JP3095566B2 - Synchronous machine control device - Google Patents
Synchronous machine control deviceInfo
- Publication number
- JP3095566B2 JP3095566B2 JP05022628A JP2262893A JP3095566B2 JP 3095566 B2 JP3095566 B2 JP 3095566B2 JP 05022628 A JP05022628 A JP 05022628A JP 2262893 A JP2262893 A JP 2262893A JP 3095566 B2 JP3095566 B2 JP 3095566B2
- Authority
- JP
- Japan
- Prior art keywords
- command
- magnetic flux
- axis
- synchronous machine
- calculator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Control Of Ac Motors In General (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、同期機例えば同期電動
機をサイクロコンバータやインバータ等の可変電圧、可
変周波数電源で駆動する際の制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for driving a synchronous machine, for example, a synchronous motor with a variable voltage and variable frequency power supply such as a cycloconverter or an inverter.
【0002】[0002]
【従来の技術】同期電動機を可変電圧・可変周波数で駆
動する方式には、他励転流を用いた無整流子電動機方式
やベクトル制御方式がある。このうち、ベクトル制御方
式は高性能な駆動が可能で早い応答や精密な制御を要す
る分野に適用されている。図11は従来の一例であり、
1は電力変換器、2は同期電動機、3は位置検出器、4
は界磁用電力変換器、5は位置演算器、6は座標変換
器、7,8は増幅器、9は磁束演算器、10は界磁電流
演算器、11,12は電流検出器である。2. Description of the Related Art As a system for driving a synchronous motor at a variable voltage and a variable frequency, there are a non-commutator motor system using a separately excited commutation and a vector control system. Among them, the vector control method is applied to a field in which high-performance driving is possible, fast response and precise control are required. FIG. 11 is an example of the related art,
1 is a power converter, 2 is a synchronous motor, 3 is a position detector, 4
Is a field power converter, 5 is a position calculator, 6 is a coordinate converter, 7 and 8 are amplifiers, 9 is a magnetic flux calculator, 10 is a field current calculator, and 11 and 12 are current detectors.
【0003】同期電動機2の電機子電流を電流検出器1
1で検出し、位置検出器3および位置演算器5から得ら
れる同期電動機2の回転子位置をもとに、座標変換器6
では、電機子電流の界磁磁極方向成分id と界磁磁極に
直交する成分iq を(1),(2)式によって求める。 id =(2/3)1/2 (ia cos θ+ib cos (θ+2/3π) +ic cos (θ+4/3π)) …(1) iq =(2/3)1/2 (ia sin θ+ib sin (θ+2/3π) +ic sin (θ+4/3π)) …(2) (1),(2)式において、ia ,ib ,ic は検出さ
れた三相電流値、θは回転子位置を表している。The armature current of the synchronous motor 2 is detected by a current detector 1
1 and a coordinate converter 6 based on the rotor position of the synchronous motor 2 obtained from the position detector 3 and the position calculator 5.
In the component i q perpendicular to the field magnetic pole direction component i d and field poles of the armature current (1), determined by equation (2). id = (2/3) 1/2 (I a cos θ + i b cos (θ + 2 / 3π) + i c cos (θ + 4 / 3π)) ... (1) i q = (2/3) 1/2 (I a sin θ + i b sin (θ + 2 / 3π) + i c sin (θ + 4 / 3π)) ... (2) (1), (2) where, i a, i b, i c is detected three-phase currents The value θ represents the rotor position.
【0004】磁束演算器9は、id ,iq および電流検
出器12によって検出された界磁電流if から磁束φと
界磁磁極と磁束のなす角である内部相差角δを(3),
(4),(5),(6)式により演算する。 φd =Md ・[(1 +L kd・S/Rkd)÷ (1+Md ・S/RkdLkd・S/Rkd)] ・ (id +if )+L a id …(3) φq =Mq ・[(1+L kq・S/Rkq)÷ (1+Mq ・S/Rkq+Lkq・S/Rkq)]・ (iq )+L a iq …(4) φ=(φd 2 +φq 2 )1/2 …(5) δ=a tan(φq /φd ) …(6)[0004] flux calculator 9, i d, i q and the current detector 12 internal phase angle δ is the angle between the magnetic flux φ and field poles and the magnetic flux from the detected field current i f by (3) ,
The calculation is performed using the equations (4), (5), and (6). φ d = M d · [( 1 + L kd · S / R kd) ÷ (1 + M d · S / R kdLkd · S / R kd)] · (i d + i f) + L a i d ... (3) φ q = M q · [(1 + L kq · S / R kq) ÷ (1 + M q · S / R kq + L kq · S / R kq)] · (i q) + L a i q ... (4) φ = (φ d 2 + φ q 2 ) 1/2 (5) δ = a tan (φ q / φ d ) (6)
【0005】(3),(4)式において、Sはラプラス
演算子を表し、Md ,Mq はd軸方向、q軸方向のそれ
ぞれの相互インダクタンスを表し、またRkd,Rkqはそ
れぞれd軸ダンパー巻線抵抗、q軸ダンパー巻線抵抗を
表し、さらにL kd,L kqはそれぞれd軸ダンパー漏れイ
ンダクタンス、q軸ダンパー漏れインダクタンスを表
し、L a は電機子漏れインダクタンスを表している。界
磁電流演算器10は磁束指令φ* と磁束φとの偏差と内
部相差角δから界磁電流指令if * を(7)式で定め
る。 if * =KM ・(φ* −φ)/cos δ …(7) 上式において、KM は比例定数である。In equations (3) and (4), S represents a Laplace operator, M d and M q represent mutual inductances in the d-axis direction and the q-axis direction, and R kd and R kq are respectively d-axis damper winding resistance, represents a q-axis damper winding resistance, further L kd, L kq represents respectively d-axis damper leakage inductance, the q-axis damper leakage inductance, L a represents the armature leakage inductance. The field current calculator 10 determines the field current command if * from equation (7) from the deviation between the magnetic flux command φ * and the magnetic flux φ and the internal phase difference angle δ. In i f * = K M · ( φ * -φ) / cos δ ... (7) the above equation, K M is a proportionality constant.
【0006】この界磁電流指令if * と検出値if との
偏差を増幅器8で増幅し界磁電圧基準を得て界磁用電力
変換器4により界磁巻線21に電力が供給される。ま
た、電機子電流指令値id * ,iq * と検出電流id ,
iq の偏差を増幅器7で増幅して、電機子電圧指令vd
* ,vq * を得てこの指令vd * ,vq * にもとづいて
電力変換器1が制御される。The field current command if * The difference between the detected value if and the detected value if is amplified by the amplifier 8 to obtain the field voltage reference, and power is supplied to the field winding 21 by the field power converter 4. Also, the armature current command value id * , I q * And the detection current id ,
The i q deviation is amplified by the amplifier 7, the armature voltage command vd
* , Vq * Get this command vd * , Vq * The power converter 1 is controlled based on this.
【0007】[0007]
【発明が解決しようとする課題】図11で示した従来例
では、検出電流であるid ,iq ,if をもとに磁束
φ、内部相差角δを求めて、それをもとに界磁電流指令
if * を決定している。すなわち、id ,iq ,if の
制御誤差がすべて界磁電流指令if * に影響する構成と
なっている。In the conventional example shown in FIG. 11, the magnetic flux φ and the internal phase difference angle δ are obtained based on the detected currents i d , i q , and if, and based on the obtained values. Field current command if * Is determined. In other words, i d, i q, i all field current control error of the f command i f * It has a configuration that affects
【0008】実際の制御装置においては、制御遅れ、検
出遅れが存在し、検出値は指令値に対して必ず過渡的な
制御誤差を伴う。特に、大きな負荷変動の際など、電流
を急激に変化させなければならないときは、電機子電
流、界磁電流の制御誤差が大きくなり、その誤差を吸収
しようとして界磁電流指令if * が過大に変化し、最悪
の場合、制御不能になることがあった。In an actual control device, there are a control delay and a detection delay, and the detected value always involves a transient control error with respect to the command value. In particular, when the current must be changed abruptly, for example, in the case of a large load change, the control error of the armature current and the field current becomes large, and the field current command if * attempts to absorb the error . Changed excessively and, in the worst case, became out of control.
【0009】本発明は上記問題点を解決するためになさ
れたもので、第1の目的は界磁電流指令が過大に変化す
ることを防ぎ、高負荷時にも安定に精度よく同期機を制
御することができる制御装置を提供することにある。第
2の目的は、第1の目的に加えて、同期機の力率を1に
制御し、高効率の同期機の制御装置を提供することにあ
る。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and a first object of the present invention is to prevent a field current command from changing excessively and to control a synchronous machine stably and accurately even under a heavy load. To provide a control device that can perform the control. A second object, in addition to the first object, is to provide a high-efficiency synchronous machine control device that controls the power factor of a synchronous machine to one.
【0010】[0010]
【課題を解決するための手段】前記第1の目的を達成す
るために、請求項1に対応する発明は、可動電圧−可変
周波数の電力を供給する電力変換器により同期機を駆動
する同期機の制御装置において、前記同期機の界磁磁極
方向に直交する電機子電流であるq軸電流指令から、同
期機定数を用いて、磁束の界磁磁極に直交する成分であ
るq軸磁束指令を演算するq軸磁束演算器と、磁束指令
から前記q軸磁束指令をベクトル的に減算し、磁束指令
の界磁磁極方向成分であるd軸磁束指令を求めるd軸磁
束演算器と、前記d軸磁束指令と界磁磁極方向の電機子
電流であるd軸電流指令から、同期機定数を用いて、界
磁電流指令を演算する界磁電流指令演算器とを備えた同
期機の制御装置である。According to a first aspect of the present invention, there is provided a synchronous machine for driving a synchronous machine by a power converter for supplying power of a movable voltage to a variable frequency. In the control device, from the q-axis current command which is an armature current orthogonal to the field pole direction of the synchronous machine, using a synchronous machine constant, a q-axis magnetic flux command which is a component orthogonal to the field pole of the magnetic flux is used. A q-axis magnetic flux calculator for calculating, a d-axis magnetic flux calculator for vector-wise subtracting the q-axis magnetic flux command from the magnetic flux command to obtain a d-axis magnetic flux command which is a field pole direction component of the magnetic flux command; A synchronous machine control device including: a field current command calculator that calculates a field current command using a synchronous machine constant from a magnetic flux command and a d-axis current command that is an armature current in a field pole direction. .
【0011】前記第2の目的を達成するために、請求項
2に対応する発明は、可変電圧−可変周波数の電力を供
給する電力変換器により同期機を駆動する同期機の駆動
装置において、前記同期機のトルク指令、磁束指令およ
び磁束の界磁磁極に直交する成分であるq軸磁束指令か
ら、界磁磁極方向の電機子電流であるd軸電流指令と界
磁磁極方向に直交する電機子電流であるq軸電流指令を
演算する電機子電流指令演算器と、前記q軸電流指令か
ら、同期機定数を用いて、前記q軸磁束指令を演算する
q軸磁束演算器と、前記磁束指令から前記q軸磁束指令
をベクトル的に減算し、磁束指令の界磁磁極方向成分で
あるd軸磁束指令を求めるd軸磁束演算器と、前記d軸
磁束指令と前記d軸電流指令から、同期機定数を用い
て、界磁電流指令を演算する界磁電流指令演算器とを備
えた同期機の制御装置である。According to a second aspect of the present invention, there is provided a synchronous machine driving apparatus for driving a synchronous machine by a power converter for supplying power of a variable voltage to a variable frequency. An armature orthogonal to the d-axis current command, which is an armature current in the direction of the field magnetic pole, from a torque command, a magnetic flux command of the synchronous machine, and a q-axis magnetic flux command that is a component orthogonal to the field pole of the magnetic flux. An armature current command calculator for calculating a q-axis current command which is a current; a q-axis magnetic flux calculator for calculating the q-axis magnetic flux command from the q-axis current command using a synchronous machine constant; And a d-axis magnetic flux calculator that obtains a d-axis magnetic flux command, which is a field pole direction component of the magnetic flux command, by subtracting the q-axis magnetic flux command in a vector manner from the d-axis magnetic flux command and the d-axis current command. Using the machine constant, the field current command A control system for a synchronous machine and a calculation for the field current command calculator.
【0012】前記第2の目的を達成するために、請求項
3に対応する発明は、可変電圧−可変周波数の電力を供
給する電力変換器により同期機を駆動する同期機の駆動
装置において、前記同期機のトルク指令、磁束指令、磁
束の界磁磁極に直交する成分であるq軸磁束指令および
d軸磁束指令から、界磁磁極方向の電機子電流であるd
軸電流指令と界磁磁極方向に直交する電機子電流である
d軸電流指令を演算する電機子電流指令演算器と、前記
q軸電流指令から、同期機定数を用いて、前記q軸磁束
指令を演算するq軸磁束演算器と、前記磁束指令から前
記q軸磁束指令をベクトル的に減算し、前記磁束指令の
界磁磁極方向成分であるd軸磁束指令を求めるd軸磁束
演算器と、前記d軸磁束指令と前記d軸電流指令から、
同期機定数を用いて、界磁電流指令を演算する界磁電流
指令演算器とを備えた同期機の制御装置である。According to a third aspect of the present invention, there is provided a synchronous machine driving apparatus for driving a synchronous machine by a power converter for supplying power of a variable voltage to a variable frequency. From the torque command, the magnetic flux command, and the q-axis magnetic flux command and the d-axis magnetic flux command, which are components orthogonal to the field pole of the magnetic flux, d is the armature current in the field pole direction.
An armature current command calculator for calculating a d-axis current command, which is an armature current orthogonal to the axis current command and the field pole direction, and the q-axis magnetic flux command from the q-axis current command using a synchronous machine constant. And a d-axis magnetic flux calculator that vectorally subtracts the q-axis magnetic flux command from the magnetic flux command to obtain a d-axis magnetic flux command that is a component of the magnetic flux command in the field pole direction, From the d-axis magnetic flux command and the d-axis current command,
A synchronous machine control device comprising: a field current command calculator for calculating a field current command using a synchronous machine constant.
【0013】[0013]
【作用】請求項1に対応する発明によれば、d軸電流指
令とq軸電流指令および磁束指令が与えられると、q軸
磁束演算器、d軸磁束演算器、界磁電流指令演算器に順
に信号が伝わり、界磁電流指令が前向きに決定される。
すなわち、界磁電流指令は、電機子電流、界磁電流が指
令値に完全に一致したときに必要な値として与えられ、
界磁電流指令が電機子電流および界磁電流の過渡的制御
誤差の影響を受けることがない。従って、高負荷変動時
にも、界磁電流指令が過大に変化することはなく、安定
な制御系となる。According to the invention corresponding to claim 1, when the d-axis current command, the q-axis current command and the magnetic flux command are given, the q-axis magnetic flux calculator, the d-axis magnetic flux calculator and the field current command calculator are provided. The signals are sequentially transmitted, and the field current command is determined forward.
That is, the field current command is given as a necessary value when the armature current and the field current completely match the command value,
The field current command is not affected by the armature current and the transient control error of the field current. Therefore, the field current command does not change excessively even during a high load change, and a stable control system is provided.
【0014】請求項2および請求項3に対応する発明に
よれば、d軸電流指令とq軸電流指令できまる電機子電
流ベクトルが磁束に直交するように、d軸電流指令とq
軸電流指令が決定される。従って、電機子電流および界
磁電流が指令値に追従した定常状態では、同期機の力率
が1に保たれ、高負荷時にも安定でかつ効率の高い同期
機の制御装置となる。According to the second and third aspects of the present invention, the d-axis current command and the q-axis current command are set so that the armature current vector obtained by the d-axis current command and the q-axis current command is orthogonal to the magnetic flux.
The shaft current command is determined. Therefore, in a steady state in which the armature current and the field current follow the command value, the power factor of the synchronous machine is maintained at 1, and the control device for the synchronous machine is stable and highly efficient even under a heavy load.
【0015】[0015]
【実施例】図1は本発明の第1の目的を達成するための
第1実施例の概略構成図を示すブロック図である。図1
1の従来例で設けていた増幅器8と、磁束演算器9と、
界磁電流演算器10を設けず、この代りにq軸磁束演算
器13と、d軸磁束演算器14と、界磁電流指令演算器
15を設けた点が異なり、これ以外の構成は図11の従
来例と同一であるので、ここではその説明を省略する。
図2はq軸磁束演算器13の詳細な構成を表すブロック
図であり、これは比例器131,134と、積分器13
2と、関数発生器133からなっている。図3はd軸磁
束演算器14の詳細な構成を表すブロック図であり、こ
れは乗算器141,142と、平方根演算器143から
なっている。図4は界磁電流指令演算器15の詳細な構
成を表すブロック図であり、これは比例器151,15
4と、関数発生器152と、微分器153からなってい
る。FIG. 1 is a block diagram showing a schematic configuration diagram of a first embodiment for achieving the first object of the present invention. FIG.
An amplifier 8 provided in the conventional example 1 and a magnetic flux calculator 9;
The difference is that the field current calculator 10 is not provided, and instead a q-axis magnetic flux calculator 13, a d-axis magnetic flux calculator 14, and a field current command calculator 15 are provided. Since this is the same as the conventional example, its description is omitted here.
FIG. 2 is a block diagram showing a detailed configuration of the q-axis magnetic flux calculator 13, which includes proportional units 131 and 134 and an integrator 13.
2 and a function generator 133. FIG. 3 is a block diagram showing a detailed configuration of the d-axis magnetic flux calculator 14, which includes multipliers 141 and 142 and a square root calculator 143. FIG. 4 is a block diagram showing a detailed configuration of the field current command calculator 15, which includes proportional units 151 and 15.
4, a function generator 152, and a differentiator 153.
【0016】q軸磁束演算器13は、図2に示すように
電機子電流指令の界磁磁極に直交する成分であるq軸電
流指令iq *を入力し、(8)式(同期機の電圧方程
式)により磁束指令の界磁磁極に直交する方向成分であ
るq軸磁束指令φq *が演算される。 φq *=[(Rkq・iq */S)+Lkq・iq *]÷ [1+1/Mq(Rkq/S+Lkq]+La・iq * …(8)The q-axis magnetic flux calculator 13 inputs a q- axis current command iq * , which is a component orthogonal to the field pole of the armature current command, as shown in FIG. A q-axis magnetic flux command φ q *, which is a direction component orthogonal to the field pole of the magnetic flux command, is calculated by the voltage equation). φ q * = [(R kq · i q * / S) * + L kq · i q] ÷ [1 + 1 / M q (R kq / S + L kq] + L a · i q * ... (8)
【0017】(8)式において、Sはラプラス演算子を
表し、Mq はq軸方向の相互インダクタンス、Rkqはq
軸ダンパー巻線抵抗、L kqはq軸ダンパー漏れインダク
タンス、L a は電機子漏れインダクタンスである。In the equation (8), S represents a Laplace operator, M q is a mutual inductance in the q-axis direction, and R kq is a q
Axis damper winding resistance, L kq is the q-axis damper leakage inductance, L a is the armature leakage inductance.
【0018】通常、磁気飽和の影響で、(8)式のMq
は磁束の大きさに応じて変化する。そこで、1/Mq に
関する項を関数発生器として(8)式の演算をブロック
図で表したのが、図2のq軸磁束演算器である。Normally, due to the effect of magnetic saturation, M q in the equation (8)
Changes according to the magnitude of the magnetic flux. Therefore, the q-axis magnetic flux calculator shown in FIG. 2 is a block diagram showing the calculation of equation (8) using the term relating to 1 / M q as a function generator.
【0019】d軸磁束演算器14は、図3に示すように
q軸磁束演算器13によって演算されたq軸磁束指令φ
q * を磁束指令φ* からベクトル的に減算することで磁
束指令の界磁磁極方向成分φd * を演算する。これは
(9)式に対応している。 φd * =(φ*2−φq *2)1/2 …(9)The d-axis magnetic flux calculator 14 has a q-axis magnetic flux command φ calculated by the q-axis magnetic flux calculator 13 as shown in FIG.
q * Is the magnetic flux command φ * From the field pole component φ d * of the magnetic flux command . Is calculated. This corresponds to equation (9). φ d * = (Φ * 2- φ q * 2 ) 1/2 … (9)
【0020】d軸磁束演算器14によって演算されたd
軸磁束指令φd * は電機子電流指令の界磁磁極方向成分
id * とともに界磁電流指令演算器15に入力される。
界磁電流指令演算器15は、図4に示すように同期機の
電圧方程式にもとづき、d軸磁束指令φd * とd軸電流
id * から界磁電流指令を演算する。界磁電流指令if
* は同期機の電圧方程式より(10)式で表される。D calculated by the d-axis magnetic flux calculator 14
Shaft magnetic flux command φ d * Field poles direction component of the armature current command i d * Is input to the field current command calculator 15.
The field current command calculator 15 calculates the d-axis magnetic flux command φ d * based on the voltage equation of the synchronous machine as shown in FIG. And d-axis current id * To calculate a field current command. Field current command if
* Is expressed by equation (10) from the voltage equation of the synchronous machine.
【0021】 if * =1/Md (φd * −L a id * )+[(S/Rkd)÷(1+S・L kd/ Rkd)]・(φd * −L a id * )−id * …(10) If * = 1 / M d (φ d * -L a i d * ) + [(S / R kd ) ÷ (1 + S · L kd / R kd )] · (φ d * -L a i d * ) -I d * … (10)
【0022】(10)式において、Sは等プラス演算子
を表し、Md はd軸相互インダクタンス、Rkdはd軸ダ
ンパー巻線抵抗、L kdはd軸ダンパー巻線の漏れインダ
クタンス、L a は電機子巻線の漏れインダクタンスを表
す。[0022] In (10), S is expressed equal plus operator, M d is d-axis mutual inductance, R kd is d-axis damper winding resistance, L kd leakage inductance of the d-axis damper windings, L a Represents the leakage inductance of the armature winding.
【0023】(10)式のMd は、通常、上記飽和の影
響で磁束の大きさに対応して変化する。そこで、1/M
d に対応する項は、図4に示す関数発生器152で求め
られる。In general, M d in the equation (10) changes according to the magnitude of the magnetic flux under the influence of the saturation. Therefore, 1 / M
The term corresponding to d is obtained by the function generator 152 shown in FIG.
【0024】以上のようにして決定された界磁電流指令
if * は電流検出器12によって検出された実際の界磁
電流if と比較され、増幅器(界磁電流制御器)8によ
り界磁電圧指令が計算される。界磁電流制御器8は通常
比例積分器で構成され、界磁用電力変換器4をへて界磁
電圧指令に対応する電圧が同期電動機2の界磁巻線21
に供給される。The field current command i f * determined as described above Is compared with the actual field current i f detected by the current detector 12, the field voltage command is calculated by the amplifier (field current controller) 8. The field current controller 8 is usually constituted by a proportional integrator, and a voltage corresponding to a field voltage command is supplied to the field winding 21 of the synchronous motor 2 through the field power converter 4.
Supplied to
【0025】また、電流検出器11により検出された三
相電機子電圧は、座標変換器6で位置演算器5からの信
号をもとにdq軸上での電流値に変換される。このdq
軸上での電機子電流の実際値と、d軸電流指令id * お
よびq軸電流指令iq * がそれぞれ比較され、通常比例
積分器として構成された電機子電流制御器(増幅器)7
によって、電機子電圧指令va * ,vb * が出力され
る。この電機子電圧指令va * ,vb * が電力変換器1
に入力され三相電機子巻線電圧が同期電動機2の電機子
巻線に印加され、同期電動機2が駆動される。The three-phase armature voltage detected by the current detector 11 is converted into a current value on the dq axes by the coordinate converter 6 based on the signal from the position calculator 5. This dq
The actual value of the armature current on the axis is compared with the d-axis current command id * and the q-axis current command iq * , respectively, and an armature current controller (amplifier) 7 usually configured as a proportional integrator
As a result, armature voltage commands v a * and v b * are output. The armature voltage commands v a * and v b * correspond to the power converter 1
And the three-phase armature winding voltage is applied to the armature winding of the synchronous motor 2 to drive the synchronous motor 2.
【0026】以上の説明により第1実施例では、同期電
動機2の界磁電流指令if * が、電機子電流指令
id * 、iq * 、磁束指令φd * から前向きに演算さ
れ、電機子電流の実際値、界磁電流の実際値に無関係に
決定されるので、急激な負荷変動時のように、電機子電
流指令が急変した場合も、電機子電流制御系、界磁電流
制御系の制御誤差の影響を受けて、界磁電流指令が過大
に変化することはなく、安定な制御系となる。[0026] In the above first embodiment the description is field current command of the synchronous motor 2 i f * is, the armature current command i d *, i q *, the magnetic flux command phi d * From the armature current, and is determined irrespective of the actual value of the armature current and the actual value of the field current. Therefore, even when the armature current command changes suddenly, such as when the load changes suddenly, the armature current control The field current command does not change excessively under the influence of the control error of the system and the field current control system, and the control system becomes stable.
【0027】図5は本発明の第2の目的を達成するため
の第2実施例の概略構成を示すブロック図である。この
実施例は図1の第1実施例に電機子電流指令演算器16
を付加した点が異なる。電機子電流指令演算器16は、
後述するようにトルク指令T* および磁束指令φ* なら
びにq軸磁束演算器13からのφq * を入力し、d軸電
流指令id * とq軸電流指令iq * を演算する。FIG. 5 is a block diagram showing a schematic configuration of a second embodiment for achieving the second object of the present invention. This embodiment differs from the first embodiment shown in FIG.
Is different. The armature current command calculator 16 is
As described later, the torque command T * And magnetic flux command φ * And φ q * from the q-axis magnetic flux calculator 13 And input the d-axis current command id * And q-axis current command iq * Is calculated.
【0028】図6は電機子電流指令演算器16の詳細な
構成を表すブロック図であり、これは、除算器160
1,1602と、乗算器1610,1611,161
2,1613と、平方根演算器163と、逆正接関数発
生器1640と、正弦関数発生器1641と、余弦関数
発生器1642と、反転器165とからなっている。図
7は電機子電流指令演算器16の他の詳細な構成を示す
ブロック図である。1621は除算器を表し、これ以外
の構成は図6と同一である。トルク指令T* および磁束
指令φ* が与えられると、必要な電機子電流ベクトルの
大きさIT は次式で決定される。 IT =T* ÷φ* …(11) なお、このトルク指令T* は通常、速度制御器などの上
位制御器の出力として与えられ、磁束指令は速度の関数
として与えられる。FIG. 6 is a block diagram showing a detailed configuration of the armature current command calculator 16, which is a divider 160.
1,1602 and multipliers 1610, 1611, 161
2, 1613, a square root calculator 163, an arctangent function generator 1640, a sine function generator 1641, a cosine function generator 1642, and an inverter 165. FIG. 7 is a block diagram showing another detailed configuration of the armature current command calculator 16. Reference numeral 1621 denotes a divider, and other configurations are the same as those in FIG. Torque command T * And magnetic flux command φ * Is given, the magnitude I T of the required armature current vector is determined by the following equation. I T = T * ÷ φ * (11) The torque command T * Is usually given as the output of a higher-order controller such as a speed controller, and the magnetic flux command is given as a function of the speed.
【0029】一方、d軸磁束指令とq軸磁束指令によっ
てきまる磁束指令ベクトルと界磁磁極のなす角δは、磁
束指令およびq軸磁束指令から(12)式によって決定
される。 δ=tan -1[φq * ÷(φ*2−φq *2)1/2 ] …(12)On the other hand, the angle δ between the magnetic flux command vector determined by the d-axis magnetic flux command and the q-axis magnetic flux command and the field pole is determined by the equation (12) from the magnetic flux command and the q-axis magnetic flux command. δ = tan -1 [φ q * ÷ (φ * 2 −φ q * 2 ) 1/2 ] ... (12)
【0030】同期電動機2の力率を1に保つためには、
磁束指令ベクトルに直交するように電機子電流指令ベク
トルを与えてやればよい。すなわち、d軸電流指令とq
軸電流指令を(13),(14)式で決定すればよい。 id * =−IT ・sin δ …(13) iq * = IT ・cos δ …(14)In order to keep the power factor of the synchronous motor 2 at 1,
The armature current command vector may be given so as to be orthogonal to the magnetic flux command vector. That is, the d-axis current command and q
The shaft current command may be determined by equations (13) and (14). i d * = -I T · sin δ ... (13) i q * = I T · cos δ ... (14)
【0031】以上の演算をブロック図として表したのが
図6である。図6の演算では磁束指令、q軸磁束指令か
ら、磁束指令ベクトルと界磁磁極のなす角度δを求めて
からその正弦値、余弦値をもとめているが、q軸磁束指
令、磁束指令から直接、正弦値sin δ、余弦値cos δを
(15),(16)式で求めてもよい。 sin δ=φq * /φ* …(15) cos δ=[(φ*2−φq *2)1/2 ]÷φ* …(16) (13)〜(16)式を用いて、d軸電流指令id * 、
q軸電流指令iq * を決定する方法をブロック図として
表したのが図7である。FIG. 6 is a block diagram showing the above operation. In the calculation of FIG. 6, the sine value and the cosine value are obtained after obtaining the angle δ between the magnetic flux command vector and the field magnetic pole from the magnetic flux command and the q-axis magnetic flux command. , Sine value sin δ, and cosine value cos δ may be obtained by equations (15) and (16). sin δ = φ q * / Φ * ... (15) cos δ = [ (φ * 2 -φ q * 2) 1/2 ] ÷ φ * ... (16) Using the equations (13) to (16), the d-axis current command id * ,
q-axis current command i q * FIG. 7 is a block diagram showing a method of determining the above.
【0032】d軸電流指令id * とq軸電流指令iq *
が決定されて以降は、第1実施例の作用とまったく同様
にして、電機子電流制御、界磁電流制御の影響を受ける
ことなく界磁電流指令が決定され、同期電動機が制御さ
れる。D-axis current command id * And q-axis current command iq *
Is determined, the field current command is determined without being affected by the armature current control and the field current control, and the synchronous motor is controlled in exactly the same manner as the operation of the first embodiment.
【0033】以上の説明した第2実施例によれば、同期
電動機の界磁電流指令が、電機子電流指令、磁束指令か
ら前向きに演算され、電機子電流の実際値、界磁電流の
実際値に無関係に決定されるので、急激な負荷変動時の
ように、電機子電流指令が急変した場合も、電機子電流
制御系、界磁電流制御系の制御誤差の影響を受けて、界
磁電流指令が過大に変化することはなく、安定な制御系
となるとともに、電機子電流指令ベクトルが磁束指令ベ
クトルと直交するので、電機子電流、界磁電流が指令値
に追従した定常状態では同期電動機の力率が1に保た
れ、高力率な同期電動機の制御装置となる。According to the second embodiment described above, the field current command of the synchronous motor is calculated forward from the armature current command and the magnetic flux command, and the actual value of the armature current and the actual value of the field current are calculated. Therefore, even when the armature current command changes suddenly, such as during a sudden load change, the field current is affected by the control error of the armature current control system and the field current control system. Since the command does not change excessively, a stable control system is provided, and the armature current command vector is orthogonal to the magnetic flux command vector, so in the steady state where the armature current and field current follow the command value, the synchronous motor Is maintained at 1, and the control device for the synchronous motor has a high power factor.
【0034】図8は第2の目的を目的を達成するための
第3実施例の概略構成を示すブロック図であり、図5の
実施例の電機子電流指令演算器16を設けず、この代り
に図9に示す電機子電流指令演算器17を設けた点が図
5の実施例とは異なる。FIG. 8 is a block diagram showing a schematic configuration of a third embodiment for achieving the second object. In this embodiment, the armature current command calculator 16 of the embodiment shown in FIG. 5 is not provided. 5 in that an armature current command calculator 17 shown in FIG. 9 is provided.
【0035】図9は電機子電流指令演算器17の詳細な
構成を示しており、これは除算器1601,1602
と、乗算器1612,1613と、逆正接関数発生器1
640と、正弦関数発生器1641と、余弦関数発生器
1642と、反転器165とからなっている。FIG. 9 shows the detailed configuration of the armature current command calculator 17, which is divided into dividers 1601 and 1602.
, Multipliers 1612 and 1613, and arctangent function generator 1
640, a sine function generator 1641, a cosine function generator 1642, and an inverter 165.
【0036】図10は電機子電流指令演算器17の他の
例(前述した各例とは異なる例)の詳細な構成を示すブ
ロック図であり、これは除算器1601,1602,1
603と、乗算器1612,1613と、反転器165
とからなっている。FIG. 10 is a block diagram showing a detailed configuration of another example of the armature current command calculator 17 (an example different from each of the above-described examples), which includes dividers 1601, 1602, 1
603, multipliers 1612 and 1613, and an inverter 165
It consists of
【0037】図5の実施例の電機子電流指令演算器16
で行われる演算には、磁束指令φ*からφq * をベクト
ル的に差し引きφd * を求める演算が含まれているが、
これは、図1のd軸磁束演算器14と同じ演算である。
図8の実施例は、この演算を電機子電流指令演算器17
で行う代わりに、磁束演算器14で求めたφd * を電機
子電流指令演算器17の入力に加えたものである。The armature current command calculator 16 of the embodiment shown in FIG.
In the operations performed, but the phi q * from the flux command phi * contains operations vectorially determining the subtracted phi d *,
This is the same calculation as the d-axis magnetic flux calculator 14 of FIG.
In the embodiment of FIG. 8, this calculation is performed by the armature current command calculator 17.
Is obtained by adding φ d * obtained by the magnetic flux calculator 14 to the input of the armature current command calculator 17.
【0038】一方、d軸磁束指令とq軸磁束指令によっ
てきまる磁束指令ベクトルと界磁磁極のなす角δは、磁
束指令およびq軸磁束指令から次式によって決定され
る。したがって、δの演算がd軸磁束演算器14からの
入力φd * を用いて、(17)式で演算する。 δ= tan-1(φq * ÷φd * ) …(17) 上式を用いて電機子電流指令演算器17の詳細な構成を
示したのが図9である。On the other hand, the angle δ between the magnetic flux command vector determined by the d-axis magnetic flux command and the q-axis magnetic flux command and the field magnetic pole is determined by the following equation from the magnetic flux command and the q-axis magnetic flux command. Therefore, the calculation of δ is based on the input φ d * from the d-axis magnetic flux calculator 14 . And is calculated by equation (17). δ = tan -1 (φ q * ÷ φ d * (17) FIG. 9 shows a detailed configuration of the armature current command calculator 17 using the above equation.
【0039】図9の演算では磁束指令、d軸磁束指令、
q軸磁束指令から、磁束指令ベクトルと界磁磁極のなす
角度δを求めてからその正弦値、余弦値をもとめている
が、図5の実施例と同様にして、d軸磁束指令、q軸磁
束指令、磁束指令から直接、正弦値sin δ、余弦値cos
δを次式で求めてもよい。 sin δ=φq * ÷φ* …(18) cos δ=φd * ÷φ* …(19) 上式を用いて、d軸電流指令、q軸電流指令を決定する
方法をブロック図として表したのが図10である。In the calculation of FIG. 9, a magnetic flux command, a d-axis magnetic flux command,
From the q-axis magnetic flux command, the angle δ between the magnetic flux command vector and the field pole is obtained, and then the sine value and cosine value are obtained. As in the embodiment of FIG. 5, the d-axis magnetic flux command and the q-axis Sine value sin δ, cosine value cos directly from magnetic flux command, magnetic flux command
δ may be calculated by the following equation. sin δ = φ q * ÷ φ * ... (18) cos δ = φ d * ÷ φ * (19) FIG. 10 is a block diagram showing a method of determining the d-axis current command and the q-axis current command using the above equation.
【0040】d軸電流指令とq軸電流指令が決定されて
以降は第1の目的に対応する図1の実施例の作用とまっ
たく同様にして、電機子電流制御、界磁電流制御の影響
を受けることなく界磁電流指令が決定され、同期機が制
御される。After the d-axis current command and the q-axis current command are determined, the effects of the armature current control and the field current control are determined in exactly the same manner as in the embodiment of FIG. 1 corresponding to the first object. The field current command is determined without receiving the command, and the synchronous machine is controlled.
【0041】本実施例は、電機子電流指令演算器の演算
が一部省略されたことを除けば、図5の実施例とまった
く同様に、高負荷時の安定性に優れ、かつ定常状態の同
期電動力率が1に保たれた同期機の制御装置が構成され
る。This embodiment is excellent in stability under a high load and has a steady state in the same manner as the embodiment of FIG. 5, except that the operation of the armature current command calculator is partially omitted. A synchronous machine control device in which the synchronous electric power factor is kept at 1 is configured.
【0042】[0042]
【発明の効果】本発明によれば、急激な負荷変動時など
のように電機子電流が急変する場合でも、界磁電流指令
が過大にならず、過渡的な安定性に優れた同期機の制御
装置を実現でき、さらに、同期機力率を定常状態では1
に保つ高力率の同期機の制御装置が構成できる。According to the present invention, even when the armature current changes abruptly, such as when the load fluctuates suddenly, the field current command does not become excessively large and the synchronous machine is excellent in transient stability. A control device can be realized, and the synchronous power factor is set to 1 in a steady state.
A control device for a synchronous machine with a high power factor can be configured.
【図1】本発明の第1の目的に対する第1の実施例の概
略構成を示すブロック図。FIG. 1 is a block diagram showing a schematic configuration of a first embodiment for a first object of the present invention.
【図2】図1のq軸磁束演算器の詳細な構成を示すブロ
ック図。FIG. 2 is a block diagram showing a detailed configuration of a q-axis magnetic flux calculator of FIG.
【図3】図1のd軸磁束演算器の詳細な構成を示すブロ
ック図。FIG. 3 is a block diagram showing a detailed configuration of a d-axis magnetic flux calculator of FIG. 1;
【図4】図1の界磁電流指令演算器の詳細な構成を示す
ブロック図。FIG. 4 is a block diagram showing a detailed configuration of a field current command calculator of FIG. 1;
【図5】本発明の第2の目的に対する第2の実施例の概
略構成を示すブロック図。FIG. 5 is a block diagram showing a schematic configuration of a second embodiment for the second object of the present invention.
【図6】図5の電機子電流指令演算器の第1の例を示す
ブロック図。FIG. 6 is a block diagram showing a first example of the armature current command calculator of FIG. 5;
【図7】図5の電機子電流指令演算器の第2の例を示す
ブロック図。FIG. 7 is a block diagram showing a second example of the armature current command calculator of FIG. 5;
【図8】第2の目的に対する第3の実施例の概略構成を
示すブロック図。FIG. 8 is a block diagram showing a schematic configuration of a third embodiment for a second object.
【図9】図8における電機子電流指令演算器の第1の例
を示すブロック図。FIG. 9 is a block diagram showing a first example of an armature current command calculator in FIG. 8;
【図10】図8における電機子電流指令演算器の第2の
例を示すブロック図。FIG. 10 is a block diagram showing a second example of the armature current command calculator in FIG. 8;
【図11】従来の同期電動機の制御装置の一例を示すブ
ロック図。FIG. 11 is a block diagram showing an example of a conventional synchronous motor control device.
1…電力変換器、2…同期機、3…位置検出器、4…界
磁用電力変換器、5…位置演算器、6…座標変換器、
7,8…増幅器、11,12…電流検出器、13…q軸
磁束演算器、14…d軸磁束演算器、15…界磁電流指
令演算器、16,17…電機子電流指令演算器。DESCRIPTION OF SYMBOLS 1 ... Power converter, 2 ... Synchronous machine, 3 ... Position detector, 4 ... Field power converter, 5 ... Position calculator, 6 ... Coordinate converter,
7, 8 amplifier, 11, 12 current detector, 13 q-axis magnetic flux calculator, 14 d-axis magnetic flux calculator, 15 field current command calculator, 16, 17 armature current command calculator.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02P 21/00 H02P 5/408 - 5/412 H02P 7/628 - 7/632 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H02P 21/00 H02P 5/408-5/412 H02P 7/628-7/632
Claims (3)
電力変換器により同期機を駆動する同期機の制御装置に
おいて、 前記同期機の界磁磁極方向に直交する電機子電流である
q軸電流指令から、同期機定数を用いて、磁束の界磁磁
極に直交する成分であるq軸磁束指令を演算するq軸磁
束演算器と、 磁束指令から前記q軸磁束指令をベクトル的に減算し、
磁束指令の界磁磁極方向成分であるd軸磁束指令を求め
るd軸磁束演算器と、 前記d軸磁束指令と界磁磁極方向の電機子電流であるd
軸電流指令から、同期機定数を用いて、界磁電流指令を
演算する界磁電流指令演算器と、を備えたことを特徴と
する同期機の制御装置。1. A synchronous machine control device for driving a synchronous machine with a power converter that supplies power of a movable voltage-variable frequency, wherein a q-axis current that is an armature current orthogonal to a field pole direction of the synchronous machine. A q-axis magnetic flux calculator that calculates a q-axis magnetic flux command that is a component orthogonal to the field pole of the magnetic flux using a synchronous machine constant from the command, and a vector subtraction of the q-axis magnetic flux command from the magnetic flux command,
A d-axis magnetic flux calculator for obtaining a d-axis magnetic flux command which is a component of the magnetic flux command in the direction of the magnetic field pole;
A synchronous machine control device, comprising: a field current command calculator that calculates a field current command from a shaft current command using a synchronous machine constant.
電力変換器により同期機を駆動する同期機の駆動装置に
おいて、 前記同期機のトルク指令、磁束指令および磁束の界磁磁
極に直交する成分であるq軸磁束指令から、界磁磁極方
向の電機子電流であるd軸電流指令と界磁磁極方向に直
交する電機子電流であるq軸電流指令を演算する電機子
電流指令演算器と、 前記q軸電流指令から、同期機定数を用いて、前記q軸
磁束指令を演算するq軸磁束演算器と、 前記磁束指令から前記q軸磁束指令をベクトル的に減算
し、磁束指令の界磁磁極方向成分であるd軸磁束指令を
求めるd軸磁束演算器と、 前記d軸磁束指令と前記d軸電流指令から、同期機定数
を用いて、界磁電流指令を演算する界磁電流指令演算器
と、を備えたことを特徴とする同期機の制御装置。2. A synchronous machine driving apparatus for driving a synchronous machine by a power converter that supplies power of a variable voltage-variable frequency, comprising: a torque command, a magnetic flux command, and a component of a magnetic flux orthogonal to a field pole of the synchronous machine. From an q-axis magnetic flux command, an armature current command calculator that calculates a d-axis current command that is an armature current in the field pole direction and a q-axis current command that is an armature current orthogonal to the field pole direction, A q-axis magnetic flux calculator that calculates the q-axis magnetic flux command using the synchronous machine constant from the q-axis current command; and a vector-based subtraction of the q-axis magnetic flux command from the magnetic flux command, A d-axis magnetic flux calculator for obtaining a d-axis magnetic flux command that is a magnetic pole direction component; and a field current command calculation for calculating a field current command from the d-axis magnetic flux command and the d-axis current command using a synchronous machine constant. And a container The control device of the period machine.
電力変換器により同期機を駆動する同期機の駆動装置に
おいて、 前記同期機のトルク指令、磁束指令、磁束の界磁磁極に
直交する成分であるq軸磁束指令およびd軸磁束指令か
ら、界磁磁極方向の電機子電流であるd軸電流指令と界
磁磁極方向に直交する電機子電流であるd軸電流指令を
演算する電機子電流指令演算器と、 前記q軸電流指令から、同期機定数を用いて、前記q軸
磁束指令を演算するq軸磁束演算器と、 前記磁束指令から前記q軸磁束指令をベクトル的に減算
し、前記磁束指令の界磁磁極方向成分であるd軸磁束指
令を求めるd軸磁束演算器と、 前記d軸磁束指令と前記d軸電流指令から、同期機定数
を用いて、界磁電流指令を演算する界磁電流指令演算器
と、を備えたことを特徴とする同期機の制御装置。3. A synchronous machine driving apparatus for driving a synchronous machine by a power converter that supplies power of a variable voltage-variable frequency, comprising: a torque command, a magnetic flux command, and a component of a magnetic flux orthogonal to a field pole of the synchronous machine. Armature current for calculating a d-axis current command which is an armature current in the field pole direction and a d-axis current command which is an armature current orthogonal to the field pole direction from the q-axis flux command and the d-axis flux command A command calculator, a q-axis magnetic flux calculator that calculates the q-axis magnetic flux command from the q-axis current command using a synchronous machine constant, and a vector subtraction of the q-axis magnetic flux command from the magnetic flux command, A d-axis magnetic flux calculator for obtaining a d-axis magnetic flux command, which is a component of the magnetic flux command in the direction of the magnetic field pole; and a field machine command is calculated from the d-axis magnetic flux command and the d-axis current command using a synchronous machine constant. And a field current command calculator that performs Control system for a synchronous machine, characterized in that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05022628A JP3095566B2 (en) | 1993-02-10 | 1993-02-10 | Synchronous machine control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05022628A JP3095566B2 (en) | 1993-02-10 | 1993-02-10 | Synchronous machine control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06237592A JPH06237592A (en) | 1994-08-23 |
JP3095566B2 true JP3095566B2 (en) | 2000-10-03 |
Family
ID=12088097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05022628A Expired - Lifetime JP3095566B2 (en) | 1993-02-10 | 1993-02-10 | Synchronous machine control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3095566B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101194415B (en) | 2005-07-11 | 2010-06-09 | 株式会社日立制作所 | Controller of field winding type synchronous motor, electric drive system, electric four wheel driving vehicle, and hybrid automobile |
-
1993
- 1993-02-10 JP JP05022628A patent/JP3095566B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06237592A (en) | 1994-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Schroedl et al. | Sensorless control of reluctance machines at arbitrary operating conditions including standstill | |
US6498449B1 (en) | Low ripple torque control of a permanent magnet motor without using current sensors | |
US8115437B2 (en) | Torque limit of PM motors for field-weakening region operation | |
CA1299642C (en) | Universal field-oriented controller | |
JPS6024676B2 (en) | Device that controls a permanent magnet synchronous motor | |
JPH0951700A (en) | Controlling device of rotary electric machine | |
EP0536569A2 (en) | AC motor control apparatus and control apparatus of electric rolling stock using the same | |
JP2018057170A (en) | Controller for alternating electric motor | |
JP4053511B2 (en) | Vector controller for wound field synchronous machine | |
US7915852B2 (en) | Universal adaptive torque control for PM motors for field-weakening region operation | |
JP3095566B2 (en) | Synchronous machine control device | |
US11837982B2 (en) | Rotary machine control device | |
JPH06225574A (en) | Method and apparatus for controlling motor | |
JPH09327200A (en) | Controller for synchronous motor | |
JP2856564B2 (en) | Control device for synchronous motor | |
JP3067660B2 (en) | Control method of induction motor | |
JP3309520B2 (en) | Induction motor control method | |
JP2856950B2 (en) | Control device for synchronous motor | |
JP3283729B2 (en) | Induction motor control device | |
JPS6192185A (en) | Vector controller for automatic regulation | |
JPH1118498A (en) | Controller for servo motor | |
JP3124019B2 (en) | Induction motor control device | |
JPH0793839B2 (en) | Induction motor controller | |
JPH05146191A (en) | Controller for synchronous motor | |
JP3363732B2 (en) | Induction motor control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070804 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080804 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090804 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090804 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100804 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100804 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110804 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110804 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120804 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120804 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130804 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130804 Year of fee payment: 13 |