JPS5917224A - Manufacture of magnetic recording medium - Google Patents

Manufacture of magnetic recording medium

Info

Publication number
JPS5917224A
JPS5917224A JP12617282A JP12617282A JPS5917224A JP S5917224 A JPS5917224 A JP S5917224A JP 12617282 A JP12617282 A JP 12617282A JP 12617282 A JP12617282 A JP 12617282A JP S5917224 A JPS5917224 A JP S5917224A
Authority
JP
Japan
Prior art keywords
magnetic
ligand
magnetic material
base body
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12617282A
Other languages
Japanese (ja)
Inventor
Katsuhiro Mizoguchi
勝大 溝口
Atsushi Kawai
淳 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP12617282A priority Critical patent/JPS5917224A/en
Publication of JPS5917224A publication Critical patent/JPS5917224A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/858Producing a magnetic layer by electro-plating or electroless plating

Abstract

PURPOSE:To obtain the magnetic recording medium of high performance and excellent mass- productivity by controlling the forming density of a magnetic material by the surface density of a ligand and a metallic complex formed on a base body. CONSTITUTION:There are a process, in which a solution of the ligand containing the atoms of nitrogen, oxygen or sulfur and the metallic complex mainly comprising the ions of a metal selected from at least one of platinum family, such as platinum, iridium, rhodium, osmium, palladium, ruthenium, etc. is attached onto the base body and dried and said metallic complex is formed to a stratiform shape, and a process in which the ions of iron, nickel or cobalt or the like are reduced by a reducing atmosphere during the application of a magnetic field while using the metallic complex attached and formed onto said base body as nuclei for a reaction and the magnetic material mainly comprising iron, nickel or cobalt is formed onto said base body. The chelate type ligand consisting of an organic matter resulting from the unpaired electrons of the atoms of nitrogen N, oxygen 0 or sulfur S or the like is used. Since the surface density of the metallic complex and the ligand formed onto the base body can be controlled previously, the magnetic material formed after the ligand and the complex are formed grows gradually in proportional to the surface density of the ligand and the metallic complex. Accordingly, the method has an advantage which can easily control and prescribe the forming density of the magnetic material comparatively freely.

Description

【発明の詳細な説明】 本発明は、磁気記録媒体の製造方法に関し、とくに、磁
気テープ、磁気ディスク、磁気カードなど磁気記録を用
途とする磁性体を基体上に形成させる製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a magnetic recording medium, and particularly to a method of manufacturing a magnetic material used for magnetic recording such as a magnetic tape, a magnetic disk, and a magnetic card on a substrate.

従来、磁気記録媒体は、げ)ガンマ−三酸化第二鉄γ−
Fe、03など磁性体の微細針状粉末をバインダーとす
る高分子の溶液中lこ混合分散し、この溶液を電気絶縁
性の基体上にドクターブレード法などの方法によって塗
布し、その後乾燥して基体上に磁性粉末層を形成する分
散液のコーテング方法、(ロ)特殊な化学的前処理によ
って活性化された基体を無電解メッキ液中に導入浸漬し
、化学反応によって磁性体層を基体上に形成する無電解
メッキ法、(ハ)磁性金属の真空蒸着によって基体上に
磁性層を形成する気相メッキ法などの製造方法によって
いる。
Conventionally, magnetic recording media are made of gamma-ferric trioxide γ-
Fine acicular powder of a magnetic material such as Fe, 03 is mixed and dispersed in a polymer solution with a binder, and this solution is applied onto an electrically insulating substrate by a method such as a doctor blade method, and then dried. A dispersion coating method that forms a magnetic powder layer on a substrate; (b) A substrate activated by special chemical pretreatment is introduced and immersed in an electroless plating solution, and a magnetic layer is formed on the substrate by a chemical reaction. (iii) Vapor phase plating to form a magnetic layer on a substrate by vacuum deposition of a magnetic metal.

磁気記録を目的とする場合には、記録密度を大きくする
ため、極めて高い均一性と比較的大きい保磁力1周波数
特性の向上のため磁性粉末の微細さ、出力特性向上のた
め大きい飽和・残留磁束密度が要求される。ある種の磁
性体材料でこの要求を満足するためには、(a)磁性体
粒子の短径rを小さくし、粒子の長径tを長くする。つ
まり針状比t/rが大きいこと、(b)磁性体粒子を磁
化方向に配向させること、および(C)このような磁性
体粒子を基体上に薄く、かつ均一に形成させることなど
が電装となる。
When the purpose is magnetic recording, extremely high uniformity and relatively large coercive force are used to increase the recording density.The fineness of the magnetic powder is required to improve the single-frequency characteristics, and large saturation and residual magnetic flux are used to improve the output characteristics. Density is required. In order to satisfy this requirement with a certain type of magnetic material, (a) the short axis r of the magnetic particles is made small and the long axis t of the particles is made long. In other words, it is important to have a large acicular ratio t/r, (b) to orient the magnetic particles in the direction of magnetization, and (C) to form such magnetic particles thinly and uniformly on the substrate. becomes.

従来の製造方法、例えば上記(イ)の分散溶液のコーテ
ング方法によれば、たとえl/rの大きな磁性体粒子を
使用しても基体上に薄く、かつ均一に磁性体粒子を塗布
形成させることは極めて困難な欠点がある。また、従来
の製造方法の上記(0)および(ハ)の方法では、L/
rの大きい磁性体を形成させることが非常に困難である
。そのため極めて特殊な製造方法を用いなければならな
いため量産性に欠ける欠点がある。さらに、上記(0)
の製造方法である無電解メッキ法では、磁性体を基体上
に形成させるに必要な時間、つまり、反応速度が著しく
低いこと、また、磁性体が基体上に無秩序に形成される
ため磁気特性に劣る欠点があった。
According to conventional manufacturing methods, for example, the dispersion solution coating method described in (a) above, even if magnetic particles with a large l/r are used, it is difficult to coat and form magnetic particles thinly and uniformly on a substrate. has extremely difficult drawbacks. In addition, in the conventional manufacturing methods (0) and (c) above, L/
It is very difficult to form a magnetic material with a large r. Therefore, it is necessary to use a very special manufacturing method, which has the disadvantage of lacking mass productivity. Furthermore, the above (0)
In the electroless plating method, which is a manufacturing method for It had some disadvantages.

本発明の目的は、このような従来欠点を除去した高性能
かつ量産性に優れた磁気記録媒体の製造方法を提供する
ことにある。
An object of the present invention is to provide a method for manufacturing a magnetic recording medium that eliminates such conventional drawbacks and has high performance and excellent mass productivity.

本発明によれば窒素、酸素または硫黄の原子を含む配位
子と白金、イリジウム、ロジウム、オスニウム、パラジ
ウム、ルテニウムなどの白金族の少なくとも一つから選
らばれた金属のイオンを主成分とする金属錯体の溶液を
基体上に付着・乾燥させて上記金属錯体を層状に形成す
る工程と、上記基体上に付着形成した金属錯体を反応の
核として磁界印加中で還元雰囲気によって鉄、ニッケル
またはコバルトなどのイオンを還元して上記基体上に鉄
、ニッケルまたはコバルトを主成分とする磁性体を形成
する工程を含むことを特徴とする磁気記録媒体の製造方
法が得られる。
According to the present invention, a metal whose main components are a ligand containing a nitrogen, oxygen or sulfur atom and an ion of at least one metal selected from the platinum group such as platinum, iridium, rhodium, osnium, palladium, and ruthenium. A step of depositing and drying a solution of the complex onto a substrate to form the metal complex in a layered manner; and a step of applying iron, nickel, cobalt, etc. in a reducing atmosphere while applying a magnetic field using the metal complex deposited and formed on the substrate as a reaction nucleus. There is obtained a method for manufacturing a magnetic recording medium, which comprises the step of reducing the ions of the magnetic material to form a magnetic material containing iron, nickel, or cobalt as a main component on the substrate.

本発明による磁気記録媒体の製造方法には次のような特
徴がある。すなわち、 I)基体の材料は、プラスチックやセラミックスなど電
気絶縁性の材料または、アルミ、銅などの電気良導性の
材料を使用できる。
The method for manufacturing a magnetic recording medium according to the present invention has the following features. That is: I) As the material of the substrate, electrically insulating materials such as plastics and ceramics, or electrically conductive materials such as aluminum and copper can be used.

11)基体上に金属錯体を形成し、これを反応の核とし
て磁性体粒子を成長させることができる。
11) A metal complex is formed on a substrate, and magnetic particles can be grown using this as a reaction nucleus.

l11)磁性体゛粒子の成長時に磁界を利用して成長す
る磁性体粒子の針状形成とその配向を規制することがで
きる。
l11) When growing magnetic particles, a magnetic field can be used to control the needle-like formation and orientation of the growing magnetic particles.

以上の三つを本発明の基本的な特徴としているが、この
特徴を一層効果的に発現させるために次のような方法が
加わる。すなわち、 1■)使用する金属錯体をあらかじめ形成し、これを基
体上に形成する。形成法としては、金属錯体の溶液を吹
き付け、流延、印刷などの方法により基体上に塗布した
り、あるいは、金属錯体の溶液中に基体を浸漬させるな
ど溶液を用いる方法がある。この場合、金属錯体の基体
への接着を向上させるため高分子などをバインダーとし
て加えることも有効である。
The above three are the basic features of the present invention, but the following methods are added to make these features more effective. That is, 1) Preliminarily form the metal complex to be used and form it on the substrate. Formation methods include applying a solution of the metal complex onto the substrate by methods such as spraying, casting, or printing, or using a solution such as immersing the substrate in the solution of the metal complex. In this case, it is also effective to add a polymer or the like as a binder to improve the adhesion of the metal complex to the substrate.

そのほか、金属錯体を蒸着やスパッターなどの方法によ
って形成することも有効である。
In addition, it is also effective to form the metal complex by methods such as vapor deposition and sputtering.

−  い基体上の金属錯体を反応の核として、鉄。− Iron, using a metal complex on a solid substrate as a reaction nucleus.

ニッケルおよびコバルトを主成分とする磁性体を形成さ
せるため、鉄、ニッケルおよびコバルトを一成分とする
イオンを還元させる反応は、次のような還元雰囲気を用
いて実施することができる。
In order to form a magnetic material containing nickel and cobalt as main components, a reaction that reduces ions containing iron, nickel, and cobalt as main components can be carried out using the following reducing atmosphere.

刀 次亜リン酸ナトリウム、水素化ホウ素ナトリウム、
ジメチルアミンボラン、ジエチルアミンボラン、ヒドラ
ジン、ホルムアルデヒド、ブドウ糖、ロッシェル塩、蟻
酸などの還元剤を含む溶液の雰囲気(化学還元法)。
Sword Sodium hypophosphite, sodium borohydride,
Atmosphere of a solution containing reducing agents such as dimethylamine borane, diethylamine borane, hydrazine, formaldehyde, glucose, Rochelle's salt, formic acid, etc. (chemical reduction method).

イ)鉄、ニッケルおよびコバルトより卑な金属又は金属
錯体のイオンを含む溶液の雰囲気(酸化還元電位の相違
による還元法)(つ)紫外線などの光照射雰囲気(光還
元法)。
(a) Atmosphere of a solution containing ions of metals or metal complexes more base than iron, nickel, and cobalt (reduction method based on differences in redox potential) (i) Atmosphere irradiated with light such as ultraviolet rays (photoreduction method).

に)水素ガスなどの還元性を用するガスの雰囲気。) An atmosphere of reducing gases such as hydrogen gas.

なお、これらの還元雰囲気は単独でも良好だが、それぞ
れを組み合わせた還元雰囲気を用いても良好な結果が得
られる。
Note that these reducing atmospheres are good when used alone, but good results can also be obtained using a combination of these reducing atmospheres.

金属錯体を形成する配位子としては、塩素、臭素などハ
ロゲン、シアン、およびアンモニウムなどの無機物から
なる配位子を含むことは勿論だが、窒素N、酸素Oおよ
び硫黄Sなどの原子の不対電子に基因する有機物からな
るキレート型配位子を用いることに本発明の特徴がある
。このキレート型配位子の配位の仕方としては、錯形成
する金属種によっても異なるが、O−0,0−N、  
0−8゜N−N、N−8,S−8などの配位型がある。
Ligands that form metal complexes include halogens such as chlorine and bromine, cyanide, and inorganic ligands such as ammonium, as well as unpaired atoms such as nitrogen N, oxygen O, and sulfur S. The present invention is characterized by the use of a chelate-type ligand made of an organic substance based on electrons. The manner of coordination of this chelate type ligand varies depending on the metal species forming the complex, but O-0,0-N, O-0,0-N,
There are coordination types such as 0-8°N-N, N-8, and S-8.

本発明のように、錯体の金属が、鉄、ニッケルおよびコ
バルトなどの鉄族金属の場合、これらの金属とキレート
錯体を形成する配位子としては、例えば、アセチルアセ
トン、ジベンゾイルメタン、1゜1.1−トリフルオロ
−3−(2−テノイル)アセトン、N−ニトロンフェニ
ルヒドロキシルアミンのアンモニウム塩、N−ベンゾイ
ル−N−フェニルヒドロキシルアミン、1−ニトロソ−
2−ナフトールなどで代表される0−0配位型、8−キ
ノリツール、α−ベンゾインオキシムなどで代表される
0−N配位型、モノチオ・ジベンゾイルメタン、1,1
.1−1−リフルオロ−3−(2−チオテノイル)アセ
トンなどで代表されるO−8配位型、ジメチルグリオキ
シム、α−ベンジルオキシム、ジフェニルチオカルバゾ
ンなどで代表されるN−N配位型、8−キノリンチオー
ルなどで代表されるN−8配位型、ジエチルジチオカル
バミン酸のナトリウム塩やアンモニウム塩゛などて代表
されるS−8配位型、そのほか、1−(2−ピリジルア
ゾ)−2−ナフトールなどで代表される0−N−N配位
型、BDTAなどで代表される多座配位型などが有効で
ある。
As in the present invention, when the metal of the complex is an iron group metal such as iron, nickel, and cobalt, examples of the ligand that forms a chelate complex with these metals include acetylacetone, dibenzoylmethane, 1.1 .1-Trifluoro-3-(2-thenoyl)acetone, ammonium salt of N-nitron phenylhydroxylamine, N-benzoyl-N-phenylhydroxylamine, 1-nitroso-
0-0 coordination type represented by 2-naphthol, 0-N coordination type represented by 8-quinolitool, α-benzoin oxime, etc., monothio dibenzoylmethane, 1,1
.. O-8 coordination type represented by 1-1-lifluoro-3-(2-thiothenoyl)acetone etc., N-N coordination type represented by dimethylglyoxime, α-benzyloxime, diphenylthiocarbazone etc. , N-8 coordination type such as 8-quinolinthiol, S-8 coordination type such as sodium salt and ammonium salt of diethyldithiocarbamic acid, and 1-(2-pyridylazo)-2 The O-N-N coordination type represented by -naphthol and the like, and the multidentate coordination type represented by BDTA and the like are effective.

基体上にこの種の配位子、金属錯体を形成する場合、配
位子、金属錯体だけの場合でも良いが、基板との接着性
を向上するため、[有]高分子などのバインダーを添加
する方法、■配位機能をもったある種の化合物を高分子
の主鎖または側鎖に峻けた、いわゆる配位高分子を用い
る方法、■配位子と金属の錯形成によって架橋型の高分
子量の錯体になる、いわゆる架橋配位子を用いる方法な
どによっても有効な結果が得られた。
When forming this type of ligand or metal complex on a substrate, it is possible to use only the ligand or metal complex, but a binder such as a polymer may be added to improve adhesion to the substrate. ■ A method using a so-called coordination polymer, in which a certain type of compound with a coordination function is attached to the main chain or side chain of the polymer, ■ A method of creating a cross-linked polymer by complexing the ligand and metal Effective results were also obtained by methods using so-called bridging ligands, which form molecular weight complexes.

本発明では、基体上に形成される配位子や金属錯体の表
面密度によって磁性体の形成密度を制御できる特命があ
る。磁気記録の感度や分解精度は、基板上の磁性体の形
成密度に著しく影響される。
The present invention has the special feature that the formation density of the magnetic material can be controlled by the surface density of the ligand and metal complex formed on the substrate. The sensitivity and resolution accuracy of magnetic recording are significantly affected by the density of magnetic material formed on the substrate.

通常の無電解メッキ法や蒸着法などの従来の製造方法で
は、メッキ液組成などメッキ条件や蒸着条件によって磁
性体の形成密度を制御しているが、制御方法が極めて困
難であり再現性に久しく量産しにくい欠点のほかに、形
成された磁性体の磁気特性も比較的悪い。しかし、本発
明によれば、基体上に形成する配位子や金属錯体の表面
密度をあらかじめ制御することができるため、その後に
形成される磁性体は、配位子や金属錯体の表面密度に比
例して成長してくるので磁性体の形成密度を比較的自由
に制御したり、規定することが容易にできる利点がある
。さらに、本発明によれば、金属錯体を核として磁性体
が成長するためl/rの大きい磁性体が得られ、また、
その成長方向を磁場によって一次元的に規制し配向させ
ることも加わるため磁気特性にすぐれた磁性体が形成で
きる。
In conventional manufacturing methods such as normal electroless plating and vapor deposition methods, the density of magnetic material formed is controlled by the plating conditions such as the composition of the plating solution and the vapor deposition conditions, but the control method is extremely difficult and reproducibility has long been affected. In addition to the drawback that it is difficult to mass-produce, the magnetic properties of the formed magnetic material are also relatively poor. However, according to the present invention, the surface density of the ligands and metal complexes formed on the substrate can be controlled in advance, so that the magnetic material that is subsequently formed can be controlled depending on the surface density of the ligands and metal complexes. Since the magnetic material grows proportionally, it has the advantage that the formation density of the magnetic material can be controlled and defined relatively freely. Furthermore, according to the present invention, since the magnetic material grows with the metal complex as the nucleus, a magnetic material with a large l/r can be obtained, and
Since the growth direction is one-dimensionally regulated and oriented by a magnetic field, a magnetic material with excellent magnetic properties can be formed.

本発明によれば、形成される磁性体は、鉄、ニッケルお
よびコバルトの強磁性金属またはこれらの金属の合金組
成を主成分とするが、磁性体の磁気特性や耐摩耗性など
機械的性質を向上させるため、リンP、ホウ素B、など
の非金属元素やタングステンW、マンガンMn、  レ
ニウムRe、スズ8n、亜鉛Zn、バナジウム■、銅C
uなどの金属元素を含むことも有効である。
According to the present invention, the formed magnetic material is mainly composed of ferromagnetic metals such as iron, nickel, and cobalt, or alloy compositions of these metals, but the magnetic material has mechanical properties such as magnetic properties and wear resistance. In order to improve the
It is also effective to include a metal element such as u.

本発明によれば、用0る金属錯体の金属が、形成される
磁性体の主成分元素である鉄、ニッケル。
According to the present invention, the metal of the metal complex used is iron or nickel, which is the main component element of the magnetic material to be formed.

コバルトと異なるが、本発明の金属錯体は、ある種の反
応触媒となって磁性体の成長反応を早めることができる
。また、本発明の金属錯体は成長反応の核として機能す
るので成長する磁性体連鎖中にはほとんど混入しない。
Although different from cobalt, the metal complex of the present invention can act as a kind of reaction catalyst and accelerate the growth reaction of the magnetic material. Furthermore, since the metal complex of the present invention functions as a nucleus for the growth reaction, it is hardly mixed into the growing magnetic chain.

このため、磁気特性にすぐれた所定の組成をもつ磁性体
が再現性よく形成される利点がある。
Therefore, there is an advantage that a magnetic material having a predetermined composition with excellent magnetic properties can be formed with good reproducibility.

以下、本発明を実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

〔実施例1〕 塩化パラジウムPdC1,の1M水溶液100 meを
調製し、これに緩衝溶液を加えてpHを2〜8に調節す
る。このパラジウム水溶液中にアセチルアセトンの0.
1Mベンゼン溶液50tnlを加え入れ、両液を充分攪
拌混合するとベンゼン相にアセチルアセトンP d (
l[)錯体が分離形成される。水相と分離したアセチル
アセトンP d (1116体のベンゼン溶液中にポリ
メタアクリル酸メチルを加え入れて溶解するまで充分攪
拌する。この溶液をポリエチレンテレフタレートのフィ
ルムの片面上に吹き付けたのち圧縮空気で流延し、フィ
ルム上のベンゼン溶液を薄くかつ均一に塗布し、乾燥す
る。
[Example 1] 100 me of a 1M aqueous solution of palladium chloride PdC1 is prepared, and a buffer solution is added thereto to adjust the pH to 2-8. 0.0% of acetylacetone in this aqueous palladium solution.
Add 50 tnl of 1M benzene solution and stir and mix both solutions thoroughly to form acetylacetone P d (
The l[) complex is separated and formed. Polymethyl methacrylate is added to a benzene solution of acetylacetone P d (1116) separated from the aqueous phase and stirred thoroughly until dissolved. This solution is sprayed onto one side of a polyethylene terephthalate film and then blown with compressed air. Stretch the film, apply the benzene solution thinly and uniformly on the film, and dry.

このようにして、フィルム上にアセチルアセトンPd(
I[)@体が形成されたフィルムを第1表のような組成
と濃度の液中にそれぞれ入れ第1表のような反応条件で
磁界約10000eをかけて約1分間反応させ、フィル
ム試料4種類を作製した。反応後、それぞれのフィルム
試料をとり出し、充分水洗し、乾燥した。なお、磁界の
印加方向は、フィルム面内で磁気特性評価時の磁化方向
に平行になるようにつねに加えた。各々のフィルム試料
を8FMで観察した結果、磁性体はフィルム上の金属錯
体を核として磁性体粒子が針状に連鎖した状態で磁化方
向に配向、成長していた。また、針状に連鎖した磁性体
をとり出し、XMAで分析したところ第2表に示したよ
うな組成であることが判明した。次に、それぞれの試料
について磁気特性を測定した結果、第2表のような良好
な特性を示した。
In this way, acetylacetone Pd (
The films in which the I[)@ bodies were formed were placed in solutions with the compositions and concentrations shown in Table 1, and a magnetic field of about 10,000 e was applied under the reaction conditions shown in Table 1 to react for about 1 minute. I created a variety. After the reaction, each film sample was taken out, thoroughly washed with water, and dried. Note that the direction of application of the magnetic field was always parallel to the magnetization direction at the time of evaluating the magnetic properties within the plane of the film. As a result of observing each film sample under 8FM, it was found that the magnetic particles were oriented and grown in the magnetization direction in a state in which magnetic particles were chained in an acicular shape with the metal complex on the film as a core. In addition, when a magnetic substance chained in a needle shape was taken out and analyzed by XMA, it was found that it had a composition as shown in Table 2. Next, the magnetic properties of each sample were measured, and the results showed good properties as shown in Table 2.

なお、磁性体の成長反応時に印加する磁界の影響を検討
したところ、少なくとも100〜30000Cの範囲で
は良好な結果が得られ、10000e前後が好ましい。
In addition, when the influence of the magnetic field applied during the growth reaction of the magnetic material was studied, good results were obtained in the range of at least 100 to 30,000 C, and around 10,000 e is preferable.

第   1   表 第2表 〔実施例2〕 塩化ロジウムRh C13のIM水溶液100m/ヲ2
個調製し、各々緩衝溶液によってpHを3〜11および
8に調節する。pHが3〜11および8のロジウム水溶
液中に、それぞれ8二キノリツール(オキシン)の1M
クロロホルム溶液、およびジエチルジチオカルバミン酸
ナトリウムの8%水溶液を加え入れて充分攪拌すると8
−キノリツールのRh錯体は有機相に、また、ジエチル
ジチオカルバミン酸R,h錯は水溶液中でそれぞれロジ
ウム錯体が形成される。ジエチルカルバミンn1he体
についてはイソブチルメチルケトンで抽出した。
Table 1 Table 2 [Example 2] Rhodium chloride Rh C13 IM aqueous solution 100 m/W2
The pH was adjusted to 3-11 and 8 using a buffer solution, respectively. 1 M of 8 diquinolitools (oxine) in aqueous rhodium solutions with pH 3-11 and 8, respectively.
Add a chloroform solution and an 8% aqueous solution of sodium diethyldithiocarbamate and stir thoroughly.
- Rhodium complexes are formed in the organic phase of the Rh complex of the quinoli tool, and rhodium complexes of the diethyldithiocarbamic acid R and h complexes are formed in the aqueous solution. The n1he form of diethylcarbamine was extracted with isobutyl methyl ketone.

このようにして得られたクロロポルム溶液およびイソブ
チルメチルケトン溶液にそれぞれポリビニルホルマール
およびポリビニルブチラールを加え入れて溶解するまで
充分に攪拌混合する。この溶液中にそれぞれポリエチレ
ンテレフタレートのフィルムを浸漬し、乾燥するとフィ
ルム上にロジウム錯体の薄層が均一に形成される。
Polyvinyl formal and polyvinyl butyral were added to the chloroporum solution and isobutyl methyl ketone solution thus obtained, respectively, and the mixture was thoroughly stirred and mixed until dissolved. A film of polyethylene terephthalate is immersed in each of these solutions, and when dried, a thin layer of rhodium complex is uniformly formed on the film.

それぞれロジウム錯体が形成されたフィルムを第1表に
示すような組成と濃度の液中に入れ、第1表に示したよ
うな反応条件下で磁場約10000Cをフィルム面内で
磁化方向にかけて反応させると、ただちにフィルム上の
錯体を核として磁化方向に針状連鎖形状の磁性体が形成
してくる。反応後、水洗、乾燥し実施例1と同様にして
磁性体の組成と磁気特性を測定した結果、第3表および
第4表に示すような値が得られた。
A film in which a rhodium complex has been formed is placed in a solution with the composition and concentration shown in Table 1, and a magnetic field of about 10,000 C is applied in the plane of the film in the direction of magnetization under the reaction conditions shown in Table 1 to cause a reaction. Immediately, a magnetic substance in the form of an acicular chain forms in the direction of magnetization, with the complex on the film serving as a nucleus. After the reaction, the magnetic material was washed with water and dried, and the composition and magnetic properties of the magnetic material were measured in the same manner as in Example 1. As a result, the values shown in Tables 3 and 4 were obtained.

第4表 〔実施例3〕 イリジウムIrの1−(2−ピリジルアゾ)−21−7
ト一ル錯体の0.5Mクロロホルム溶液。
Table 4 [Example 3] Iridium Ir 1-(2-pyridylazo)-21-7
0.5M solution of tolu complex in chloroform.

およびパラジウムPdの8−キノリンチオールの0.5
Mクロロホルム溶液をそれぞれ調製し、各クロロホルム
溶液中にポリビニルブチラールを添加して充分混合し溶
解する。ポリエチレンテレフタレートのシート上に各溶
液を塗布後、乾燥してシート上にイリジウムおよびパラ
ジウムの錯体を形成する。
and 0.5 of 8-quinolinthiol in palladium Pd.
M chloroform solutions are prepared, and polyvinyl butyral is added to each chloroform solution and thoroughly mixed and dissolved. After each solution is applied onto a sheet of polyethylene terephthalate, it is dried to form a complex of iridium and palladium on the sheet.

イリジウム錯体およびパラジウム錯体が形成された各シ
ートをそれぞれ第5表のhおよび1に示したような液中
に入れて第5表に示された反応条件下で磁場約1000
0eをシート面内で磁化方向にかけて反応させた。反応
後、充分水洗し、乾燥した。実施例と同様にして磁性体
の組成をXMAで分析、また磁気特性を測定し、その結
果を第5表および第6表に示した。
Each sheet with an iridium complex and a palladium complex formed thereon was placed in a solution as shown in h and 1 of Table 5, respectively, and a magnetic field of about 1000 was applied under the reaction conditions shown in Table 5.
0e was applied in the magnetization direction within the sheet plane to cause a reaction. After the reaction, it was thoroughly washed with water and dried. The composition of the magnetic material was analyzed by XMA and the magnetic properties were measured in the same manner as in Examples, and the results are shown in Tables 5 and 6.

第5表 を亡”ズフ 第6表 〔実施例4〕 ロジウムの8−キノリツール錯体の1Mベンゼン溶液を
調製し、このベンゼン溶液中にポリメタアクリル酸メチ
ルを加え入れて充分混合し溶解する。ポリエチレンテレ
フタレートのフィルム上に金属錯体が形成されたフィル
ムを第7表に示した液中に入れて第7表のような反応条
件下で磁場約10000eをフィルム面内で磁化方向に
かけて反応させた。反応核、充分水洗し、乾燥した。実
施例1と同様にして磁性体の組成と磁気特性を測定し、
その結果を第8表に示した。
Table 6 (Example 4) A 1M benzene solution of rhodium 8-quinolitool complex is prepared, and polymethyl methacrylate is added to the benzene solution and thoroughly mixed and dissolved.Polyethylene A film in which a metal complex was formed on a terephthalate film was placed in the liquid shown in Table 7, and a magnetic field of about 10,000 e was applied in the plane of the film in the direction of magnetization under the reaction conditions shown in Table 7 to cause a reaction. The core was thoroughly washed with water and dried.The composition and magnetic properties of the magnetic material were measured in the same manner as in Example 1.
The results are shown in Table 8.

第7表 第8表 上記の実施例はいずれも反応時に印加する磁界はフィル
ム面内に平行であった。フィルム面に垂直に磁化を要す
る場合には、反応中のみならず洗浄、乾燥時にもフィル
ム面に垂直方向に磁界を印加することで、上記の実施例
と同様の効果があり、本発明は垂直記録方式の磁気記録
媒体にも極めて有効であることが立証された。
Table 7 Table 8 In all of the above examples, the magnetic field applied during the reaction was parallel to the plane of the film. When magnetization is required perpendicular to the film surface, applying a magnetic field perpendicular to the film surface not only during reaction but also during washing and drying produces the same effect as in the above embodiment, and the present invention It has been proven that this method is also extremely effective for magnetic recording media.

以上本発明によれば、従来の製造方法にくらべて次の効
果がある。
As described above, the present invention has the following effects compared to conventional manufacturing methods.

(1)金属錯体の触媒作用によるため基体上での磁性体
の成長反応が早く磁気記録媒体の量産性にすぐれる。
(1) Due to the catalytic action of the metal complex, the growth reaction of the magnetic material on the substrate is fast and the mass production of magnetic recording media is excellent.

(2)磁性体は基体上の金属錯体を反応の核として成長
するため、基体上の磁性体密度を金属錯体の表面密度に
よって容易ζこ制御することができる。このため、磁気
特性にすぐれた磁気記録媒体が容易にえられる。
(2) Since the magnetic substance grows using the metal complex on the substrate as a reaction nucleus, the density of the magnetic substance on the substrate can be easily controlled by the surface density of the metal complex. Therefore, a magnetic recording medium with excellent magnetic properties can be easily obtained.

(3)磁界によって磁性体の成長方向を配向規制するこ
とができるため、−次元的に配向した磁性体の連鎖が得
られる。このためt/rの大きい磁性体かえられ、した
がって、保磁力や角型比など性能にすぐれた磁気記録媒
体かえられる。
(3) Since the growth direction of the magnetic material can be regulated by a magnetic field, a chain of magnetic materials oriented in a -dimensional direction can be obtained. Therefore, a magnetic material with a large t/r can be used, and therefore a magnetic recording medium with excellent performance such as coercive force and squareness ratio can be used.

Claims (1)

【特許請求の範囲】[Claims] 窒素、酸素才たは硫黄の原子を含む配位子と白金、イリ
ジウム、ロジウム、オスニウム、パラジウム、ルテニウ
ムなど白金族の少くとも一つから選らばれた金属のイオ
ンとを主成分とする金属錯体の溶液を基体上に付着・乾
燥させて前記金属錯体を層状に形成する工程と、前記基
体上に付着形成した金属錯体を反応の核として磁界印加
中で還元雰囲気によって鉄、ニッケルまたはコバルトな
どのイオンを還元して前記基体上に、鉄、ニッケルまた
はコバルトを主成分とする磁性体を形成する工程を含む
ことを特徴とする磁気記録媒体の製造方法。
A metal complex whose main components are a ligand containing a nitrogen, oxygen, or sulfur atom and an ion of a metal selected from at least one member of the platinum group such as platinum, iridium, rhodium, osnium, palladium, and ruthenium. A step of depositing and drying a solution on a substrate to form the metal complex in a layered manner; and a step of applying ions of iron, nickel, or cobalt in a reducing atmosphere while applying a magnetic field using the metal complex deposited and formed on the substrate as a reaction nucleus. 1. A method for manufacturing a magnetic recording medium, comprising the step of reducing a magnetic material containing iron, nickel, or cobalt as a main component on the substrate.
JP12617282A 1982-07-20 1982-07-20 Manufacture of magnetic recording medium Pending JPS5917224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12617282A JPS5917224A (en) 1982-07-20 1982-07-20 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12617282A JPS5917224A (en) 1982-07-20 1982-07-20 Manufacture of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS5917224A true JPS5917224A (en) 1984-01-28

Family

ID=14928456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12617282A Pending JPS5917224A (en) 1982-07-20 1982-07-20 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5917224A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983232U (en) * 1982-11-27 1984-06-05 日本電気ホームエレクトロニクス株式会社 Automotive engine flywheel device
JPS62142562A (en) * 1985-12-18 1987-06-25 東レ株式会社 Deodorizing base material
US4988578A (en) * 1986-03-10 1991-01-29 Komag, Inc. Method for manufacturing a thin film magnetic recording medium
JPH03225056A (en) * 1990-01-30 1991-10-04 Honda Motor Co Ltd Fuel injection control device for engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983232U (en) * 1982-11-27 1984-06-05 日本電気ホームエレクトロニクス株式会社 Automotive engine flywheel device
JPS62142562A (en) * 1985-12-18 1987-06-25 東レ株式会社 Deodorizing base material
JPH0377308B2 (en) * 1985-12-18 1991-12-10 Toray Industries
US4988578A (en) * 1986-03-10 1991-01-29 Komag, Inc. Method for manufacturing a thin film magnetic recording medium
JPH03225056A (en) * 1990-01-30 1991-10-04 Honda Motor Co Ltd Fuel injection control device for engine

Similar Documents

Publication Publication Date Title
Sard The nucleation, growth, and structure of electroless copper deposits
US4652465A (en) Process for the production of a silver coated copper powder and conductive coating composition
Dumesic et al. The Rate of Electroless Copper Depositionby Formaldehyde Reduction
Osaka et al. An electron diffraction study on mixed PdCl2/SnCl2 catalysts for electroless plating
JPS59962B2 (en) Jikikirokubaitaiyoufunmatsujiseizairiyo Oyobi Seizouhouhou
JPS5917224A (en) Manufacture of magnetic recording medium
JPH11241170A (en) Catalytic composition for electroless plating
US3198659A (en) Thin nickel coatings
US3269854A (en) Process of rendering substrates catalytic to electroless cobalt deposition and article produced
JPS5917225A (en) Manufacture of magnetic recording medium
JPS5996706A (en) Manufacture of magnetic recording medium
JPS5917223A (en) Manufacture of magnetic recording medium
JPS5996707A (en) Manufacture of magnetic recording medium
KR101582659B1 (en) Method for coating metal on the surface of glass fiber using catechol polymer and the glass fiber coated metal thereby
US3905841A (en) Method of improving dispersability of small metallic magnetic particles in organic resin binders
JPS5996705A (en) Manufacture of magnetic recording medium
JPS62207875A (en) Production of metal plated inorganic particles
JPH0235031B2 (en) PARAJIUMUORUGANOZORUOMOCHIITAKINZOKUMETSUKIHOHO
JP2543853B2 (en) Conductive coated magnetic powder for conductive paste
JPS5914626A (en) Magnetic recording medium and manufacture thereof
DE2262406A1 (en) PLATING PROCESS
JPH0257148B2 (en)
JPS6120302A (en) Ferromagnetic powder and manufacture thereof
KR20140020286A (en) Coated fibrous copper microparticles, and electrically conductive coating agent and electrically conductive film each containing said coated fibrous copper microparticles
Vorobyova et al. The processes and the products of gold reduction in tetrachloroaurate electroless plating solutions