JPH035772B2 - - Google Patents

Info

Publication number
JPH035772B2
JPH035772B2 JP58046891A JP4689183A JPH035772B2 JP H035772 B2 JPH035772 B2 JP H035772B2 JP 58046891 A JP58046891 A JP 58046891A JP 4689183 A JP4689183 A JP 4689183A JP H035772 B2 JPH035772 B2 JP H035772B2
Authority
JP
Japan
Prior art keywords
air
moisture
heat
temperature
greenhouse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58046891A
Other languages
Japanese (ja)
Other versions
JPS59173024A (en
Inventor
Eiichi Ookubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP58046891A priority Critical patent/JPS59173024A/en
Publication of JPS59173024A publication Critical patent/JPS59173024A/en
Publication of JPH035772B2 publication Critical patent/JPH035772B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping

Landscapes

  • Greenhouses (AREA)

Description

【発明の詳細な説明】 本発明は、特に農業用ビニールハウス、きのこ
栽培室などの温室栽培室等の暖房に適した太陽熱
利用の蓄熱暖房方法及びその装置に関するもので
ある。農業用温室に消費される石油類の量は、膨
大なものであるが、この省エネルギー対策とし
て、太陽熱の地中への蓄熱による利用が実用化さ
れている。これは、塩化ビニールパイプを多数地
中に埋設し、これに日中の温室内の高温空気を送
風機により送入循環して、熱容量の大きい温室地
面の温度を上昇させ、夜間、温室内の低温の空気
を送入循環して、蓄熱量をとり出すものである。
しかし、この蓄熱方法は、塩化ビニールパイプ内
の凝縮水などにより、夜間の温室内の湿度が、異
常に高くなり、トマト、キウリなどの植物体にお
びただしい結露が生じ、様々な病気の原因になる
こと、蓄熱時において炭酸ガス濃度が減少するこ
と、及び、特に冬期、日中気温が上がらず、温室
内の温度と地中温との差があまりない地方におい
ては、殆ど期待が出来ないなどの欠点があつた。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermal storage heating method and apparatus using solar heat, which is particularly suitable for heating greenhouse cultivation rooms such as agricultural greenhouses and mushroom cultivation rooms. The amount of petroleum consumed in agricultural greenhouses is enormous, and as an energy-saving measure, storage of solar heat underground has been put into practical use. This system involves burying a large number of vinyl chloride pipes underground, and circulating high-temperature air inside the greenhouse during the day using a blower to raise the temperature on the ground of the greenhouse, which has a large heat capacity. The amount of stored heat is extracted by introducing and circulating air.
However, with this heat storage method, the humidity inside the greenhouse becomes abnormally high at night due to condensed water inside the PVC pipes, causing a large amount of condensation on plants such as tomatoes and cucumbers, which can cause various diseases. Disadvantages include the fact that the carbon dioxide concentration decreases during heat storage, and that there is little hope, especially in winter, in regions where the daytime temperature does not rise and there is not much difference between the temperature inside the greenhouse and the underground temperature. It was hot.

本発明は、このような事情に鑑みてなされたも
のであつて、従来の方法が、太陽熱により熱容量
の大きな地中を利用して、それに熱を蓄える方
法、換言すれば、顕熱による蓄熱であるのにたい
して、本願の方法は、空気中の水分を選択的に吸
収する物質により、夜間の温室内の相対湿度の高
い空気から水分を吸収して適度に乾燥すると共
に、吸湿材において水蒸気が凝縮する際放出する
凝縮熱、凝縮水が吸湿材に付着する際に発生する
濡らし熱等により、空気温度を上昇させて、温室
内の暖房を行い、昼間温室内の低湿空気により吸
湿材の水分の脱離再生を行うものであつて、地中
熱方式の顕熱利用に対して、主として、潜熱を利
用するものである。
The present invention has been made in view of the above circumstances, and the present invention is an improvement in that the conventional method uses solar heat to store heat underground, which has a large heat capacity, or in other words, stores heat by sensible heat. In contrast, the method of the present application uses a material that selectively absorbs moisture in the air to absorb moisture from the relatively humid air in the greenhouse at night and dry it appropriately, and also allows water vapor to condense in the moisture absorbing material. The condensation heat released when the water is heated, and the wetting heat generated when the condensed water adheres to the moisture absorption material, raise the air temperature and heat the greenhouse. It performs desorption and regeneration, and mainly uses latent heat, as opposed to the sensible heat used in geothermal systems.

本願方法及び装置においても、当然吸湿材の比
熱に比例した熱容量により、これに顕熱が蓄積さ
れるが、これは、潜熱に比して、その効果は、ほ
ぼ1/6〜1/10程度であるので、前記濡らし熱と共
に今後の記述においては、説明を省略する。以
下、本方法を実施するための装置の一実施例に基
づいて詳細に説明する。
In the present method and apparatus, sensible heat is naturally accumulated in the moisture absorbing material due to its heat capacity proportional to its specific heat, but compared to latent heat, the effect is approximately 1/6 to 1/10. Therefore, the explanation will be omitted in the future description along with the wetting heat. Hereinafter, a detailed description will be given based on one embodiment of an apparatus for carrying out the present method.

本願方法に用いる吸湿材は、空気中の水蒸気を
選択的に吸収することのできる物質が望ましく、
その意味では、分子篩として用いられている合成
物質などは、理想的であるが、一方、本願方法の
目的は、あくまで石油エネルギーの代替としての
役割を果たすことであるから、価格的に高価なも
のは、本願方法及び装置の吸湿材として使用しえ
ないことは明白である。本願発明者は、水分の選
択的吸収能を有し、しかも、経済性を備えた物質
を検討した結果、一定の活性化処理を施した天然
沸石、鹿沼土が、これらの諸要件を充たして好適
であり、なかでも、モルデン沸石が最適であるこ
とを見出だした。また、上記の他にも、シリカゲ
ル、アルミナゲル、或は、多孔性物質に吸湿性の
強い物質、たとえば、塩化カルシウム、塩化リチ
ウム、グリコール類などの水溶液を含浸させたも
のなどが、本願方法の吸湿材として用いうる。上
記において、多孔性物質とは、硅藻土、軽石、煉
瓦など化学物質の担体となるものであり、また、
活性化処理とは、150℃〜500℃の範囲において、
少なくとも、30分以上焼成処理することを意味
し、この処理により、沸石等の細孔が焼きしめら
れて、水分の選択的吸収能が付与される。150℃
以下では、この効果は、殆ど期待できず、又、約
500℃以上では、組織の破壊が生じて、これまた、
吸収能を失う。シリカゲル等は、150℃〜250位で
活性化処理するのが望ましい。これらの吸湿材
は、適当な大きさに砕かれ或は成型されたものを
用いるが、その大きさは、後述する送風機の出力
との関連において決められる。吸湿材は、一種類
のみ用いてもよいし、又、適当に組み合わせて用
いてもよいことは勿論である。このような吸湿材
1を、空気の出入口を設けた気密容器から或る吸
湿材室2中に充填する。吸湿材室2は、周囲の環
境と気密に分離されていればよく、必ずしも、地
中に埋設される必要はない。ただ、地表面の有効
利用の見地から、地中に理設されること、或は、
断熱材等により周囲を被覆されること等は、外部
環境に熱が失われるのを防止するので、望ましい
ことである。本願方法及び装置の効果を十分に発
揮させるためには、温室3の少なくとも天井部、
望ましく、全周囲を透明体3cを若干の空間を隔
てて張設するとにより二重の構造にし、外側の分
画である集熱室3aには、内側の地表、植物体な
どからの水蒸気を多量に含んだ栽培室3b側の空
気が入らないようにしておくことが好ましい。本
装置をきのこ栽培室などの暖房に用いる場合、き
のこ栽培室の屋根面を透明にして、屋根裏を集熱
室とするか、或は、太陽熱温水器により吸収した
太陽熱を、ラジエーターなどで放熱させ、これに
より、温度上昇した空気を用いてもよく、本願に
おいて、集熱室とは、このような二次加熱された
空気を送り出す場合をも含むものとする。集熱室
3aの上部及び栽培室3bの上部には、吸気管4
a,4bが夫々配設されて開口しており、これら
の吸気管4a,4bは流路切替弁5を介して、送
風管6に連結し、この送風管6は、送風機7を介
して、吸湿材室2中の吸湿材1中に理設されてい
る空気を噴出する有孔パイプ2cに連結してい
る。
The moisture absorbing material used in the present method is preferably a substance that can selectively absorb water vapor in the air.
In that sense, synthetic materials used as molecular sieves are ideal, but on the other hand, since the purpose of the present method is to serve as an alternative to petroleum energy, synthetic materials are expensive. Obviously, it cannot be used as a moisture absorbent material in the present method and apparatus. The inventor of the present application has investigated materials that have selective water absorption ability and is also economically efficient, and has found that natural zeolite and Kanuma soil, which have been subjected to a certain activation treatment, meet these requirements. We have found that mordenite is the most suitable. In addition to the above, silica gel, alumina gel, or porous materials impregnated with highly hygroscopic substances, such as calcium chloride, lithium chloride, glycols, etc., can be used in the present method. Can be used as a moisture absorbent. In the above, porous materials are those that serve as carriers for chemical substances, such as diatomaceous earth, pumice, and bricks.
Activation treatment is in the range of 150℃ to 500℃,
This means firing for at least 30 minutes or more, and this treatment hardens the pores of the zeolite and imparts selective moisture absorption ability. 150℃
In the following, this effect can hardly be expected, and about
At temperatures above 500℃, tissue destruction occurs, which also causes
loss of absorption capacity. It is desirable to activate silica gel and the like at 150°C to 250°C. These moisture absorbing materials are crushed or molded into appropriate sizes, and the size is determined in relation to the output of the blower, which will be described later. It goes without saying that only one type of moisture absorbing material may be used, or they may be used in appropriate combinations. Such a hygroscopic material 1 is filled into a certain hygroscopic material chamber 2 from an airtight container provided with an air inlet/outlet. The moisture absorbing material chamber 2 only needs to be airtightly separated from the surrounding environment, and does not necessarily need to be buried underground. However, from the viewpoint of effective use of the ground surface, it is necessary to install it underground, or
Surrounding the device with insulation or the like is desirable as it prevents heat from being lost to the outside environment. In order to fully exhibit the effects of the method and device of the present invention, at least the ceiling of the greenhouse 3,
Preferably, a transparent body 3c is stretched around the entire periphery with a slight space between them to create a double structure, and a large amount of water vapor from the ground surface, plants, etc. inside is stored in the heat collection chamber 3a, which is the outer compartment. It is preferable to prevent the air contained in the cultivation room 3b from entering. When using this device to heat a mushroom cultivation room, etc., either make the roof of the mushroom cultivation room transparent and use the attic as a heat collection room, or use a radiator to radiate the solar heat absorbed by a solar water heater. As a result, air whose temperature has been increased may be used, and in the present application, the term "heat collection chamber" includes the case where such secondary heated air is sent out. An intake pipe 4 is installed in the upper part of the heat collection room 3a and the upper part of the cultivation room 3b.
a, 4b are arranged and open, and these intake pipes 4a, 4b are connected to a blower pipe 6 via a flow path switching valve 5, and this blower pipe 6 is connected to a blower pipe 6 via a blower 7. It is connected to a perforated pipe 2c that blows out air, which is installed in the moisture absorbent material 1 in the moisture absorbent chamber 2.

一方、吸湿材室2内の上部空間に開口する排気
管8は、流路切替弁9を介して二分岐し、一方の
分岐管10aは、大気中に開口し、他方の分岐管
10bは、栽培室3b中に開口して成るものであ
る。
On the other hand, the exhaust pipe 8 that opens into the upper space in the moisture absorbent chamber 2 branches into two branches via a flow path switching valve 9, one branch pipe 10a opens into the atmosphere, and the other branch pipe 10b, It opens into the cultivation chamber 3b.

このように構成された装置の運転方法の概略を
説明すると、まず、日照によつて上昇した集熱室
の空気は、送風機7によつて吸湿材室2に送り込
まれる。送入される空気は、太陽熱によつて温度
が上昇することによつて著しく相対湿度が低下し
ているので、吸湿材からの水分の脱離蒸発を促進
する。集熱室の空気は、温室下部などに設けた外
気取入口(図示せず)から補給される。吸湿材室
を通つた空気は、蒸発熱等により温度が低下し且
つ湿度が上昇しているので、必要な場合にのみ栽
培室3bに導入され、大部分は、分岐管10aか
ら大気中に放出される。このようにして吸湿能力
を再生した吸湿材は、開閉弁11,12を閉じて
吸湿能を相当期間温存することが可能である。次
に、夜間温室内の温度が低下してくると、温室内
の空気は、士壌、植物体等から供給される水蒸気
を多量に含んでいるので、相対湿度が100%に近
くなつて結露が生じ始める。
An outline of the operating method of the apparatus configured in this way will be described first. Air in the heat collecting chamber, which has risen due to sunlight, is sent into the moisture absorbing material chamber 2 by the blower 7. The relative humidity of the introduced air is significantly reduced due to an increase in temperature due to solar heat, which promotes desorption and evaporation of moisture from the moisture absorbent material. Air in the heat collection room is supplied from an outside air intake (not shown) provided at the bottom of the greenhouse. The air passing through the moisture absorbing material chamber has a lower temperature and an increased humidity due to heat of evaporation, etc., so it is introduced into the cultivation chamber 3b only when necessary, and most of it is released into the atmosphere from the branch pipe 10a. be done. The moisture-absorbing material whose moisture-absorbing ability has been regenerated in this manner can retain its moisture-absorbing ability for a considerable period of time by closing the on-off valves 11 and 12. Next, when the temperature inside the greenhouse drops at night, the air inside the greenhouse contains a large amount of water vapor supplied from the soil, plants, etc., so the relative humidity approaches 100% and condensation occurs. begins to occur.

このような多湿の空気を、流路切替弁5を切り
替えることにより、吸気管4bから蓄熱室に送入
する。ここにおいて、空気中の水蒸気は、吸湿材
に吸収されて凝縮し、凝縮熱を放出する。したが
つて、吸湿材室を出て、流路切替弁9、分岐管1
0bから温室内に戻る空気は、適当に乾燥され且
つ温度が上昇しているため、栽培室内の温度低下
及び結露を未然に防止する。上記送風機の運転
は、通常、サーモスタツトと連動させ、設定温度
の範囲内で、送風機が作動するようにしておく。
本願吸湿材として用いられる天然沸石としては、
例えば、ホウ沸石、ホウソーダ石、リヨウ沸石、
ソーダ沸石、ジユウジ沸石、モルデン沸石などを
挙げることができる。これらの天然沸石を活性化
処理したものは、炭酸ガスに対しても選択的な吸
着能を有し、この吸着平衡は、主として温度に依
存するので、昼間の高い温度の空気が接触する場
合には、炭酸ガスはこれに放出され、夜間は、逆
に吸着するので、栽培室内の炭酸ガス濃度の調整
作用をも併有するという副次効果を有する。
By switching the flow path switching valve 5, such humid air is sent into the heat storage chamber from the intake pipe 4b. Here, water vapor in the air is absorbed by the moisture absorbing material and condensed, releasing heat of condensation. Therefore, after leaving the moisture absorbing material chamber, the flow path switching valve 9 and the branch pipe 1
Since the air returning from 0b into the greenhouse is suitably dried and has a raised temperature, a drop in temperature and condensation inside the cultivation room are prevented. The blower is normally operated in conjunction with a thermostat so that the blower operates within a set temperature range.
The natural zeolite used as the hygroscopic material in this application is:
For example, borazite, borozite, borozite,
Examples include soda zeolite, sulfate zeolite, and morden zeolite. These activated natural zeolites have a selective adsorption ability for carbon dioxide gas, and this adsorption equilibrium is mainly dependent on temperature, so when exposed to high temperature air during the day, Since carbon dioxide gas is released into this gas and adsorbed at night, it also has the secondary effect of adjusting the carbon dioxide concentration within the cultivation room.

上記したように、本願暖房方法は、吸湿材の吸
湿能力、換言すれば、吸湿材から水分を放逐し
て、これを再生する空気の相対湿度に大きく依存
する。周知のように、絶対湿度が一定ならば、空
気温度約10℃の上昇に伴つて相対湿度が、約半分
に低下し、従つて、温室をとりまく外気温が零度
を越えない真冬日でも、この外気が集熱室中に取
り込まれ、その温度が上昇すれば、相対湿度は低
下し、これが吸湿材室に送入されると吸湿材から
水分の脱離蒸発が行なわれる。したがつて、本願
方法では、日中の外気温度が−2℃付近の真冬日
で、しかも曇天であつても集熱室の温度は、日中
には10℃以上に上昇する場合が多いので、この空
気によつて、吸湿材の再生が行なわれ、夜間に
は、これに見合つた凝縮熱の発生、利用が可能で
ある。この点は地中熱方式が、温室内空気温度が
地温より高いこと(通常、地温より10〜15℃高く
ないと実効が期待出来ない)を絶対条件するのと
顕著に異なるところである。上記に述べた特色の
ほか、本願発明は、従来の地中熱方式と比較し
て、炭酸ガス成分の調整作用及びハウス内結露の
防止作用を有し、更に、温室は、一般に3年に一
度位の割合で場所替えをして連作の害を防止する
が、地中熱方式は、移動が容易でなかつたのに対
して、本願発明の場合は、地中設備が必須要件で
はないので、設置及び移動が、極めて簡単であ
り、又、開閉弁11a,12a,11b,12b
等によつて、遮断され独立している数個の吸湿材
室2a,2bを並列に連結することにより、条件
の良い日に、放湿させてこれを温存し、条件の悪
い日のための予備暖房能力としての作用を営ませ
ることができる。以下に実施例を掲げる。
As mentioned above, the heating method of the present invention is highly dependent on the moisture absorption ability of the moisture absorbent material, in other words, the relative humidity of the air that expels moisture from the moisture absorbent material and regenerates it. As is well known, if the absolute humidity is constant, the relative humidity will drop by about half as the air temperature rises by about 10 degrees Celsius. When outside air is taken into the heat collection chamber and its temperature rises, the relative humidity decreases, and when this air is introduced into the moisture absorption material chamber, moisture is desorbed and evaporated from the moisture absorption material. Therefore, in the present method, even on a mid-winter day when the outside air temperature during the day is around -2°C and it is cloudy, the temperature in the heat collection room often rises to 10°C or more during the day. This air regenerates the hygroscopic material, and at night, it is possible to generate and utilize the corresponding heat of condensation. This point is significantly different from the geothermal method, which requires that the air temperature inside the greenhouse be higher than the soil temperature (normally, it cannot be expected to be effective unless it is 10 to 15 degrees Celsius higher than the soil temperature). In addition to the above-mentioned features, the present invention has the ability to adjust carbon dioxide gas content and prevent condensation inside the greenhouse compared to conventional geothermal systems. However, with the geothermal method, it is not easy to move, but in the case of the present invention, underground equipment is not an essential requirement. Installation and movement are extremely easy, and the on-off valves 11a, 12a, 11b, 12b
By connecting several isolated and independent moisture absorption material chambers 2a and 2b in parallel, it is possible to release and conserve moisture on days when conditions are good, and to store it on days when conditions are bad. It can function as a preliminary heating capacity. Examples are listed below.

[実施例] 長野市に設置したガラス張り温室(縦7m、横
9m、高さ5m)内にビニールシートによるテン
トを外周壁、屋根面から、0.5〜1.0m離して張設
することにより、集熱室、栽培室に分画し、暖房
装置は、第1図に示したものと殆ど同一のものを
用いて11月中旬〜翌2月にかけて、実験を行つ
た。吸湿材は、こぶし大のモルデン沸石を200℃
付近の温度で1時間焼成処理したもの1000Kgを吸
湿材室に充填し、吸湿材室のまわりには、厚さ10
cmの発泡スチロールで被包したものを野外におい
て用いた。一方、対照区として、ほぼ同形大、同
構造の温室の地下60cmに直径10cmのパイプを延べ
210mにわたつて埋設し、これに毎分60立方メー
トルで連続送風し、一方、本願装置には、毎分20
立方メートルを送り、吸湿能再生のための放湿工
程送風時間は、約7時間連続送風することにより
行つた。尚、夜間の吸湿工程送風時間は、両者と
も、栽培室内の温度が5℃以下になると、送風
(吸湿工程)を開始し、7℃に温度が上がると送
風が止まるように、送風機運転をサーモスタツト
により制御した。その結果、期間中、温室内の温
度は、対照区において、2℃まで下がつたが、本
願装置を有する温室は、6℃以下に下がらなかつ
た。本願方法による蓄熱量および放熱量は、第3
図にかかげた水蒸気一活性モルデナイト吸着平衡
線図から、その概要を知ることができる。例え
ば、吸湿材の温度が8℃で平衡含水率14%のとき
(第3図のA点)、33℃湿度25%の空気で吸湿材の
再生を行い、吸湿材の温度が27℃、平衡含水率
10.5%(C点)で再生を中止し、ついで5℃湿度
100%の空気を送つて、凝縮熱を取り出すとすれ
ば、第3図において、平衡は、ほぼ、A→B→C
→D→A′のようなサイクルで移動したと考える
ことができ、従つて、線分A′B(及びDC)の長さ
は、夫々蓄積(及び放熱)された顕熱に相当し、
線分A′Bと線分DCとの距離が蓄積(放熱)され
た潜熱に相当し、第3図の上辺及び右辺に目盛ら
れた単位あたりの比熱及び蒸発熱(凝縮熱)によ
り、蓄熱量、放熱量の推定が容易である。
[Example] A vinyl sheet tent was set up at a distance of 0.5 to 1.0 m from the outer wall and roof surface in a glass greenhouse (7 m long, 9 m wide, 5 m high) installed in Nagano City to collect heat. The experiment was conducted from mid-November to the following February using a heating device almost identical to that shown in Figure 1. The moisture absorbing material is a fist-sized piece of mordenite heated to 200°C.
Fill the moisture absorbing material chamber with 1000 kg of the material that has been baked at a similar temperature for 1 hour, and around the moisture absorbing material chamber,
cm wrapped in Styrofoam and used outdoors. On the other hand, as a control, a pipe with a diameter of 10 cm was extended 60 cm underground in a greenhouse of approximately the same size and structure.
The device was buried for 210 meters and was continuously blown at a rate of 60 cubic meters per minute.
The moisture removal process was carried out by continuously blowing air for about 7 hours. In addition, regarding the ventilation time during the moisture absorption process at night, in both cases, the blower is set to a thermos so that when the temperature inside the cultivation room falls below 5℃, the ventilation (moisture absorption process) starts, and when the temperature rises to 7℃, the ventilation stops. It was controlled by Tatsuto. As a result, during the period, the temperature in the greenhouse dropped to 2°C in the control area, but did not drop below 6°C in the greenhouse equipped with the device of the present invention. The amount of heat stored and the amount of heat released by the method of the present application are as follows:
The outline can be understood from the water vapor-active mordenite adsorption equilibrium diagram shown in the figure. For example, when the temperature of the hygroscopic material is 8°C and the equilibrium moisture content is 14% (point A in Figure 3), the hygroscopic material is regenerated with air at 33°C and 25% humidity; Moisture content
Stop regeneration at 10.5% (point C), then lower the humidity to 5℃.
If 100% of the air is sent and the heat of condensation is extracted, the equilibrium in Figure 3 is approximately A→B→C.
It can be considered that the movement occurs in a cycle such as →D→A′, and therefore, the length of line segment A′B (and DC) corresponds to the sensible heat accumulated (and heat dissipated), respectively.
The distance between line segment A′B and line segment DC corresponds to the accumulated (radiated) latent heat, and the amount of heat storage is determined by the specific heat and heat of evaporation (heat of condensation) per unit scaled on the upper and right sides of Figure 3. , it is easy to estimate the amount of heat dissipation.

[試験例] 本願吸湿材の吸湿能力の検定のため、第4図に
示すように、恒温恒湿槽41の中に、U字管42
に、吸湿材43として合成ゼオライト20gを塩化
カルシウム20%水溶液に浸してから水切りしたも
の(重量37.5g)を充填し、温度測定器で、入口
W、出口Xの温度を、乾湿温度計44によつて、
乾球温度Y、湿球温度Zを夫々測定し、Y,Zよ
り絶対湿度を算出し、W,Xにおける相対湿度を
算出した。Pは、吸入ポンプで、風量は、4/
分に設定した。
[Test Example] In order to verify the moisture absorption ability of the moisture absorbing material of the present invention, as shown in FIG.
was filled with 20 g of synthetic zeolite soaked in a 20% calcium chloride aqueous solution and then drained (weighing 37.5 g) as the moisture absorbing material 43, and the temperature at the inlet W and outlet X was measured using a wet/dry thermometer 44. Then,
Dry bulb temperature Y and wet bulb temperature Z were measured, absolute humidity was calculated from Y and Z, and relative humidity at W and X was calculated. P is a suction pump, and the air volume is 4/
It was set to minutes.

試験は、放湿工程として8時間運転し、恒温恒
湿槽41の温度56〜51℃、相対湿度は、24.4〜38
%、吸湿工程は、恒温恒湿槽温度3.5〜5℃、相
対湿度84〜90%で、運転時間は、14.5時間であつ
た。結果を第5図に示す。
The test was run for 8 hours as a moisture release process, and the temperature of the constant temperature and humidity chamber 41 was 56 to 51℃, and the relative humidity was 24.4 to 38℃.
%, and the moisture absorption step was carried out at a constant temperature and humidity chamber temperature of 3.5 to 5° C. and a relative humidity of 84 to 90%, and the operating time was 14.5 hours. The results are shown in Figure 5.

これから明らかなように、放湿工程では、入口
温度より出口温度が低くて、その差は次第に減少
して0に近ずき、且つ、出口相対湿度は、入口相
対湿度より大であつて、水蒸気の蒸発が、行なわ
れていることを示し、吸湿工程では、この関係が
逆転しており放湿工程と反対の現象が生じて、放
熱が行なわれていることを示している。
As is clear from this, in the moisture release process, the outlet temperature is lower than the inlet temperature, and the difference gradually decreases to near 0, and the outlet relative humidity is greater than the inlet relative humidity, and water vapor In the moisture absorption process, this relationship is reversed, and the opposite phenomenon occurs in the moisture release process, indicating that heat is being released.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本願装置の一実施例を示す概念図で
ある。第2図は、第1図の装置の要部を示す説明
図である。第3図は、水蒸気−活性モルデナイト
吸着平衡線図である。第4図は、本願吸湿材の吸
湿性能試験装置の概要を示す概念図である。第5
図は、第4図の装置による試験結果を示すグラフ
である。
FIG. 1 is a conceptual diagram showing an embodiment of the present invention device. FIG. 2 is an explanatory diagram showing the main parts of the apparatus shown in FIG. 1. FIG. 3 is a water vapor-active mordenite adsorption equilibrium diagram. FIG. 4 is a conceptual diagram showing an outline of a moisture absorption performance testing apparatus for the moisture absorbent material of the present invention. Fifth
The figure is a graph showing test results using the apparatus of FIG. 4.

Claims (1)

【特許請求の範囲】 1 一定温度域で焼成することにより活性化処理
した天然沸石、鹿沼土、シリカゲル、アルミナゲ
ル、または多孔性物質に吸湿性の強い化学物質た
とえば塩化カルシウム、塩化リチウム、グリコー
ル類の水溶液を含浸させたものから成る吸湿材の
1以上を、空気の出入口を有する気密容器からな
る吸湿材室に充填し、太陽熱により高温低湿化し
た空気を該吸湿材室に送入することにより、吸湿
材の水分の脱離を促進し、夜間など温室暖房が必
要な場合に、温室内の相対湿度の高い空気を吸湿
材室に送入循環させ、吸湿材に選択的に吸収され
た水蒸気が凝縮する際の凝縮熱を取り出すことを
特徴とする太陽熱による温室の蓄熱暖房方法。 2 活性化処理が、150℃〜500℃の範囲で少なく
とも30分以上焼成することである特許請求の範囲
第1項記載の蓄熱暖房方法。 3 吸湿材として、150℃〜500℃の範囲で30分以
上焼成処理した天然モルデン沸石を用いる特許請
求の範囲第1項記載の蓄熱暖房方法。 4 太陽熱の集熱室と栽培室とに夫々開口する空
気吸入管が流路切替弁を介して送風管に連結し、
該送風管は、送風機を介して、気密容器中に、活
性化処理を旋した天然沸石、鹿沼土、シリカゲ
ル、アルミナゲル、若しくは、多孔性物質に吸湿
性の強い化学物質たとえば塩化カルシウム、塩化
リチウム、グリコール類の水溶液を含浸させたも
のから成る吸湿材の1以上を充填したものから成
る吸湿材室に連結して、前記吸湿材に送風し、一
方吸湿材室内に一端が開口する排気管は、流路切
替弁を介して二分岐し、分岐管の一方は大気中に
開口し、他方は栽培室内に開口して成る太陽熱に
よる温室の暖房装置。 5 吸湿材室が断熱材により被包されている特許
請求の範囲第4項記載の暖房装置。 6 吸湿材の活性化処理が、150℃〜500℃の範囲
で少なくとも30分以上焼成することである特許請
求の範囲第4項記載の暖房装置。
[Scope of Claims] 1. Natural zeolite, Kanuma earth, silica gel, alumina gel, or porous substances activated by firing in a certain temperature range, and highly hygroscopic chemicals such as calcium chloride, lithium chloride, and glycols. By filling one or more of the hygroscopic materials impregnated with an aqueous solution of the hygroscopic material into a hygroscopic material chamber consisting of an airtight container having an air inlet/outlet, and supplying air that has become high in temperature and low in humidity due to solar heat into the hygroscopic material chamber. , promotes the desorption of water from the moisture absorbent material, and when greenhouse heating is required such as at night, the air with high relative humidity inside the greenhouse is circulated through the moisture absorbent room, and water vapor selectively absorbed by the moisture absorbent material is generated. A method for storing and heating a greenhouse using solar heat, which is characterized by extracting condensed heat when condensing. 2. The regenerative heating method according to claim 1, wherein the activation treatment is baking at a temperature in the range of 150°C to 500°C for at least 30 minutes or more. 3. The regenerative heating method according to claim 1, wherein natural mordenite calcined at 150°C to 500°C for 30 minutes or more is used as the moisture absorbing material. 4 Air intake pipes opening into the solar heat collection room and the cultivation room are connected to the blower pipe via a flow path switching valve,
The air pipe is used to inject highly hygroscopic chemicals such as calcium chloride and lithium chloride into porous materials such as activated natural zeolite, Kanuma soil, silica gel, alumina gel, or porous materials into an airtight container through an air blower. , an exhaust pipe connected to a moisture absorbent chamber filled with one or more moisture absorbent materials impregnated with an aqueous solution of glycols to blow air to the moisture absorbent material, and having one end opened in the moisture absorbent chamber. , a heating system for a greenhouse using solar heat, which branches into two via a flow path switching valve, with one branch pipe opening into the atmosphere and the other opening into the cultivation room. 5. The heating device according to claim 4, wherein the moisture absorbing material chamber is covered with a heat insulating material. 6. The heating device according to claim 4, wherein the activation treatment of the hygroscopic material is baking at a temperature in the range of 150°C to 500°C for at least 30 minutes.
JP58046891A 1983-03-19 1983-03-19 Heat storing and heating method and apparatus of greenhouse by solar energy Granted JPS59173024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58046891A JPS59173024A (en) 1983-03-19 1983-03-19 Heat storing and heating method and apparatus of greenhouse by solar energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58046891A JPS59173024A (en) 1983-03-19 1983-03-19 Heat storing and heating method and apparatus of greenhouse by solar energy

Publications (2)

Publication Number Publication Date
JPS59173024A JPS59173024A (en) 1984-09-29
JPH035772B2 true JPH035772B2 (en) 1991-01-28

Family

ID=12759979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58046891A Granted JPS59173024A (en) 1983-03-19 1983-03-19 Heat storing and heating method and apparatus of greenhouse by solar energy

Country Status (1)

Country Link
JP (1) JPS59173024A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1010848C2 (en) * 1998-12-18 2000-06-20 Stichting Energie Dehumidifier, especially for greenhouses, comprises roll of film supporting a hygroscopic material
IN2012DE02779A (en) * 2012-09-06 2015-07-24 p gupta S
JP6989323B2 (en) * 2017-08-31 2022-01-05 フタバ産業株式会社 Suction tank
JP7112063B2 (en) * 2018-03-20 2022-08-03 国立大学法人九州大学 Gas supply device and plant cultivation system
JP6736072B2 (en) * 2018-10-24 2020-08-05 国立研究開発法人産業技術総合研究所 Dehumidification system for gardening facilities
WO2024116375A1 (en) * 2022-12-01 2024-06-06 高砂熱学工業株式会社 System for supplying carbon dioxide-containing gas, supply device, application method, and method for producing carbon dioxide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578425B2 (en) * 1972-03-28 1982-02-16

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578425U (en) * 1980-06-17 1982-01-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578425B2 (en) * 1972-03-28 1982-02-16

Also Published As

Publication number Publication date
JPS59173024A (en) 1984-09-29

Similar Documents

Publication Publication Date Title
KR101788220B1 (en) Integrated solar energy drying system collecting, storing and supplying heat
US20200408425A1 (en) Cooling, heating and humidity Stabilization Using Humidity Fluctuations
US10816229B2 (en) Harvesting energy from humidity fluctuations
KR20190021706A (en) Adsorption Dehumidification System for Greenhouse
GB2444949A (en) Heating system comprising a desiccant material for the recovery of the latent heat of adsorption from a humid gas
CN1131359C (en) Adsorption air water-intaking equipment
JPH035772B2 (en)
US4461339A (en) Method for increasing the temperature of gaseous inert carrier medium on taking useful heat from a storage medium storing heat by water sorption
CN209144913U (en) A kind of solar energy adsorption type air intake equipment
JP4341848B2 (en) Air-collecting solar dehumidification cooler system
CA2015839A1 (en) Method of and apparatus for reducing the heat load on a greenhouse
JP4744802B2 (en) Circulating humidity control mechanism in the building
KR101147699B1 (en) Dew condensation prevent and dehumidifying system for a military magazine by circular use of dehumidifying agent
Robison Desiccant cooling
CN116034784A (en) Adsorption heat storage system for dehumidification and heating of agricultural greenhouse
JP2731993B2 (en) Solar system house
JPS59179129A (en) Humidity controlling device
Mattarolo Solar powered air conditioning systems: a general survey
Verdonschot Thermal storage system based on the heat of adsorption in air-based solar heating systems
JP2000266424A (en) Waste heat utilization system and container therefor
Robison CCC/USC Energy Lab
WEIR Prospects for refrigerative atmospheric dehumidification in greenhouse production
JPS60256731A (en) Space heating device
Welch Seed storage to maintain quality
Watt Experimental Indirect Cooling