flow path switching valve, and the air pipe is activated into an airtight container via a blower. Hygroscopic agents made of treated natural zeolites, colloids, silica gel, alumina gel, or porous materials impregnated with aqueous solutions of strongly hygroscopic chemicals such as calcium chloride, lithium chloride, and glycols. The exhaust pipe, which is connected to a heat storage chamber filled with one or more of the following gases and blows air to the moisture absorbent, and which has one end open inside the heat storage chamber, branches into two via a Nagarayu switching valve, and one of the branch pipes is connected to the atmosphere. A heating system for a greenhouse using solar heat, with one opening in the middle and the other opening in the cultivation room. (5) The heating device according to claim 4, wherein the heat storage chamber is covered with a heat insulating material. (6) Moisture absorbent activation treatment at 15,000 to 5,000C
5. The heating device according to claim 4, wherein the firing treatment is performed for at least 30 minutes or more in the range of .
JP58046891A 1983-03-19 1983-03-19 Heat storing and heating method and apparatus of greenhouse by solar energy Granted JPS59173024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58046891A JPS59173024A (en) 1983-03-19 1983-03-19 Heat storing and heating method and apparatus of greenhouse by solar energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58046891A JPS59173024A (en) 1983-03-19 1983-03-19 Heat storing and heating method and apparatus of greenhouse by solar energy

Publications (2)

Publication Number Publication Date
JPS59173024A true JPS59173024A (en) 1984-09-29
JPH035772B2 JPH035772B2 (en) 1991-01-28

Family

ID=12759979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58046891A Granted JPS59173024A (en) 1983-03-19 1983-03-19 Heat storing and heating method and apparatus of greenhouse by solar energy

Country Status (1)

Country Link
JP (1) JPS59173024A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1010848C2 (en) * 1998-12-18 2000-06-20 Stichting Energie Dehumidifier, especially for greenhouses, comprises roll of film supporting a hygroscopic material
JP2015529078A (en) * 2012-09-06 2015-10-05 グプタ、サット パルカシュGUPTA, Sat Parkash Environmentally controlled greenhouses for cost-effective food production and related improvements
JP2019042653A (en) * 2017-08-31 2019-03-22 フタバ産業株式会社 Adsorption tank
JP2019162084A (en) * 2018-03-20 2019-09-26 国立大学法人九州大学 Gas supplying apparatus and plant cultivation system
JP2020074758A (en) * 2018-10-24 2020-05-21 国立研究開発法人産業技術総合研究所 Dehumidification system for gardening facilities

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578425U (en) * 1980-06-17 1982-01-16

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578425B2 (en) * 1972-03-28 1982-02-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578425U (en) * 1980-06-17 1982-01-16

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1010848C2 (en) * 1998-12-18 2000-06-20 Stichting Energie Dehumidifier, especially for greenhouses, comprises roll of film supporting a hygroscopic material
JP2015529078A (en) * 2012-09-06 2015-10-05 グプタ、サット パルカシュGUPTA, Sat Parkash Environmentally controlled greenhouses for cost-effective food production and related improvements
JP2019042653A (en) * 2017-08-31 2019-03-22 フタバ産業株式会社 Adsorption tank
JP2019162084A (en) * 2018-03-20 2019-09-26 国立大学法人九州大学 Gas supplying apparatus and plant cultivation system
JP2020074758A (en) * 2018-10-24 2020-05-21 国立研究開発法人産業技術総合研究所 Dehumidification system for gardening facilities

Also Published As

Publication number Publication date
JPH035772B2 (en) 1991-01-28

Similar Documents

Publication Publication Date Title
KR101788220B1 (en) Integrated solar energy drying system collecting, storing and supplying heat
RU2549849C2 (en) Apparatus and method for absorbing water from gas
US7866176B2 (en) Autonomous water source
US5392611A (en) Method of and apparatus for reducing the heat load on a greenhouse
US10816229B2 (en) Harvesting energy from humidity fluctuations
EP0123447B1 (en) Method of and means for controlling the condition of air in an enclosure
CN1131359C (en) Adsorption air water-intaking equipment
JPS59173024A (en) Heat storing and heating method and apparatus of greenhouse by solar energy
US4461339A (en) Method for increasing the temperature of gaseous inert carrier medium on taking useful heat from a storage medium storing heat by water sorption
JPH0728615B2 (en) Method and apparatus for reducing the amount of heat supplied to a greenhouse
JP2008196817A (en) Air heat-collection type solar dehumidifying cooling system
KR20070108773A (en) Dew condensation prevent and dehumidifying method and system for a military magazine by circular use of dehumidifying agent
Robison Desiccant cooling
JPS631418A (en) Collecting water out of atmosphere and device for same
Hanief et al. The effect of the molecular sieve position on the efficiency of solar-molecular sieve combination dryer
Mattarolo Solar powered air conditioning systems: a general survey
Robison Passive and low-energy research and practices-dehumidification
Hussein et al. Investigation of Water Vapour Harvesting Unit Using Solar Energy
CN116034784A (en) Adsorption heat storage system for dehumidification and heating of agricultural greenhouse
JP2000266424A (en) Waste heat utilization system and container therefor
JP3056398U (en) Air purification equipment
JP2001140368A (en) Adsorption regenerative ventilating structure and ventilation control device for use therein
WEIR Prospects for refrigerative atmospheric dehumidification in greenhouse production
Welch Seed storage to maintain quality
Robison CCC/USC Energy Lab