JPS59173000A - Excitation controller of synchronous machine - Google Patents

Excitation controller of synchronous machine

Info

Publication number
JPS59173000A
JPS59173000A JP58047093A JP4709383A JPS59173000A JP S59173000 A JPS59173000 A JP S59173000A JP 58047093 A JP58047093 A JP 58047093A JP 4709383 A JP4709383 A JP 4709383A JP S59173000 A JPS59173000 A JP S59173000A
Authority
JP
Japan
Prior art keywords
synchronous machine
phase difference
power system
power
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58047093A
Other languages
Japanese (ja)
Other versions
JPH0632597B2 (en
Inventor
Minoru Manjo
萬城 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58047093A priority Critical patent/JPH0632597B2/en
Publication of JPS59173000A publication Critical patent/JPS59173000A/en
Publication of JPH0632597B2 publication Critical patent/JPH0632597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/105Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for increasing the stability

Abstract

PURPOSE:To obtain power system stability irrespective of the operating state of a power system and the system configuration by controlling an exciter so that the phase difference between the power system stabilization signal and the synchronous machine field voltage such as effective power, axial rotating speed and frequency become constant. CONSTITUTION:Effective power P is detected by a power converter 3, and a variation DELTAP of effective power is obtained through an incomplete differentiator 7. Similarly, the field voltage variation DELTAVf is detected by using an incomplete differentiator 8 from a field voltage Vf. The phase difference theta between DELTAP and DELTAVf is detected by using a phase difference detector 9 form these signals. Then, the phase difference set value thetaref is compared with theta, thereby obtaining the phase deviation DELTAtheta. The phase regulator 6 of a power system stabilizer 10 is controlled in such a manner that this phase deviation DELTAtheta is as a control signal so that DELTAtheta becomes zero.

Description

【発明の詳細な説明】 〔発明のオU用分野〕 本発明は同期機の励磁制御装置に係り特に電力系統の動
態安定度向上を行う電力系統簀定化装置(pSS:pO
Wer 5ySte!m 5tabil 1Zer )
を付加した同期機の励磁制御装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an excitation control device for a synchronous machine, and in particular to a power system stabilization device (pSS: pO) that improves the dynamic stability of a power system.
Were 5ySte! m 5tabil 1zer)
This invention relates to an excitation control device for a synchronous machine that is equipped with the following.

〔発明の背景〕[Background of the invention]

同期機の励磁制御により電力系統の動態安定度向上を行
うための装置としては電力系統安定化装[(PSS)が
あシ、実用に供されている。
A power system stabilization system (PSS) has been put into practical use as a device for improving the dynamic stability of a power system by controlling the excitation of a synchronous machine.

しかしながら従来のPSSは設定値を固定する方式であ
るため、限られた範囲の運転状態・系統構成及び高速応
の励磁装置でしか電力系統の動態安屋度を改善すること
ができないため、最近の複雑化する電力系統の要求に十
分対応できなくなってきた。
However, since conventional PSS uses a method that fixes set values, it is possible to improve the dynamic stability of the power system only with a limited range of operating conditions, system configurations, and high-speed response excitation devices. It has become impossible to adequately meet the demands of increasingly complex power systems.

従来の励磁装置を第1図に示したサイリスク励磁方式を
例にとって説明する。
A conventional excitation device will be explained by taking the Cyrisk excitation method shown in FIG. 1 as an example.

同期機Gの端子電圧v1を計器用変成器PTにて降圧し
、これを電圧設定装置(図示せず)の設定値■ア、f 
と比較し、得た偏差を増幅器1で増幅した後、自動パル
ス位相器2にて増幅器出力に応じて移相したパルスを発
生する。このパルスを用いてサイリスタTI(Yの点弧
角を制御し、同期機の界磁電圧vfを調整する。このよ
うに、端子電圧v1を一定になるような制御、即ち端子
電圧一定制御を行っている。しかし端子電圧一定制御の
みでは、電力系統の動態安定度を損うことが多く、電力
系統安定化装置P88が必要となる。
The terminal voltage v1 of the synchronous machine G is stepped down by the instrument transformer PT, and this is set as the setting value of the voltage setting device (not shown).
After the obtained deviation is amplified by an amplifier 1, an automatic pulse phase shifter 2 generates a pulse whose phase is shifted according to the amplifier output. Using this pulse, the firing angle of the thyristor TI (Y) is controlled and the field voltage vf of the synchronous machine is adjusted. In this way, the terminal voltage v1 is controlled to be constant, that is, the terminal voltage is controlled to be constant. However, only constant terminal voltage control often impairs the dynamic stability of the power system, and the power system stabilizing device P88 is required.

第1図に示したPSSld電力動揺の情報を提供する信
号(以下、電力系統安定化信号と呼ぶ)として、例えば
同期機の有効電力Pを便用する例を示している。電力系
統安定化信号としては、この他に軸回転速度あるいは周
波数の信号をも採用できる。電力変換器3によりM動電
力Pを検出し、これを不児全微分回wI4にて直流分を
除去し、さらにこの信号を増幅器5、位相調整回路6に
よりゲイン・位相調整し、この出力を電圧偏走信号(V
、−t V−)の補正信号として与え、動態安定度の向
上を行う。
An example is shown in which, for example, the active power P of a synchronous machine is used as a signal (hereinafter referred to as a power system stabilization signal) that provides information on the PSSld power fluctuation shown in FIG. In addition to this, a shaft rotation speed or frequency signal can also be used as the power system stabilization signal. The power converter 3 detects the M dynamic force P, the DC component is removed by the total differential circuit wI4, the gain and phase of this signal are adjusted by the amplifier 5 and the phase adjustment circuit 6, and the output is Voltage deviation signal (V
, -tV-) as a correction signal to improve dynamic stability.

同、同図において、CTは′tlL流変成器、EXTR
は励磁用変圧器、41は界磁開閉器、DBは界磁開閉器
41の開放時に界磁巻線に並列接続される抵抗である。
In the same figure, CT is 'tlL flow transformer, EXTR
is an excitation transformer, 41 is a field switch, and DB is a resistor connected in parallel to the field winding when the field switch 41 is opened.

本図から明らかなように従来のPSSは、増幅器5のゲ
イン、位相調整回路60位相定数を試運転時に最a値に
固定する方式のため、運転条件・系統構成が変化すると
、PSSOSS化効果が著しく損わしる欠点を有してい
た。
As is clear from this figure, the conventional PSS is a system in which the gain of the amplifier 5 and the phase constant of the phase adjustment circuit 60 are fixed at the maximum a value during trial operation, so if the operating conditions or system configuration change, the PSSOSS effect will be significantly reduced. It had disadvantages that hurt it.

〔発明の目的〕[Purpose of the invention]

本発明は電力系統の運用状態、系統構成等のいかんにか
かわらず電力系統安定度を確保することができる電力系
統安定化装置を備えた同期機の励磁制御装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a synchronous machine excitation control device including a power system stabilizing device that can ensure power system stability regardless of the power system operating state, system configuration, etc.

〔発明の概要〕[Summary of the invention]

本発明は有効電力、軸回転速度及び周波数などの電力系
統安定化信号と同期機界磁電圧の位相差が一足となるよ
うに励磁装置の制御を行うことでいかなる状況下におい
ても最適な動態安定度の確保を行う。
The present invention provides optimal dynamic stability under any circumstances by controlling the excitation device so that the phase difference between power system stabilization signals such as active power, shaft rotational speed, and frequency and the synchronous machine field voltage is one step. ensure that the degree of

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例について第7図から第10図によ
り説明するが、その前に第2図から第6図を用いて本発
明の理論的背景についての説明を行なう。
An embodiment of the present invention will be described below with reference to FIGS. 7 to 10, but before that, the theoretical background of the present invention will be explained using FIGS. 2 to 6.

第1図はりアクドルX、を介して無限大母線22に接続
された1つの同M1ffA21を示すところの、いわゆ
る−機無限大系と呼ばれる系統モデルであシ、その動作
を微少電力動揺について線形近似化すると、トルクΔT
及び速度Δω、相差角Δδ、端子電圧ΔV、の関係とし
て第3図のブロック図のように表わすことができる。第
3図においてK1.−に6で表わされるゲイン特性のう
ちに3のみが同期機と系統のインピーダンスのみで尾ま
るが、残シは全てインピーダンスの他、同期機の運転状
態によって変わる。そこで、同期機の運動を奈動系とし
て取シ扱い相差角δと同相の同期化トルクΔT、及び速
度Δωと同相の制動トルクΔT。
Fig. 1 is a system model called a so-called -machine infinite system, which shows one M1ffA21 connected to an infinite bus 22 via a beam axle X, and its operation is linearly approximated with respect to minute power fluctuations. , the torque ΔT
The relationship among speed Δω, phase difference angle Δδ, and terminal voltage ΔV can be expressed as shown in the block diagram of FIG. In FIG. 3, K1. Of the gain characteristics represented by - and 6, only 3 depends only on the impedance of the synchronous machine and the system, but the rest all change depending on the operating state of the synchronous machine in addition to the impedance. Therefore, the motion of the synchronous machine is treated as a navigating system, and the synchronization torque ΔT is in phase with the phase difference angle δ, and the braking torque ΔT is in phase with the speed Δω.

で表わせば第4図に示したブロック図となシ、その振動
特性は振動周波数ω、V1−−電−1電動1制動特性し
、次式で示すことができる。
If expressed as the block diagram shown in FIG. 4, its vibration characteristics are vibration frequency ω, V1--Electric-1 Electric-1 Braking characteristics, and can be expressed by the following equation.

ここで S:微分演算子 D=制動トルク係数 に1:同期化トルク係数 M:発電機の慣性定数 ω。二ベース回転角速度 通常この角周波数ω、は7rod/S(中1.0H2)
程度であ多系統構成が太きく変ってもせいぜい2〜20
 roct/sm度である。第5図においてに1はd軸
鎖交磁束ΔE、′一定の時の相差角の変化分に対する発
電機固有の電気トルク変化係数であシ、Kl’は励磁制
御系から発生する電気トルク係数である。一方間期化ト
ルクと90度位相が異なり回転速度と同相の信号として
フィードバックされる電気トルク係数には制御係数りと
して表わされる発電機固有の係数と励磁制御による制動
トルク係数D′がある。
Here, S: differential operator D = braking torque coefficient 1: synchronization torque coefficient M: inertia constant ω of the generator. Two-base rotation angular velocity Normally this angular frequency ω is 7rod/S (medium 1.0H2)
Even if the multisystem configuration changes drastically, it will be at most 2 to 20
roct/sm degrees. In Fig. 5, 1 is the d-axis interlinkage magnetic flux ΔE, ' is the electric torque change coefficient specific to the generator for the change in phase difference angle at a constant time, and Kl' is the electric torque coefficient generated from the excitation control system. be. On the other hand, the electric torque coefficients fed back as a signal having a phase difference of 90 degrees from the interperiod torque and the same phase as the rotational speed include a generator-specific coefficient expressed as a control coefficient and a braking torque coefficient D' due to excitation control.

これらの係数のうちKl’は通常の機器定数の範囲では
に1の10〜20チ以下でアシ、これが負値となっても
間組ないが、D′はDと同程度の値であるためD+D’
 (Oとなり、その振動が発散振動となり動態安定度が
失われることが考えられる。
Among these coefficients, Kl' is within 10 to 20 degrees of 1 in the range of normal equipment constants, and there is no problem even if it becomes a negative value, but D' is the same value as D, so D+D '
(O, and the vibration becomes a divergent vibration and dynamic stability is considered to be lost.

そこで![1態女定度の確保のためには、負の制動トル
ク金補償する様に正の制動トルクを加えることが必要で
ある。
Therefore! [In order to ensure the 1-mode stability, it is necessary to apply positive braking torque to compensate for the negative braking torque.

このためには同期機の相差角Δδの動揺信号を検出し、
ゲイン及び位q’ixuして電圧制御系へ補正信号とし
て与え、wJJj!i糸の制動トルクを増加させる制御
を行えば良く、これを行うのが電力系統安定化装@PS
Sである。
For this purpose, detect the oscillation signal of the phase difference angle Δδ of the synchronous machine,
Gain and position q'ixu are given to the voltage control system as a correction signal, wJJj! All you have to do is control the braking torque of the i-thread, and this is done by the power system stabilization system @PS.
It is S.

第4図に戻り以上の考えを整理すると、動態安定度の向
上を行うためには相差角動揺Δδに対するwJ磁糸トル
クΔT、8が角周波数Δωに同相のほぼ90°進み又は
−Δδに対して90度遅れとなる電圧−短制御系AVR
の制御を行えば艮いことがわかる。
Returning to Figure 4 and organizing the above ideas, in order to improve the dynamic stability, wJ magnetic thread torque ΔT, 8 with respect to phase difference angular fluctuation Δδ must advance approximately 90° in phase with the angular frequency Δω, or with respect to −Δδ. Voltage-short control system AVR with a 90 degree delay
If you control it, you can see the difference.

次に第4図から同期機の界磁電圧ΔVtと励磁糸トルク
ΔT、!との関係を求めると となる。ここで′l!、磯子反作用による効果に4・Δ
δはΔVtと比較して小さな値であるため無視した。
Next, from Fig. 4, the field voltage ΔVt of the synchronous machine and the exciting thread torque ΔT, ! If we seek the relationship with Here'l! , the effect due to Isogo reaction is 4・Δ
Since δ is a small value compared to ΔVt, it was ignored.

(1)式においてに3Td−’は通常数秒のオーダーで
ある及び通常の電力動揺角周波数が2〜20 rodの
範囲であることを考えると電気トルクΔT axは界磁
電圧ΔVtに対して常にt’tぼ90度遅れることがわ
かる。
In equation (1), considering that 3Td-' is usually on the order of several seconds and that the normal power oscillation angle frequency is in the range of 2 to 20 rods, the electric torque ΔT ax is always t with respect to the field voltage ΔVt. It can be seen that there is a delay of about 90 degrees.

以上の位相関係を相差角Δδとともにベクトル図表示す
ると第4図及び第5図の関係を得る。
When the above phase relationship is expressed in a vector diagram along with the phase difference angle Δδ, the relationships shown in FIGS. 4 and 5 are obtained.

励磁糸トルクΔT、オは軸回転速度に#よぼ同相か遅れ
気味になる様、卸ち斜線領域になるよう制御を行えば良
い。さらに(1)式からΔVtはΔT、!よ990度進
みの位置にあるので、最適な制動トルクを得るためには
Δ■fがΔδと180度あるいはΔVtと(−Δδ)が
ほぼ同相となるよう制御を行えば良いことがわかる。
The excitation thread torque ΔT and O may be controlled so that they are in the hatched area so that they are approximately in phase with the shaft rotational speed or slightly behind #. Furthermore, from equation (1), ΔVt is ΔT,! Therefore, in order to obtain the optimum braking torque, control should be performed so that Δ■f is 180 degrees with Δδ or ΔVt and (−Δδ) are approximately in phase.

第7図に発明の一実施例として界磁電圧Vt及び同期機
有効電力Pを使用した実施例を示す。
FIG. 7 shows an embodiment in which the field voltage Vt and the synchronous machine active power P are used as an embodiment of the invention.

まず有効電力Pを電力変快器3にて検出し、これを不完
全微分回路7を介して有効電力の変化分ΔPを得る。同
様に界磁電圧Vfを7と同仕体の不完全微分回路8を用
いて界磁電圧変化分ΔVtを検出する。これらの信号か
ら位相差検出装置9を用いてΔPとΔVtの位相浸θを
検出する。次に位相差設定値θrsfとθとを比較しそ
の位相偏差Δθを得る。
First, the active power P is detected by the power converter 3, and is passed through the incomplete differentiation circuit 7 to obtain the change ΔP in the active power. Similarly, the field voltage Vf is set to 7, and the imperfect differentiation circuit 8 of the same type is used to detect the field voltage change ΔVt. From these signals, a phase difference detection device 9 is used to detect the phase dip θ between ΔP and ΔVt. Next, the phase difference setting value θrsf and θ are compared to obtain the phase deviation Δθ.

この位相偏差Δθを制御信号としてΔθが零となるよう
電力系統安定化装置10の位相調整回路6を制御する。
Using this phase deviation Δθ as a control signal, the phase adjustment circuit 6 of the power system stabilizing device 10 is controlled so that Δθ becomes zero.

ここで位相差検出装置1j、有効′電力ΔP及び同期機
界磁電圧Δvfの振幅が一定以上の時のみONL、振幅
が一短以下の時はOFFする補助リレーヲ刊しており、
このリレーの補助接点にて位相浬出力Δθの信号を大切
操作し、ΔP又はΔVtの振幅が小さい、即ち電力動揺
が発していないときには位相差Δθが正確に求まらない
ため、本発明の回路11を除外するものとする。
Here, the phase difference detection device 1j is equipped with an auxiliary relay that turns ON only when the amplitude of the active power ΔP and the synchronous machine field voltage Δvf is above a certain level, and turns OFF when the amplitude is below 1 short.
The auxiliary contact of this relay carefully manipulates the phase difference output Δθ signal, and when the amplitude of ΔP or ΔVt is small, that is, when no power fluctuation is occurring, the phase difference Δθ cannot be accurately determined, so the circuit of the present invention 11 shall be excluded.

以上の様な制御を行うことにより、発生した電力動揺に
対する最適な188位相定数を自動チューニングするこ
とができる。即ち大変手間のかかるパラメータサーベイ
をしてPS8定数を求めな(Q) くても、電圧制御系の設定電圧のステップ状変化。
By performing the above control, it is possible to automatically tune the optimum 188 phase constant for the generated power fluctuation. In other words, it is not necessary to perform a very time-consuming parameter survey to determine the PS8 constant (Q).

あるいは2回線送電線であればこれらの1回線を入シ切
シするなどして過渡的な電力動揺を発生させれば、その
系統における最適なP88定数を目動的に最適設定する
ことが可能である。
Alternatively, in the case of a two-line power transmission line, if one of these lines is turned on and off to generate a transient power fluctuation, it is possible to set the optimum P88 constant for that system. It is.

本発明の要点は電力動揺の情報信号でおる電力系統安定
化信号と同期機界磁電圧との位相差ヲ一定とする制御を
行えば電力系統の動態安定度の同上を実現できる点にあ
るため種々の変形例が考えられる。
The key point of the present invention is that the above dynamic stability of the power system can be achieved by controlling the phase difference between the power system stabilization signal, which is an information signal of power fluctuation, and the synchronous machine field voltage to be constant. Various modifications are possible.

まず、使用する信号の違いによる変形例についてみると
、電力系統安定化信号としては本実施例で示した同期機
有効出力の他、@速度、周波数及び相差角が考えられる
。この他第9図に示した如く同期機端子電圧vfと電機
子電流I、及び適尚な横軸同期リアクタンスX、を用い
て合成した横軸同期背後電圧E、の周波数変化、あるい
は外部線路リアクタンスX、l Vg 、Ilを用いて
合成した無限大母線gFEv−とE、との位相差δなど
を電力系統安定化信号として用いることができる。
First, regarding a modification based on a difference in the signals used, as the power system stabilization signal, in addition to the synchronous machine effective output shown in this embodiment, @speed, frequency, and phase difference angle can be considered. In addition, as shown in Fig. 9, the frequency change of the horizontal axis synchronous back voltage E, which is synthesized using the synchronous machine terminal voltage vf, the armature current I, and an appropriate horizontal axis synchronous reactance X, or the external line reactance. The phase difference δ between the infinite bus gFEv- and E, which are synthesized using X, lVg, and Il, can be used as a power system stabilization signal.

(10) 但し、Bq=Vt+JXq It * Va−=Vz 
 jXqlgである。
(10) However, Bq=Vt+JXq It * Va-=Vz
jXqlg.

寸だ第10図に示した関係から電気トルクに直接比例す
る量であるE、′をシミュレートして、これを電力系統
安定化信号としても艮い。
From the relationship shown in Figure 10, we simulate E,', which is a quantity directly proportional to the electric torque, and use this as a power system stabilization signal.

但し、Eq’ =e、+x、+、1である。However, Eq' = e, +x, +, 1.

次に界磁電圧について考えると第3図からΔV t =
 GAV几<S>−Δyerrであるから電圧一定制御
系GAVR(S)の特性かはつきシしていれば電圧偏差
Δy errをΔ■、の代りに便用することができる。
Next, considering the field voltage, ΔV t =
Since GAV<S>-Δyerr, if the characteristics of the constant voltage control system GAVR(S) are known, the voltage deviation Δyerr can be conveniently used in place of Δ■.

また、本発明は電力系統安定化信号と界磁電圧の位相差
が一定となるよう電力系統安定化装置の位相11il整
回路を調整しているが、この他第8図に示した如く電圧
一定制御系のゲイン又は時定数を制御して位相差が一定
となる制御を何っても良い。
In addition, the present invention adjusts the phase 11il rectifying circuit of the power system stabilization device so that the phase difference between the power system stabilization signal and the field voltage is constant. Any control may be used to keep the phase difference constant by controlling the gain or time constant of the control system.

そして、以上の発明は励磁系の制御に関するものであっ
たが、電力系統安定化信号と界磁電圧が一定となる様カ
バナ制御系を調整しても艮い。
Although the above invention relates to the control of the excitation system, the cabana control system may also be adjusted so that the power system stabilization signal and the field voltage are constant.

〔発明の効果〕〔Effect of the invention〕

(11) 1)同期機の運用状態、系統構成の変化及び使用してい
る励磁装置の種類にかかわらず、常に最適な動態安定度
を確保することができる。
(11) 1) Optimum dynamic stability can always be ensured regardless of the operational status of the synchronous machine, changes in system configuration, and the type of excitation device used.

2)動態安定度を最適に確保するよう励磁装置又は電力
系統安定化装置の定数を自動調整することができるため
、試運転時の試&v@整を開路できる他、系統構成の大
きな変化などの外部条件が変化しても、定数の再設定を
省略できる。即ちオートチューニングが可能である。
2) Since the constants of the excitation device or power system stabilization device can be automatically adjusted to ensure optimal dynamic stability, it is possible to automatically adjust the constants of the excitation device or power system stabilization device. Even if conditions change, resetting constants can be omitted. That is, auto-tuning is possible.

3)電力動揺の振側周期に応じて最適定数に自動調整す
るため0.2〜2H2の広範囲な周波数の電力動揺に対
して動態安定度を確保することができる。
3) Since the constant is automatically adjusted to the optimum value according to the swing side period of power fluctuation, dynamic stability can be ensured against power fluctuation over a wide range of frequencies from 0.2 to 2H2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の励磁制御装置を示す図である。 第2図は系統リアクタンスX、を介して発電機1と無限
大母線2が結合した一機無限大系統である。 第3図は第2図の一機無限大系で表わされる系統をある
運転点のまわりで線形近似したブロック線図である。 (12) 第4図は第3図の2重波線で囲った部分をブラックボッ
クスと見なし、相差角Δδの振動に対する励磁糸トルク
ΔT IIKをΔω又はΔδに比例する成分に分離しこ
れらの係数をそれぞれD’、Klとして、第3図を等価
2次振動系で置き換えた図である。 第5図はΔP、ΔωとΔVtの理想的なベクトル関係を
示した図である。 第6図は第5図を波形表現した図である。 第7図は本発明の実施例でるる。 第8図は本発明の変形例であり、PSSではなく励磁装
置のゲイン又は位相回路の定数変更にょ夛、動態安定度
の向上を行うものでるる。 第9図及び第10図は、電力安定化信号として模擬でき
るEl、δ、E、′などの信号をベクトル図にて示した
ものである。 AVR・・・泡子電圧一定制御装置、PSS・・・電力
動揺安定化装置、5・・・増幅器、6・・・位相調整回
路、9・・・位相差検出装置、ΔP・・・電力変化量、
ΔVf(13) (14) 蔓 4 図 弔 S 図 第 6図 一△I   ・ ¥−J ′8 口 AVR Vref (90R)          !PTjf
−l     ρ−21 − 1 曙 ]                   11  、
−3                   l″≦≦ 自′ 1          ΔP: ■ )                        
  1? ■f−1 1 L−一−−−−−−−−−−−−−− XTR △△ 41        7H丁 1、・・・・”y□ 第 l 策70帛 555−
FIG. 1 is a diagram showing a conventional excitation control device. FIG. 2 shows a single-machine infinite system in which a generator 1 and an infinite bus 2 are coupled via a system reactance X. FIG. 3 is a block diagram in which the system represented by the one-machine infinite system in FIG. 2 is linearly approximated around a certain operating point. (12) In Fig. 4, the part surrounded by the double wavy line in Fig. 3 is regarded as a black box, and the excitation thread torque ΔT IIK with respect to the vibration of the phase difference angle Δδ is separated into components proportional to Δω or Δδ, and these coefficients are calculated. This is a diagram in which FIG. 3 is replaced with an equivalent second-order vibration system, with D' and Kl respectively. FIG. 5 is a diagram showing an ideal vector relationship between ΔP, Δω, and ΔVt. FIG. 6 is a waveform representation of FIG. 5. FIG. 7 shows an embodiment of the present invention. FIG. 8 shows a modification of the present invention, in which dynamic stability is improved by changing the gain of the excitation device or the constant of the phase circuit instead of the PSS. 9 and 10 are vector diagrams showing signals such as El, δ, E,', etc. that can be simulated as power stabilization signals. AVR... A bubble voltage constant control device, PSS... Power fluctuation stabilization device, 5... Amplifier, 6... Phase adjustment circuit, 9... Phase difference detection device, ΔP... Power change amount ,
ΔVf (13) (14) Vine 4 Condolence S Figure 6 Figure 1 △I ・¥-J '8 Mouth AVR Vref (90R)! PTjf
-l ρ-21 - 1 Akebono] 11,
−3 l″≦≦ self′ 1 ΔP: ■ )
1? ■f-1 1 L-1----------------

Claims (1)

【特許請求の範囲】[Claims] 1、同期機の端子電圧とその設定電圧との偏差信号に応
じて同期機の界磁量を定める端子電圧一定制御装置を備
えた同期機の励磁制御装置において、同期機に接続され
た電力系統の動揺状態を表わす電力系統安定化信号と同
期機の界磁電圧変動分との間の位相差を所定位相差とす
るための補正信号を@!%桶正信号を前記端子電圧一定
制御装置に作用せしめる電力系統安定化装置を付加した
ことを特徴とする同期機の励磁制御装置。
1. In an excitation control device for a synchronous machine equipped with a terminal voltage constant control device that determines the field amount of the synchronous machine according to a deviation signal between the terminal voltage of the synchronous machine and its set voltage, the electric power system connected to the synchronous machine A correction signal for making the phase difference between the power system stabilization signal representing the oscillation state and the field voltage fluctuation of the synchronous machine to a predetermined phase difference @! 1. An excitation control device for a synchronous machine, characterized in that an electric power system stabilizing device is added to cause a positive % bucket signal to act on the terminal voltage constant control device.
JP58047093A 1983-03-23 1983-03-23 Excitation control device for synchronous machine Expired - Lifetime JPH0632597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58047093A JPH0632597B2 (en) 1983-03-23 1983-03-23 Excitation control device for synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58047093A JPH0632597B2 (en) 1983-03-23 1983-03-23 Excitation control device for synchronous machine

Publications (2)

Publication Number Publication Date
JPS59173000A true JPS59173000A (en) 1984-09-29
JPH0632597B2 JPH0632597B2 (en) 1994-04-27

Family

ID=12765567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58047093A Expired - Lifetime JPH0632597B2 (en) 1983-03-23 1983-03-23 Excitation control device for synchronous machine

Country Status (1)

Country Link
JP (1) JPH0632597B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210898A (en) * 1985-03-12 1986-09-19 Shikoku Electric Power Co Inc Power system stabilizer
JPS63129874A (en) * 1986-11-17 1988-06-02 Matsushita Electric Ind Co Ltd Motor controller
JPH0583995A (en) * 1991-09-18 1993-04-02 Nishishiba Electric Co Ltd Monitoring controller for power

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169393A (en) * 1983-03-14 1984-09-25 Kansai Electric Power Co Inc:The Control system of generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169393A (en) * 1983-03-14 1984-09-25 Kansai Electric Power Co Inc:The Control system of generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210898A (en) * 1985-03-12 1986-09-19 Shikoku Electric Power Co Inc Power system stabilizer
JPS63129874A (en) * 1986-11-17 1988-06-02 Matsushita Electric Ind Co Ltd Motor controller
JPH0583995A (en) * 1991-09-18 1993-04-02 Nishishiba Electric Co Ltd Monitoring controller for power

Also Published As

Publication number Publication date
JPH0632597B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
US4388577A (en) Rotating field machine drive
Brassfield et al. Direct torque control for brushless doubly-fed machines
US5877606A (en) Starting of synchronous machine without rotor position or speed measurement
US4418308A (en) Scalar decoupled control for an induction machine
US4967129A (en) Power system stabilizer
US4968925A (en) Universal field-oriented controller
JPS61280715A (en) Power system stabilizer
US3474323A (en) Electrical control systems with stabilizing control means
US4458193A (en) Method and apparatus for controlling an AC induction motor
GB1397132A (en) Damping oscillations in a rotary-field electrical motor
JPS59173000A (en) Excitation controller of synchronous machine
GB1430844A (en) Controlling synchronous electrical machines
Messerle et al. Steady-state stability of synchronous generators as affected by regulators and governors
JPS6188780A (en) Control constant setting method for speed controller
US3465235A (en) Control of rotating exciters for power system damping
US4376295A (en) System for predicting desynchronization of a synchronous machine
US3167702A (en) Vibration damping arrangement for rotary field system of excitation regulation synchronous machines
JPH0697880B2 (en) Excitation control device for synchronous machine
US2747156A (en) Inverter control system
US2683847A (en) Electrical control system
US3065396A (en) System for controlling the speed of induction motors
JPH0345632B2 (en)
JPS63316687A (en) Vector controlling arithmetic device for induction motor
JP3095566B2 (en) Synchronous machine control device
JPH01283085A (en) Load angle controller of converter