JPS59172280A - Ii-vi group intermediate compound semiconductor hetero-junction device - Google Patents

Ii-vi group intermediate compound semiconductor hetero-junction device

Info

Publication number
JPS59172280A
JPS59172280A JP58046676A JP4667683A JPS59172280A JP S59172280 A JPS59172280 A JP S59172280A JP 58046676 A JP58046676 A JP 58046676A JP 4667683 A JP4667683 A JP 4667683A JP S59172280 A JPS59172280 A JP S59172280A
Authority
JP
Japan
Prior art keywords
emitting region
crystal
light
forbidden band
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58046676A
Other languages
Japanese (ja)
Inventor
Junichi Nishizawa
潤一 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Research Foundation
Original Assignee
Semiconductor Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Research Foundation filed Critical Semiconductor Research Foundation
Priority to JP58046676A priority Critical patent/JPS59172280A/en
Publication of JPS59172280A publication Critical patent/JPS59172280A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To extract beams efficiently by using the forbidden band width of a crystal of specific eV or more as that of a light-emitting region and constituting the titled device by a crystal, the forbidden band width of an adjacent region thereof is wider than that of the light-emitting region and an electric conduction type thereof is reverse to the light-emitting region. CONSTITUTION:A light-emitting region is formed by a P-N junction of the same kind by a II-VI compound of 2.5eV or more, and a semiconductor device of high performance can be shaped by a hetero-junction having structure in which the same conduction type crystal of large forbidden band width is constituted on the outside of the P-N junction. ZnS and ZnSe can be listed up as possible crystals, and mixed crystals acquired by linearly approximating the forbidden band width of each compound are used. Combinations, such as ZnSe-Cd0.35Zn0.65S, (CdZn)Se- (CdZn)(SSe), etc. are considered as ones, in which the light-emitting regions operate at 2.5eV or more and lattice constants coincide, in consideration of lattice constants in the hetero-junction.

Description

【発明の詳細な説明】 本発明は、■−■族間化合物半導体装置に関し、特に■
−■族間化合物半導体へテロ接合装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ■-■ intergroup compound semiconductor device, and particularly to a ■-■ intergroup compound semiconductor device.
-■Relating to an intergroup compound semiconductor heterojunction device.

II−VI族間化合物半導体は直接遷移型の結晶て禁制
帯1】か■−■族間化合物と比べて大きな結晶かあり、
m−v放間化合物では得られないユニークな特性を有し
、特に青色発光ダイオードの実現か期待できる。
II-VI intergroup compound semiconductors have direct transition type crystals with a forbidden band 1] or ■-■ intergroup compound semiconductors, which have larger crystals than intergroup compounds.
It has unique properties that cannot be obtained with m-v intermittent compounds, and is particularly promising for the realization of blue light-emitting diodes.

しかし、この結晶は、従来の成長法においては、■−■
族間化合物と異なり、不純物を添加することにより電気
伝導型をp形あるいはp形に制御することが出来ず、各
結晶に固有の電気伝導型の結晶しか得られていない。こ
れを他の特性とともに表ζこ示す。
However, in the conventional growth method, this crystal can be grown by ■−■
Unlike intergroup compounds, the electrical conductivity type cannot be controlled to p-type or p-type by adding impurities, and only crystals of electrical conductivity type specific to each crystal can be obtained. This is shown in Table ζ along with other characteristics.

表1 1I−VI化合物の性質 この関係は、本発明者が■−■族間孔間化合物結晶して
長い間研究を進め明らかにされた、高蒸気圧成分元素の
制御と結晶特性(非化学量論的組成)と極めて緊密な関
係にあると考えられる。しかも、II−VI族間化合物
の場合には、第1図の各構成元素の温度−蒸気圧曲線に
示すように、いづれの構成元素の蒸気圧も高いことが特
徴であり、■−■族間化合物以上に結晶の非化学量論的
組成か結晶特性を強く支配していると考えられる。即ち
、Cd Te結晶以外の5つの結晶に対して各構成元素
の同一温度における蒸気圧値を比較し、分類してみる。
Table 1 Properties of 1I-VI Compounds This relationship is based on the control of high vapor pressure component elements and crystal properties (non-chemical stoichiometric composition). Furthermore, in the case of II-VI intergroup compounds, as shown in the temperature-vapor pressure curves of each constituent element in Figure 1, the vapor pressure of each constituent element is high, and the It is thought that the non-stoichiometric composition of the crystal strongly controls the crystal properties more than the intermediate compounds. That is, for five crystals other than the Cd Te crystal, the vapor pressure values of each constituent element at the same temperature are compared and classified.

■族元素の蒸気圧 ・・ Pn ■族元素の蒸気圧 ・・・ P■ とした場合に、第1図をfi個’%て比較すると■ ■
族元素の蒸気圧が■族元素より高い場合、即ちPn >
 PVI・・・・・・・・・具体例としてはZnTeの
場合には、p形結晶しか得られていない。
If the vapor pressure of group ■ elements is Pn, and the vapor pressure of group ■ elements is P■, then comparing Figure 1 with fi '%■ ■
When the vapor pressure of the group element is higher than that of the group element, that is, Pn >
PVI... As a specific example, in the case of ZnTe, only p-type crystals have been obtained.

一方 ■ ■族元素の蒸気圧が■族元素より高い場合、即ちP
n< PV[−−ZnS1ZnSe 1Cd 3%Cd
Seの場合には、n形結晶しか得られていない。
On the other hand, if the vapor pressure of the group ■ ■ element is higher than that of the group ■ element, that is, P
n< PV[--ZnS1ZnSe 1Cd 3%Cd
In the case of Se, only n-type crystals have been obtained.

この結果は、結晶の非化学量論的組成の制御についての
考慮がなされていない従来の成長法で得られたものであ
り、それぞれの場合において高蒸気圧成分元素の欠陥が
伝導型に強く影響していることが予想される。即ち■の
場合には、■族元素の欠陥が、■の場合には、■族元素
の欠陥が電気伝導型を決定する主要因となっている。
These results were obtained using conventional growth methods that do not take into account the control of the non-stoichiometric composition of the crystal, and in each case defects in high vapor pressure constituent elements strongly influence the conductivity type. It is expected that That is, in the case of (1), the defects in the group (2) element are the main factor determining the electrical conductivity type, and in the case (2), the defects in the group (2) element are the main factor determining the electrical conductivity type.

このような特質からII−VI化合物の応用箱とが可能
となった。この方法を説明するために、代表的なII−
Vl化合物であるZn5eを例にとり具体的に説明する
These characteristics have made possible the application of II-VI compounds. To illustrate this method, a representative II-
This will be specifically explained by taking Zn5e, which is a Vl compound, as an example.

■ p形結晶を成長する場合 高蒸気圧成分元素のSeを溶媒として用い、溶媒の上下
に温度差を形成し、高温側に溶質のZn Seを浮せ、
低蒸気圧成分元素のZnの蒸気圧を制御し、かつ■族元
素のCu、Atx、Ag、 Li、 Na、 Kなどを
添加することによりp形Zn Se結晶を成長すること
ができる。
■ When growing p-type crystals, Se, a high vapor pressure component element, is used as a solvent, a temperature difference is created above and below the solvent, and the solute Zn Se is floated on the high temperature side.
A p-type ZnSe crystal can be grown by controlling the vapor pressure of Zn, which is a low vapor pressure component element, and adding group (I) elements such as Cu, Atx, Ag, Li, Na, and K.

電気伝導度は、投入不純物量と印加Znn価値よって決
まり、同一不純物添加量では、化学量論的組成からの偏
差が最小となるZn圧値において最低不純物密度となる
が、これよりも低Zn圧側においてp形電気伝導度が高
(なる。
Electrical conductivity is determined by the amount of impurity added and the Zn value applied. With the same amount of impurity added, the lowest impurity density is at the Zn pressure value where the deviation from the stoichiometric composition is the smallest, but on the lower Zn pressure side The p-type electrical conductivity is high.

■ n形結晶を成長する場合 この場合には、■とは逆に低蒸気圧成分元素のZnを溶
媒として用い、高蒸気圧成分元素のSeの蒸気圧制御を
行なうことによりn形結晶が得られる。不純物としては
、■族のF、(J、Brなどが好ましく、この場合にも
Seの低圧領域においてより電気伝導度の高いn形結晶
を成長することが可能である。
■ When growing an n-type crystal In this case, contrary to (■), an n-type crystal can be obtained by using Zn, a low vapor pressure component element, as a solvent and controlling the vapor pressure of Se, a high vapor pressure component element. It will be done. The impurity is preferably F, (J, Br, etc.) of group (1), and in this case also it is possible to grow an n-type crystal with higher electrical conductivity in the low pressure region of Se.

このように、本発明者が既に提供している蒸気圧制御温
度差液相成長法を用いることにより、低抵抗p形及びn
形結晶が成長することが可能となりII−VI化合物半
導体の応用分野を飛躍的に発展させた。上記の成長法に
おいて、溶媒の低温側に基板結晶を挿入することによっ
て、一定温度でエピタキノヤル成長層が得られることは
容易に予憩される。
In this way, by using the vapor pressure controlled temperature difference liquid phase growth method already provided by the present inventor, low resistance p-type and n-type
It became possible to grow shaped crystals, and the field of application of II-VI compound semiconductors was dramatically developed. In the above growth method, it is easily predicted that an epitaxially grown layer can be obtained at a constant temperature by inserting the substrate crystal on the low temperature side of the solvent.

以下に本発明の半導体装置について述べる。■−■化合
物において高効率の青色発光装置を提供するものであり
、発光領域の禁制相中としては、2.5eV以」二の結
晶とし、この結晶の隣接領域が、発光領域よりも禁制帯
l〕が広< (Eg 〉2.5 eV ) かつ電気伝
導型が反対の結晶により構成されたことを特徴とするI
T−VI化合物半導体へテロ接合装置である。この構造
にすることにより、禁制相中の広い結晶からキャリアが
注入されやすくかつ、発光領域中で効率良く再結合し、
かつ発光した光か吸収されることな物による同種p−n
接合で形成し、この外側に禁制相中の大きな同−伝導車
の結晶を構成した構造のへテロ接合により更に高性能な
半導体装置を形成できることは云うまでもない。
The semiconductor device of the present invention will be described below. A high-efficiency blue light-emitting device is provided in the compound ■-■, and the forbidden phase of the light-emitting region is a crystal with 2.5 eV or more, and the adjacent region of this crystal is higher than the forbidden phase of the light-emitting region. l] is wide < (Eg >2.5 eV) and is composed of crystals with opposite electrical conductivity types.
This is a T-VI compound semiconductor heterojunction device. With this structure, carriers are easily injected from the wide crystal in the forbidden phase, and are efficiently recombined in the light emitting region.
and the same type of p-n due to something that does not absorb the emitted light
It goes without saying that a semiconductor device with even higher performance can be formed by forming a heterojunction with a structure in which a large conduction wheel crystal in a forbidden phase is formed on the outside of the heterojunction.

この半導体装置を構成することか可能な結晶としては表
より、ZnS 、 Zn Seかリストアツブでき、更
に第2図に示すように、各化合物の禁制相中を直線近似
することによって求めた混晶の(Zn5e ) x (
ZnS) 1−x。
From the table, ZnS and ZnSe can be restored as crystals that can be used to construct this semiconductor device, and as shown in Figure 2, the mixed crystal obtained by linear approximation in the forbidden phase of each compound is (Zn5e) x (
ZnS) 1-x.

(ZnS)x (Cd S) l−x、 (ZnSe)
 x (ZnTe)+−xの他(Zn Se ) x 
(Cd 5e)t −x 。
(ZnS)x (CdS) l-x, (ZnSe)
x (ZnTe)+-x and (ZnSe) x
(Cd5e)t-x.

Zn+ −x Cd x S+ −y Sey 、 Z
nt −x Cd x Se+ −yTeyなどが対象
となる結晶群である。
Zn+ -x Cd x S+ -y Sey, Z
The target crystal group is nt −x Cd x Se+ −yTey.

これらを相互に組み合わせることにより本発明の半導体
装置が構成される。
By mutually combining these, the semiconductor device of the present invention is constructed.

例えば、Zn5(p) −Zn Se (n)、Zn5
l−xSex(p) −Zn Se (n)、Zn 5
e(pl −Zn+−x Cd、c S+ −ySey
(n) など数10種類の組み合わせが存在する。
For example, Zn5(p)-ZnSe(n), Zn5
l-xSex (p) -Zn Se (n), Zn 5
e(pl −Zn+−x Cd, c S+ −ySey
There are several dozen combinations such as (n).

例えば、発光領域をZn Seとしたヘテロ接合とホモ
接合の場合の同一発光波長における輝度を比較するとヘ
テロ接合の場合が約2倍となっており、特性向上がはか
られていることは明白である。又、改良率は高くはない
が、発光領域をn形にした方がp形にした場合よりも良
好な特性が得られることも見い出されている。
For example, when comparing the brightness at the same emission wavelength in the case of a heterojunction and a homojunction in which the light emitting region is ZnSe, the brightness in the case of the heterojunction is approximately twice, and it is clear that the characteristics have been improved. be. It has also been found that, although the improvement rate is not high, better characteristics can be obtained when the light emitting region is made n-type than when it is made p-type.

次にヘテロ接合間の格子定数を考慮するために、第3図
に代表的なII−VI化合物の格子定数を示した。この
場合にも、ベガードの法則に従い、混晶の格子定数は化
合物間の格子定数値を直線内挿することにより決定する
ことができる。更に、上記説明したヘテロ接合を実現し
、かつ格子定数整合を考慮するために第4図に禁制相中
−格子定数の関係を示した。図から明らかなように、発
光領域が2.5 eV以上で、格子定数が一致する組み
合わせとしては、数種類しかな(、例えば Zn Se −Cdo、+s Zno、6s 5(Cd
 Zn) Se −(Cd Zn) (S 5e)(C
d Zn)  Se −Zn  (Se Te)(Cd
 Zn)Se −(Cd Zn)Sなどの組み合わせが
考えられる。(但し、前者が発光領域である。) 従って動作寿命、動作効率などの点から、第4図の斜線
で示す領域に該当する結晶間において良好なヘテロ接合
を実現することができる。
Next, in order to consider the lattice constant between heterojunctions, the lattice constants of typical II-VI compounds are shown in FIG. In this case as well, according to Vegard's law, the lattice constant of the mixed crystal can be determined by linear interpolation of lattice constant values between compounds. Furthermore, in order to realize the above-described heterojunction and to consider lattice constant matching, FIG. 4 shows the relationship between the forbidden phase and the lattice constant. As is clear from the figure, there are only a few combinations in which the emission region is 2.5 eV or higher and the lattice constants match (for example, Zn Se -Cdo, +s Zno, 6s 5 (Cd
Zn) Se - (Cd Zn) (S 5e) (C
d Zn) Se −Zn (Se Te) (Cd
Possible combinations include Zn)Se-(CdZn)S. (However, the former is the light emitting region.) Therefore, from the viewpoint of operating life, operating efficiency, etc., it is possible to realize a good heterojunction between the crystals corresponding to the shaded region in FIG. 4.

更に、発光領域における発光効率を増すためには、発光
領域に隣接する領域の結晶きることは云うまでもない。
Furthermore, in order to increase the luminous efficiency in the light emitting region, it goes without saying that the crystals in the region adjacent to the light emitting region can be reduced.

この場合の間接遷移型の結晶としては、例えばSiCな
どが該当する。
In this case, the indirect transition type crystal is, for example, SiC.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各元素の蒸気圧を示すグラフ、第2図は青色発
光の可能な混晶の禁制相中、第3図は青色発光の可能な
l晶の格子定数、第4図は格子定数と禁制事由の関係を
示すクラ7である。 特許出願人 (11) 392−
Figure 1 is a graph showing the vapor pressure of each element, Figure 2 is the forbidden phase of a mixed crystal that can emit blue light, Figure 3 is the lattice constant of l crystal that can emit blue light, and Figure 4 is the lattice constant. This is Class 7, which shows the relationship between prohibition and prohibition. Patent applicant (11) 392-

Claims (3)

【特許請求の範囲】[Claims] (1)発光領域を構成する結晶の禁制帯巾が2.5eV
よりも大きくかつ、該発光領域に隣接する少なくとも一
つの注入領域は禁制帯l】か該発光領域よりも大きくか
つ反対の電気伝導型の結晶より構成されたことを特徴と
する■−■族間化合物半導体へテロ接合畏屓。
(1) The forbidden band width of the crystal constituting the light emitting region is 2.5 eV
and at least one implantation region adjacent to the light-emitting region is composed of a forbidden band l] or a crystal larger than the light-emitting region and having an opposite electrical conductivity type. Awesome compound semiconductor heterojunction.
(2)発光領域の禁制帯域l]か2.5eVよりも大き
い、少なくとも一つの同一結晶よりなるP−〇接合で構
成され、かつこの接合の両側に近接する領域に該発光領
域と同−電気伝導型でかつ禁制帯11か発光領域よりも
大きな結晶を構成させたことを特徴とする■−■族間化
合物半導体へテロ接合装■。
(2) The forbidden band l] of the light emitting region is larger than 2.5 eV, and is composed of a P-〇 junction made of at least one identical crystal, and the regions adjacent to both sides of this junction have the same electric potential as the light emitting region. ■-■ Intergroup compound semiconductor heterojunction device (■) characterized by comprising a crystal that is conductive and larger than the forbidden band 11 or the light-emitting region.
(3)発光領域に隣接する領域の少くとも一つが、装置
(3) At least one of the regions adjacent to the light emitting region is a device.
JP58046676A 1983-03-19 1983-03-19 Ii-vi group intermediate compound semiconductor hetero-junction device Pending JPS59172280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58046676A JPS59172280A (en) 1983-03-19 1983-03-19 Ii-vi group intermediate compound semiconductor hetero-junction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58046676A JPS59172280A (en) 1983-03-19 1983-03-19 Ii-vi group intermediate compound semiconductor hetero-junction device

Publications (1)

Publication Number Publication Date
JPS59172280A true JPS59172280A (en) 1984-09-28

Family

ID=12753972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58046676A Pending JPS59172280A (en) 1983-03-19 1983-03-19 Ii-vi group intermediate compound semiconductor hetero-junction device

Country Status (1)

Country Link
JP (1) JPS59172280A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183400A (en) * 1981-05-07 1982-11-11 Semiconductor Res Found Method and apparatus for liquid-phase growth of 2-6 compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183400A (en) * 1981-05-07 1982-11-11 Semiconductor Res Found Method and apparatus for liquid-phase growth of 2-6 compound

Similar Documents

Publication Publication Date Title
US8502266B2 (en) Nitride semiconductor light emitting device
Morkoc et al. High-luminosity blue and blue-green gallium nitride light-emitting diodes
US7531840B2 (en) Light emitting diode with metal coupling structure
US5646419A (en) n-type wide bandgap semiconductors grown on a p-type layer to form hole injection pn heterojunctions and methods of fabricating the same
US5008891A (en) Semiconductor light-emitting devices
GB2320136A (en) Semiconductor light emitting devices
CN1066936A (en) Indigo plant-blue-green laser diode
US9543468B2 (en) High bandgap III-V alloys for high efficiency optoelectronics
JPH0268968A (en) Compound semiconductor light-emitting device
JP2000068554A (en) Semiconductor light emitting element
US8546846B2 (en) Nitride semiconductor light emitting device
JPS59172280A (en) Ii-vi group intermediate compound semiconductor hetero-junction device
JP2597624B2 (en) Semiconductor light emitting device
JP3584521B2 (en) Nitride semiconductor light emitting diode
JP2004096130A (en) Nitride semiconductor light emitting diode
US4284467A (en) Method for making semiconductor material
JPH077849B2 (en) Semiconductor light emitting element
Wu et al. Status of II–VI molecular-beam epitaxy technology
JPS63213378A (en) Manufacture of semiconductor light emitting element
JPH01777A (en) semiconductor light emitting device
JP2604019B2 (en) Semiconductor light emitting device
JP2540229B2 (en) Compound semiconductor light emitting device
JPH0732269B2 (en) Semiconductor light emitting element
JPH01187885A (en) Semiconductor light emitting device
JPS63213377A (en) Semiconductor light emitting element